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Abstract 

 
In our prior work we explored a cache organization 

providing architectural support for distinguishing 
between memory references that exhibit spatial and 
temporal locality and mapping them to separate caches. 

The work showed that using separate (data) caches 
for indexed or stream data and scalar data items could 
lead to substantial improvements in terms of cache 
misses. In addition, such a separation allowed for the 
design of caches that could be tailored to meet the 
properties exhibited by different data items. 

In this paper, we investigate the interaction between 
three established methods, split cache, victim cache 
and stream buffer. Since significant amounts of 
compulsory and conflict misses are avoided, the size of 
each cache (i.e., array and scalar), as well as the 
combined cache capacity can be reduced. Our results 
show that on average 55% reduction in miss rates over 
the base configuration.   
Key Words: Array Cache, Scalar Cache, Victim 
Cache, Stream Buffer, Memory Access Time. 
 
1. Introduction 
 

In this paper, we investigate methods for improving 
hit rates in the first level of memory hierarchy and 
show that the inclusion of a victim cache and a stream 
buffer together with partitioned cache architectures 
provides an effective solution for alleviating existing 
problems in cache designs and enhancing the effective 
cache memory space for a given cache size and cost. 

The success of cache memories has been explained 
using the concept of locality (either temporal or 
spatial) of reference [2]. Temporal locality implies that, 
once a location is referenced, there is a high probability 
that it will be referenced again soon, and less likely to 
do so as time passes; spatial locality implies that when 
a datum is accessed it is very likely that nearby data 
will be accessed soon. Since cache stores recently used 
segments of information, the property of locality 
implies that needed information is also likely to be 
found in the cache. Computer architects have proposed 
smart cache control mechanisms and novel cache 

architectures that can detect program access patterns 
and can fine-tune some cache policies to improve 
overall cache utilization and data locality. Among 
these techniques are associative caches, prefetching 
mechanisms [3], cache bypassing [4], victim caches 
[6], column-associative caches [7], stream buffers [6], 
split caches [8]-[19], and multi-port caches. In his 
paper Jouppi [6] proposed both victim caches and 
stream buffers. Victim caches are based on the fact that 
reducing the cache misses due to line conflicts for data 
exhibiting temporal locality is an effective way to 
improve cache performance, whereas stream buffers 
are oriented towards eliminating cold misses coming 
from the portion of the code exhibiting spatial locality. 
A split cache provides architectural support for 
distinguishing between memory references that exhibit 
spatial and temporal locality and mapping them to 
separate caches in order to implement different 
configurations exploiting different cache parameters 
selectively and effectively. Each of these approaches 
has its strengths and works well for the patterns it is 
designed for. So far, split caches have primarily been 
used independently of the other two approaches. To 
date, no split cache has considered the existence of a 
victim cache or a stream buffer and their interaction on 
data references. Similarly, a victim cache or stream 
buffer does not normally consider what optimizations 
have already been incorporated by locality-enhancing 
split cache techniques. In this work we use all these 
three techniques together and study the interaction 
among them. We propose an integrated scheme that 
partitions the program into regions, each with its own 
locality type. Our approach then sends the partitioned 
memory references to appropriate caches and finally 
selectively applies either a victim cache for program 
regions exhibiting temporal locality or a stream buffer 
for regions with spatial locality, to further enhance the 
split cache organization.  

The rest of the paper is organized as follows. 
Section 2 discusses related issues and performance 
metrics in more detail. Section 3 provides a survey and 
analysis of related research. Section 4 describes the 
experimental method used in our evaluation while, 
section 5 presents the results. Section 6 provides a brief 



synopsis of our work, drawing conclusions from our 
experimental results.  
 
2. Concepts 
 

Since our approach combines three different 
techniques in a single framework, we will first describe 
how each of them concepts before describing our 
integrated approach.   
 
2.1. Split Cache and its functionality 
 

Separation of cache is not a new idea. Modern 
processors rely on split cache architectures, at least at 
the first cache level, with separate instruction and data 
caches. Conventional data caches imply no separation 
based on the nature of the locality exhibited by 
different data references, handling all memory 
references in a uniform manner - whenever a reference 
misses, a new block is brought into cache at the 
expense of replacing another block. Since not all data 
items exhibit both spatial and temporal localities, this 
simple treatment to references makes the data cache 
inefficient at adapting to the two types of localities. 
Generally, caches exploit temporal locality by retaining 
recently referenced data for a long time, and spatial 
locality by fetching multiple neighboring words as a 
cache block on a cache miss. If a data item exhibits no 
temporal locality, bringing it into the cache is useless. 
Likewise if no spatial locality is exhibited by data 
items, bringing an entire cache block is needless. Thus 
traditional treatment of cache misses causes 
unnecessary movement of data among the levels of the 
memory hierarchy, causing significant interference 
between unrelated data inside the cache, leading to the 
removal of potentially useful data, causing cache 
pollution and unnecessary increases in miss ratio, 
memory access time and memory bandwidth.  

In order to solve these problems, several split cache 
architectures have been proposed: Dual cache[9], [12], 
Split Temporal/Spatial(STS) [10], Split Spatial/Non-
Spatial cache (SS/NS) [14], array and scalar cache[13], 
HP-7200 Assist cache[8], Non-Temporal Streaming 
(NTS) [11] and Minimax cache[18]. In our prior work 
[1], we proposed a split cache architecture that grouped 
memory accesses as scalar or array references 
according to their inherent locality and each group was 
subsequently mapped to a dedicated cache partition, 
equipped with architectural constructs built to exploit 
that particular locality type selectively and effectively. 
The “array cache” was a direct mapped cache with 
larger block sizes to exploit spatial localities more 
aggressively by prefetching multiple neighboring small 
blocks on a cache miss. Whereas the “scalar cache” 

was a 2-way set associative cache with smaller block 
sizes to exploit temporal locality.  In this system, since 
scalar references and streamed references no longer 
negatively affected each other, cache interference, 
thrashing and pollution problems were diminished, 
delivering better performance. Not only both caches 
would be designed more optimally according to their 
specific needs, it would simplify some other general 
issues and concerns in cache design, such as the 
associativity, cache block size or cache capacity.  
 
2.2. Victim Cache and its functionality 

 
Victim cache was originally proposed by Jouppi[6] 

as an approach to reduce the conflict misses of direct 
mapped caches without affecting its fast access time. 
Victim cache  is a fully associative cache, whose size is 
typically 4 to 16 cache lines, residing between a direct 
mapped L1 cache and the next level of memory. On a 
main cache miss, before going to the next level, the 
victim cache is checked. If the address hits in the 
victim cache the desired data is returned to the CPU 
and also promoted to the main cache by replacing its 
conflicting competitor. The data evicted from the main 
cache is transferred to the victim cache. In case of a 
miss in victim cache the next level of memory is 
accessed and arriving data fills the line in main cache 
while moving the current data to victim cache. In this 
case the replaced entry in the victim cache is discarded 
and, if dirty, written back to the next level of memory.  

The design of a first level cache always involves 
fundamental tradeoffs between miss rate and access 
time. Direct mapped caches are simpler, easier to 
design and require less silicon area than set associative 
caches. The main disadvantage of a direct mapped 
cache is the high conflict miss rate -- conflict misses 
typically account for 40% of all direct-mapped cache 
misses [6]. Conversely for caches with higher 
associativity the main advantage is lower miss rate, but 
they are more expensive and incur longer access times 
on a hit. The goal of a computer architect is to 
maximize performance while staying within cost and 
power constraints. Addition of a victim cache can ease 
this problem by reducing the conflict miss rate to the 
same extent as a set associative cache, but at the same 
time maintaining the critical hit access path of a direct 
mapped cache. Victim cache temporarily holds data 
evicted from the cache and, because of its full 
associativity, it can simultaneously hold many blocks 
that would conflict in direct mapped cache. If the 
number of conflicting blocks are small enough to fit in 
victim cache, both the miss rate to the next memory 
level and the average access time will be improved due 



to relatively low miss penalty for fetching from victim 
cache.  
 
2.3. Stream Buffer and its functionality 
 

Complementing the cache with a small stream 
buffer to exploit spatial localities was also first 
proposed by Jouppi [6]. The stream buffer is a fully 
associative, FIFO buffer with 4 or 5 entries designed to 
support direct mapped cache through prefetching. A 
miss will induce the prefetching of the missed block 
along with successive blocks that will be stored in the 
buffer rather than the cache. The intent is to use the 
stream buffer to avoid cache pollution (premature 
displacement of data). For data with spatial locality 
prefetching is always a good solution. Although 
increasing line size is the simplest way of prefetching, 
line sizes cannot be made arbitrarily large without 
increasing miss rates and greatly increasing the amount 
of data to be transferred [6]. Other conventional 
prefetching methods also have their deficiencies. The 
stream buffer not only mitigates traditional problems 
with larger cache lines and extensive prefetching, it is 
more effective than other investigated prefetch 
techniques [6]. The biggest problem with stream 
buffers is that they need to be flushed at the detection 
of any non-spatial data. Jouppi’s investigation did not 
explore the stream buffer only for data with spatial 
localities (such as streams). Rather the buffer was used 
for all data items. 
  
2.4. Functionality of the integrated approach 
 

So can we design a combined approach that 
provides even better performance than either applying 
only one or applying each independently? Until now 
there has not been significant research investigating the 
interaction among these three optimizations (viz., split 
caches, victim cache and stream buffer). We already 
have shown that using separate (data) caches for 
indexed or stream data and scalar data items can lead 
to substantial improvements in terms of cache misses 
[1]. Although victim caches and stream buffers can 
reduce miss rates in L1 cache, the reduction achieved 
depends on the configuration of the cache, as well as 
the data reference types. Now we will see how a 
separation of caches can be tailored to meet the 
requirements of victim cache and stream buffer.  

A conflict miss occurs when data with temporal 
locality is referenced twice but is replaced by another 
data item in between the references. Victim caching is 
based on the principle of temporal locality and 
provides dynamic associativity by allowing up to N+1 
conflicting blocks, which belong to the same direct-

mapped set, to co-exist in caches simultaneously, 
where N is the number of block entries in the victim 
cache. In his original paper, Jouppi implemented a 
victim cache for a unified data cache. As a result array 
or stream elements remove scalar data from the victim 
cache causing expensive victim cache pollution. In our 
work, as the array references are removed from the 
scalar cache, the victim cache not only has to deal with 
fewer references but also without being polluted by 
stream references. The reduced cost of using small 
victim cache with direct mapped cache outweighs the 
performance gains of having a cache with large 
associativity.   

On the other hand, a cold miss occurs when stream 
or array data are traversed linearly by using the 
elements only once or very few times during traversals. 
Stream buffers exploit spatial locality and perform 
prefetching for stream or array data. Jouppi’s analysis 
[6] also included the stream buffer for a unified data 
cache and every time scalar data is detected the whole 
buffer needed to be flushed. In our study because we 
are removing the contaminating scalar data the 
performance can increase significantly.   

We believe, that while transistors are plentiful in 
current VLSI designs, it is useful to allocate more 
resources to allow intelligent control over latency 
reducing techniques and that it is better to implement 
multiple smaller dedicated caches because these can be 
accessed relatively quickly. In our framework, the 
compiler will separate data references according to 
their inherent locality type and send them to 
appropriate cache. In this study the promising aspects 
of victim cache in keeping conflicting blocks will be 
used to satisfy the requirements of scalar cache and the 
prefetching ability of stream buffer will be included 
with the array cache to exploit its advantages for 
streaming data. Compiler has a global view of the 
program that is not visible to hardware, which on the 
other hands gathers information during runtime. Our 
objective is to combine runtime and compile time 
information to take full advantage of both. 

 
3. Related Work 
 

According to our knowledge no work has been 
reported presenting the integration of these three 
approaches. For that reason in subsection 3.4 we 
compared our work with the most closely related work 
by Johnson et al.[4]  
 
3.1. Split Cache 
 

Valero et al. [9] have proposed a dual data cache, 
which is composed of two modules, a temporal module 



which is a fully associative buffer and spatial module, 
which is a direct mapped cache targeted to exploit 
spatial locality. At the compile time memory 
instructions are tagged as bypass, spatial, or temporal.  

In the STS (Split Temporal/Spatial) cache proposed 
by Milutinovic et al. [10] the temporal part is 
organized as a two level hierarchy with one word block 
size, whereas the spatial part is one-level with four 32-
bit words and a hardware implemented prefetching 
mechanism. In a later study Milutinovic et al. [14] 
proposed a new split cache design, called the Split 
Spatial/Non-Spatial cache (SS/NS), which used a flag 
based method for detecting different types of locality.  

The NTS (Non-Temporal Streaming) cache 
proposed by Rivers and Davidson [11] dynamically 
detects temporal (T) and non-temporal (NT) data and 
cache them separately. The NTS cache system includes 
a non-temporal detection unit (NTDU) to monitor the 
reuse behavior of the blocks. Lee et al. [15] have 
proposed a split cache system called STAS cache. In 
this system on every memory access, both modules are 
accessed simultaneously. Later they proposed an SMI 
cache [16] that is an extended version of STAS with a 
prefetching unit. There have been more studies of split 
cache which include array/scalar cache [13], HP-7200 
Assist cache [8].  

In the arena of embedded processors, static or 
dynamic cache partitioning are even more popular. 
Most prominent works include Minimax cache [18] 
and Intel’s StrongARM SA-1110 [17]. Ranganathan et 
al. [19] and many others have proposed reconfigurable 
caches for embedded systems with dynamic cache 
partitioning. 
 
3.2. Victim Cache 
 

Albera and Bahar [20] combined software code 
placement and associative-buffer solutions for high 
performance processors and showed that the buffer can 
improve performance even more after code layout 
optimization is applied than when it is used without the 
code optimization. In a later study Bahr et al compared 
the use of victim caches to more traditional techniques 
and showed that use of a victim cache is usually a 
better choice for both power and performance [21]. 

Espasa and Valero [22] considered the usefulness of 
adding a victim cache next to the register level of a 
vector processor and showed that it can provide 
speedups by allowing a good tolerance of large 
memory latencies. 

Hormdee et al proposed an architecture of a self-
timed victim cache with a forwarding mechanism 
suitable for use within an asynchronous environment 
[23].  

While the average performance and energy 
improvements obtainable using a victim cache are well 
known for general purpose computers, in the arena of 
embedded systems where power and time savings are 
extremely important, the extra one cycle needed to 
check victim cache may become wasteful and 
dramatically degrade performance if victim cache hit 
rate is low. Zhang and Vahid proposed that adding a 
victim cache as a configurable parameter will be 
imperative for embedded system designers to fully take 
advantage of victim cache based on application’s 
specific requirements [24].  

Except for the addition of the non-swapping option, 
no other extension to Jouppi’s original victim cache [6] 
was implemented by any of these above mentioned 
studies. Bahar et al [21] tried to add some extra flavor 
in their “penalty buffer” but did not gain much 
improvement. Only one group, Stiliadis et al had 
proposed an improvement of victim caching called 
“Selective Victim Caching” [25]. In this method a 
prediction scheme based on each block’s past history 
of utilization is used to selectively place a block either 
in the main cache or victim cache on a cache miss in 
either cache and to decide whether to perform swap or 
not in the case of victim hit.  
 
3.3. Stream Buffer 

 
The most extensive and prominent work with 

stream buffers is that of McKee et al. [26]. They 
designed an SMC (stream memory controller), which 
is a combination of a small buffer and an intelligent 
scheduling unit for supporting regular cache. 
Palacharla and Kessler [27] proposed the use of 
multiple stream buffers to replace big secondary cache.  
 
3.4. Combination of Victim Cache, Stream 
Buffer and Cache separation techniques 
 

To date, no study has combined the implementation 
of victim cache and stream buffer with separated data 
cache approach. Johnson et al [4] proposed a method 
where a single 4–way set associative buffer is used to 
serve the function of both victim cache and stream 
buffer on groups of data that have been differentiated 
based upon the reuse behavior. While we also regroup 
data by locality analysis and implement both victim 
cache and stream buffer, our work differs with [4] in 
several key aspects. 

Johnson et al [4] presented a method to improve the 
efficiency of cache by bypassing data that is expected 
to have little reuse in cache and allowing more 
frequently accessed data to remain cached longer. The 
bypassing choices are made by a Memory Address 



Table (MAT), which analyzes the usage patterns of the 
memory locations accessed. In order to characterize 
memory locations they introduce the notion of macro-
block, which is a group of statically defined blocks of 
memory with uniform size (1k bytes). They used a 
direct mapped 16k L1 data cache and 256k L2 data 
cache with fully associative buffers of 8 and 256 
entries respectively, which hold bypassing data and are 
accessed in the same manner as a victim cache. Since 
fetching the entire cache block for bypassed data with 
little spatial locality will cause cache pollution and 
extra traffic, they used small lines (equal to the element 
size) for the buffers and optionally fill in consecutive 
blocks when spatial locality is detected. As we can see 
they are using a single buffer to serve the purpose of 
both a victim cache (for scalar data) and a prefetch 
buffer (for stream data). In a later study [5] they 
extended their scheme by adding an extra structure 
SLDT (Spatial Locality Detection Table) and extra 
counter for each MAT entry to detect spatial locality so 
that the system can adapt to varying spatial locality by 
dynamically adjusting the amount of data fetched on a 
cache miss.  

The first difference between their work and ours is 
that rather than using locality types they have used 
reuse behavior of data as a metric for data separation. 
Since the MAT keeps the reuse pattern for all data in 
the whole program, at some point during execution it is 
possible for an array element to have higher reuse 
count than scalar data. In that case the MAT scheme 
will bypass the data which may have otherwise had a 
few hits before being displaced from the cache. Hence 
more than one additional miss will be incurred by not 
caching that data, whereas only one miss is removed 
by not displacing the more frequently accessed data. 
Secondly after identifying data as scalar/array we 
cache both types in separate caches whereas they used 
bypassing for data with less reuse history. The third 
and the most significant difference between their work 
and ours are the number and types of architectural 
constructs. We not only use two separate caches for 
two different data types, we also use two separate 
structures as victim cache and stream buffer to tune the 
amount of data cached and fetched. This allows us to 
fully exploit the functionality of a victim cache to 
reduce conflict misses of scalar data by holding data 
longer and the usability of stream buffer to reduce the 
cold miss of array data by prefetching. In their method 
using 8 lines of buffer as both victim cache and 
prefetch buffer will negatively affect each’s 
performance.  

    
4. Simulations 
 

The cache architecture proposed in this paper has 
been evaluated for the following SPECfp2000 
benchmarks, art, ammp, mesa, equake, fma3d, mgrid, 
applu and sixtrack [29]. The number of instructions 
executed by each application varied from 1 billion to 
129 billions. We truncated some of the benchmarks to 
reduce the number of references. The descriptions of 
the benchmarks are given in Table 1. We used trace 
driven simulation as our evaluation methodology. The 
executables are instrumented using ATOM 
instrumentation and analysis system [30]. In an actual 
implementation of split caches, compile time analyses 
can be used to tag stream data so that they can be 
directed to array cache, separate from scalar cache.  

 
Table 1: Descriptions of benchmarks used in the 

experiment 
Benchmark 
name 

Description Name  
in figure 

179.art ImageRecognition/Neural networks ar 
188.ammp Computational Chemistry am 
183.equake SeismicWavePropagation Simulation eq 
177.mesa 3-D Graphics Library me 
172.mgrid Multi-grid Solver: 3D Potential Field mg 
191.fma3d Finite-element Crash Simulation fm 
200.sixtrack NuclearPhysics Accelerator Design sx 
173.applu ParabolicPartialDifferentialEquation ap 
 

In an attempt to evaluate the optimal configuration 
of the integrated approach, a variety cache sizes, block 
sizes, associativity and replacement methods were 
examined for each of array, scalar, victim cache and 
stream buffer. Table 2 presents the optimum 
configuration for the memory hierarchy that has been 
implemented in our study. 

 
Table 2. Configuration of Memory hierarchy 

Scalar cache configuration 4k, Directmapped,64bytes block 
Access time of Scalar cache  1 cycle 
Number of lines in victim cache 8 lines, non swapping 
Victim cache associativity Fully associative 
Replacement Policy LRU 
Victim cache block size 64-bytes 
Access time of Victim cache  1 cycle 
Array cache configuration 4k, Directmapped, 64bytes block  
Access time of Array cache  1 cycle 
Number of stream buffer 4 
Number of lines in stream buffer 10 
Stream buffer block size 64 bytes 
Access time of stream buffer 1 cycle 
L2 cache configuration 256k, Directmap,64bytes block 
Access time of L2 cache  10 cycle 
   

 



5. Results 
 

The next three subsections present the selection of 
cache organizations in the same order as these 
parameters were described in sections 2 and 3. We 
compare the effective miss rate of proposed cache 
against that of conventional unified cache. The results 
support our view that a complete separation of array 
and scalar data items with victim cache and stream 
buffer can be a key to boosting cache performance.  
 
5.1. Results with Split Caches 
 

In our previous work [1], we have shown that the 
combination of different block sizes and associativities 
together with partitioned cache architectures reduces 
compulsory and conflict misses in significant amounts 
and allows the combined cache capacity to be reduced.  
Figure 1 shows results of our previous work along with 
some additional benchmarks. In that work we 
simulated a partitioned 4k scalar cache while are 
streams mapped to a 2k array cache. This arrangement 
proved more efficient than a 16k unified data cache.  

 
5.2. Results with Victim Cache 
 
Figures 2 and 3 compare the use of victim cache and 
higher associativity in decreasing cache misses and 
access time respectively. Figure 2 shows that using a 
victim cache with a direct mapped scalar cache led to 
miss rates similar to that of a 2-way set associative 
cache. Figure 3 shows that the victim cache allowed a 
significant reduction in access times for scalar data 
items. Given that access time is a better metric of cache 
performance than miss rate, our experiments show the 
significant benefit available with a victim cache.   
 
5.3. Results with Stream Buffer  
 

To evaluate the benefit of stream buffers with the array 

cache, we used multiple (4) stream buffers of 10 
elements, following Jouppi [6]. The cache miss rates 
and access time for each benchmark are plotted in 
figure 4 and 5 respectively.   

 
5.4. Results of Combining Victim Cache, 
Stream Buffer and Split Caches 
 

After the evaluation of optimal configurations for 
both victim cache and stream buffer, weighted 
effective miss rate for array and scalar caches are 
compared against the miss rate of unified 16k data 
cache. In order to find the effective miss rate we have 
used the following formula, 

 
 

 

 
 

Fig. 1. Reduction in effective miss rate with array and scalar 
caches 

 
 
      Fig. 4. Reduction in miss rate of array cache with stream buffer 

 

 
Fig. 2. Comparison of miss rate of 2-way set associative scalar 

cache with direct mapped scalar cache and victim cache 

 

 
Fig. 3. Percentage reduction in access time by switching from 2-

way set associative to direct mapped scalar cache with victim 
cache 

  



 
Effective miss rate = Array miss rate * (Number of Array 
references/Number of total references) + Scalar miss rate * (Number 
of Scalar references/Number of total references)                                                                                         
 

The results are shown in figure 6. The integrated 
approach demonstrates uniform superiority over the 
conventional unified data cache design across all of the 
benchmarks. For 4k scalar cache and 4k array cache on 
average 55% improvement is achieved over a 16k 
unified scalar cache for the benchmark set. 
 

6. Conclusions 
 

The widening gap between processor and memory 
speeds makes data locality optimization a very 
important issue in modern cache systems. Computer 
architects focus on optimizing data cache locality using 
intelligent cache management mechanisms. In this 
paper, we investigated the interaction between three 
established methods, split cache, victim cache and 
stream buffer and proposed a strategy to optimize 
cache locality for scientific applications. Simulation 
results showed that proposed technique improved miss 
rates on average 55% with respect to the base 
configuration, even while using smaller combine cache 
foot-print. The proposed approach demonstrated how 

three inherently different approaches could be 
combined and made to work together by providing 
further achievement in data locality optimization arena. 
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