J. SYSTEMS SOFTWARE - 85
1992: 15:85-99

Real-Time Systems Design Methodologies:

An Introduction and a Survey

Krishna M. Kavi and Seung-Min Yang

The University of Texas at Arlington, Computer Science Engineering Depnrtmenr Arfmgmn Texas ’1 5

In this article we describe examples of real-time sys-
tems in an attempt to characterize such systems. We
address the issues as they relate to real-time embed-
ded software systems, and issues that distinguish them
from other software systems. The key feature of
real-time systems is the timely response requirement.
This often implies concurrent processing. The critical
nature of many real-time applications necessitate
fault-tolerant implementations. Future real-time sys-
tems will be more complex and would require dis-
tributed implementations. Although several design
methods and tools have been proposed, they fall short
in meating all the requirements. We include a

“wish-list"”" of demahla features of future software
tools.

1. INTRODUCTION

As the environments in which real-time software sys-
tems are embedded become more complex, specifying
such systems precisely, describing the interactions
among the tasks in such systems and with their environ-
ment, and designing and verifying the correctness of
the code become more difficult. Traditional real-time
systems have been designed using ad hoc technigues,
and have ofien been hand coded in assembly languages.
Frequently, these designs relied on the primitives for
concurrent operations provided by the run-time execu-
tives. Modern concurrent languages such as Ada incor-
porate the necessary concurrent constructs, thus obviat-
ing the reliance on run-time executives but necessitating
a new tactic for dealing with concurrent activities of
real-time systems. .

A number of software design mﬂhndo]ugms have
been advocated for the identification of parallel activi-
ties and their implementation in Ada (and other lan-
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guages). Thﬁemﬂlmdsarebamdun ftmﬂlmmldmum- ,. g '
positions, data flow diagrams, and the ndermﬁmouﬂf £ '
I/O dependencies, time-criticalities, and pcnudlc m—
ture of tasks. Some approaches advocate dacompm g
tions based on real-life entities (that is, clearly recog-
nizable units such as hardware components). However,
most of these methodologies are based on heuristics,fn  * =
that a thorough knowledge of the mmndeds!;inm,' i
choice of programming language, and execution char-
acteristics of the underlying architecture play k m
in the decomposition of the system into
tasks. Formal verification of the resulting syllnn:“fs
often ignored: * Whm:tmmmﬂwunplumnm
of specifications formally, one does not do it by wmng
programs and then trying to prove that they meet meet the
specifications. Instead, one constructs correct pragrams v:i“
in small steps—each step taking the speclﬁmtlm and | ek
pmdm:mg something that is a bit closer to the final
program’” [1]. Formal specification and verification ¥
approaches to real-time aystm:s are covered bgr U-slrurlf Mg?{
elsewhere in this issue. .y *“
At the other extreme, some f-:nrma.'l spemﬁcauun_md : g
verification methods strive for fool-proof or ermﬁ'ee }
dﬁmﬁprwf:suniyadcmnnsmunnthum i‘--
formal statement follows from another, and the mﬁihy
of a statement depends on the validity of the statement
from which it is derived. Thus, a balance between the
rigorous nature of formal verifications and the Infurmal
nature of program implementations is desired. ?"-‘F*-
In this survey, we will describe some su:n.p]e exam-
ples of real-time systems in an attempt to characterize
such systems. We will address the issues as they relate
to real-time embedded software systems, and issues that
distinguish them from other software systems. Next we SR
will summarize a few of the design methodologies and = 1.
three design tools. F'ma]ly, we will list major research B
issues along with a **wish list’" of desirable fcamrﬁ fur
future software tools.
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2. REAL-TIME SYSTEMS AND DESIGN
ISSUES

Real-time systems have several features that distinguish
them from other computerized systems. In an attempt
to bring out these features and elucidate the problem
domain, we describe some examples of real-time appli-
cations. Detailed specifications for these examples are
readily available, and several researchers have used
these examples to illustrate their design methodologies.
We will refer to these examples whenever necessary.
We will then characterize real-time systems and iden-
tify impnrtam giesign issues.

2.1 Examples of Hﬂalermz Systems

The term real-time S}rm covers many applications,
from factory automation to nuclear power plants, from
automobile engine control to space shuttle and aircraft
avipnics, and from robotics to command-and-control
systems. One simple example is a system to control a
conveyer belt, as shown in Figure 1 [2]. The goal of
the control system is to maintain a constant motor speed
and to protect it against dangerous load changes. The
- system has two interface components, one to acquire
/.~ the current speed of the conveyer belt from the speed

- counter, and the other to accelerate or decelerate the
- motor. The decision {\I'I.L, adjustment of speed or no
change), is made by the cﬂntro] component.

" In this subsection we will describe six other exam-
'plﬂ of real-time systems that are frequently used by
- researchers to illustrate their methodologies. -

. 2.1.1 Robot controller system. A robot controller
system [3] (at General Electric’s Industrial Electronics
; I)evclopmcn: La.bomtm'y} controls up to six axes of
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motion and interacts with digital I/0 sensors. Control
of axes and [/O is effected by a program initiated from
a control panel consisting of a number of push buttons
and a selector switch for program selection (Figure 2).
The state transition diagram for the controller is shown
in Figure 3. Error conditions are ignored in r.his
description.

When the POWER ON button is pressed, the s;.rstem
enters the POWERING UP state. On successful com-
pletion of the power up sequence, the system enters
MANUAL state. The operator may then select a pm-
gram using the program select rotary switch to indicate
the desired program number. Pressing RUN lmuam;
execution of the program selected, and the s;.rm:m
transitions into RUNNING state. Execution of the pm-
gram may be suspended by pressing STOP, at whu:h
time the system enters the SUSPENDED state. Th:
operator may then resume program execution by press-
ing RUN, returning the system to RUNNING state, or
terminate the program by pressing END, in which case
the program enters the TERMINATING state. When
the program finally terminates, the system rctums tu
the MﬁNUAL state. i

major control tasks manage the liquid level in the vat

and the liquid’s hydrogen-ion content (pH level), the

movement of bottles on cav:h lmc and interface wnh
human operators.

The liguid level in the vat is controlled b;r rmmtor
ing the output of a level sensor and opening or -::l—::mng

the liquid input valve to keep the level within certain

R

..:v,“

‘adjust’

Figure 1. Conveyor control system.
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Figure 2. Control panel of robot controller system (adapted

from [3]).

limits. The liquid's pH content is monitored by a pH
sensor: whenever the pH creeps above a certain thresh-
old, a pH control valve releases small quantities of a
neutralizing liquid to correct the pH level.

On each botling line, a bottle is released down a
chute onto a scale platform that activates a bottle-
contact sensor. The bottle-filling valve opens, releasing
a mass of liquid proportional to the bottle size; the
system monitors the bottle’s weight through the scale to
_ determine when the bottle-filling valve should be shut
~ off. The filled bottle is labeled and capped automati-
Ml]randﬂuhmopemmrrmmsthabmﬂnﬁmnme
scale. Removing the bottle resets the bottle-contact
sensor and the weight on the scale, and lets the next

_ bottle be released.

The operator of each bottling line can manually
signal the individual line to start or stop and can change
the bottle size. A line can only start operation from

 simultaneous reading series for different furnm_ag _
'smorsmdsmrytﬂnpcmur:rmdmgwthe 108t

" DP-Nak from the host. A DP-Nak signifies that the DP

1. SYSTEMS SOFTWARE : 87
1992 18:85-99 YRS

stopped status when the overall system area is enabled,
the bottle-contact sensor is off, and the scale is set to
zero. Each operator requires a display of the the on-
offline status and current bottle size. The area supervi-
sor can enable or disable the overall system area,
including all bottling lines, and change the pH setpoint.
If the measured pH cannot be kept automatically within
a threshold, the entire area is automatically disabled. .,
The area supervisor must stabilize the pH manually and ;
then reenable the system operation. The area supervisor it
requires a display of pH level, vat level, and m.u of
individual lines. g

Bt
2.1.3 Remote Iemperm‘ure sensor p oblem. ,e'i- '
software-driven, remote temperature sensor [5%% T
tains temperature readings from a number of furnaces
via a digital thermometer and reports the l&uwer;mm ki
values to a host computer. The host sends control .~
packets (CP) to the remote sensor. Each CP mclﬁam R 1
furnace number (0...15) and a reading -interval 3
(10. . .99 seconds). The remote sensor s:m{‘édgcs .
each CP (CP-Ack or CP-Nak), and the sensor reads lh:
temperature of that furnace periodically at-ﬁ’.{-l_ o
scribed interval. The sensor manages up to 1 iy

data packet (DP), it then waits for either a DP-E& or

has been received incorrectly by the host andwm_é’&l:
sensor to resend it. If neither a DP-Ack nor a DP-Nak T
: II‘I‘]\I'\ES within two seconds, it is nssumr.d ﬂlat a ?ram i B

Figure 3. State rransition diagram of the robot controller system (adapted from [3]).
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Figure 4. The production like process in the bottle-filling system (adapted from [4]).

The sensor is cqui;;péd with one thermometer, which,

‘upon request from the sensor software, stores the tem-

perature of a specified furnace in a designated hardware

huﬂ'ﬂandﬂ'lmmutﬁsnnmtermpt Dnlymmlher-_
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: L5014 Crudse conrol’ Themﬁsemm[ ﬁ.uwum"
- [7, 8] takes over the task of maintaining a constant
. speed when so commanded by the driver. The driver

must be able to enter several commands, including

- ACTIVATE, DEACTIVATE, START ACCELERAT-

ING, STOP ACCELERATING, and RESUME. The
cruise control function can be operated any time the
engine is running and the transmission is in top gear.
When the driver presses ACTIVATE, the system se-
lects the current speed, but only if it is at least 30 miles
. per hour, mhuldsﬂmwummapmd DEACTI-

top gear, and RESUME is pressed, the system returns
the car to the previously selected speed. However, if a

DEACTIVATE has uccurmd m th: uncrvmtmg l:lm: g
e
"'.2: “The speed measurement, whu:h is ]:msed un the size

 RESUME does nothing. e

and count of rotations of the. tire, can be calibrated
mSTARTMEhSUREDMI[E:ndS’I‘UPMEA
SURED MILE. ﬂwymml)rc:ﬁemvcwhmc:m
mntmhsuuctwc o3 TN, N ma LR

S e

- 2 1.5 Simplified unmanm:d' vﬂﬁmfe mfem The

simplified unmanned vehicle system (SUVS) [9] con-
trols a vehicle with no assistance from a human driver.

It periodically receives data from sensors such as the

VATE returns control tu the driver regardless of any

other commands. SI'hRT ACCELERATING causes
the system to accelerate the car at a comfortable rate
~_until STOP ﬁCCELERATING occurs and the system
I:uldsﬂl::nratﬂ'usnewspecd RESUME rewrns the
urmthcspeadmhutndbefor:hmkmgurgcarsm-
ing. R e 3T

“The driver must be:bl:muwmﬂmspmd a:an}r
~ time by d:pressulg the accelerator pedal or reduce the
speed by depressing the braking pedal. Thus, the driver
may go faster than the cruise control setting simply by

.ﬁ

depressing the accelerator pedal far enough. When the

pedal is released, the S}'Stl:m will regain control. Any
time the brake pedal is depressed or the transmission
shifts out of top gear, the system must be inactive.
When the brake is released, the transmission is back in

R T T )

. speedometer, temperature sensor, and direction sensor,

and controls the vehicle by generating appropriate sig-
nals for the actuator devices such as the accelerator,

brake, and steering wheel. It changes the direction of

ﬂnmwhgncuwmmmmumemd reduces speed

wh:nmohﬁacleappem increases speed after the
Gbstaclclspast stops the car within a specified time to

Imidauulllsmn and so on. Decisions are made based
mﬂuﬂ:mntlnputsfmmdws:nsursandﬂmmmm

status of the road and the vehicle. Du::smns{orre—
".:pmm}mustbcmadcwm:spmlﬂﬁinme i
] wﬁ"’.{,‘;’ TS i {" s pe -I;.c' '.1.

< 2.1.6 Bam.mc missile dq.l"em sysrem The gual of
a_ballistic missile defense (BMD) system [10] is to

either prevent the enemy from damaging a defended
region, or extract an unacceptably high price for defeat
of the system. A BMD system typically consists of
sensors to observe and collect data about a threat, a kill
mechanism to render the threat ineffective, and a com-
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putational element designed to ensure 2 cooperative
effect from the component parts. A typical BMD sce-
nario is shown in Figure 5.

2.2 ﬁharauteristics_ of Real-Time Systems

As can be seen from the above examples, real-time
systems have clearly identifiable features. They consist
of a set of sensors that acquire data from the environ-
ment. The data is processed and the output is sent to a
set of actuators, which produce the desired changes in
the system. The real-time software system consists of a
set of concurrent threads for processing inputs (sensor
data) and effecting the output (actuators). These threads
can be characterized as one input-one output, one
input-multiple outputs, multiple inputs-one output, and
multiple inputs-multiple outputs. In some applications
the concurrent processing threads operate asyn-
chronously, while in other applications they must fol-
low strict synchronization rules. The different timing
requirements of real-time systems may place different
constraints on the processing:

. Re‘spome time deadline: the system must respond to
the environment within a specified time aﬁe:r mput
(or stimuli) is rwognm-:d

2. Validity of data: in some cases, the vaidity o the.

3 mpm(orqptput):saﬁ:m_tmnufhme That is, some

1. swrmssmrrwa.u B
: 1992; 18:85-99 Bt R

stimulus (and the corresponding mpons:} bmmm.-
obsolete with time, and the interval for which data is
valid must be acmumnd for in prm:ssmg mqulm- -
ments. s T
3. Periodic execution: in many control symmg, sen-
sors collect data at predetermined time intervals,
and the real-time sysmnmustpmoessttmdmm

output needed responses. ."'. R TR e T
4. Cmrdumtmgmpul:nndmtpum mm lica-_ =
tions (e.g., unmanned vehicle system), input data
from various mumnmdmmmhmm?*&ﬁr"
erwise, decisions would be made based u ' 'il%f
tent information. Output dam o muatum _
o be well synchmmmd ;

'*k

2.3 Demgn Issuas ﬁ e
The issues in the d:slgn of mnl-tlm: systm'w'gm-d‘if*
ferent from other systems pnmanl.}r because - o’ﬂ

presence of concurrent events and the temporal rgqm.rc’ q
ments that exist between inputs and nrutpum;”" de
scribed in the previous section. Design issues as the;
relate to real-time systems have been limruug]ﬂf -

ugatedandr:ponud We dumbethruohher mpor-

i ki Want, R ity v

231 Ihm;rpodfmn Since. rcaH:mc. 'u stert
m:ndwprmnfcmmurrmt events _

- FaRM

Figure 5. Typical BMD mission (adapted from [10]).
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natural to design the software as a set of concurrent
processes. The proper decomposition not only helps in
coping with system complexity, but also in increasing
concurrent activity. Decomposition may also aid in the
predictability of the timing requirements. Some decom-
position approaches are discussed in section 3 below.

2.3.2 Interface. The interface between the compo-
nents of the system (including sensors and actuators) is
in the form of communication and synchronization.
Communication can be achieved either through shared
data or message passing, and the choice depends on the
implementation language and processor architecture.
_ Tight synchronization among the components may be
. " desirable even if the application does not require such
.+ synchronization. Synchronization leads to more pre-
= dictability and easier detection of error conditions. On

1" the other hand, delays caused by synchronization lead
to performance degradations.

2.3.3 Timing. A primary design concern of real-time

systems is how to reflect the timing constraints. The

. system decomposition should include both functional
.ff’ . and temporal requirements. Furthermore, the temporal

w@bﬂhﬂvwrof&wmﬁsﬁmﬂdumﬂymm =

- any conflict or inconsistency in design), and feasibility
{1.:. whether it is feasible to achieve the requirements).

letemss{'e _whether all requirements are re-

" flected in design), correctness (i.e., whether there is mmgrﬂqulmm]mm&mehMﬁl

“Timeout (and timer _mter.n.lpt] is a basic form of

“monitoring the temporal behavior of the system. Al-

~ signals is important. The choice of the timeout interval
- plays a significant role in the synchrurmzaum of con-

-"E-‘

g
R, Tk

""2.3 4 Ofkeriﬁ'm Clth:r |mportarrt issues, a.ithuugh
; ml'. :poc:ﬁc to real-time s:,rstcms m::lude
P B e

’t& 2. Mumfm‘mﬂmngthepmms.suru&ercdur-

..ing the software development lifecycle. The relia-

% o

~ though often ignored, the selection of proper timeout

J‘a

o J

" bility and timing analjrm become meaningful only

ifdmchmﬂ:nmofﬂwprmmmd
ered.

3. Task alimauun and s::hndulmg Issues rcgnrdmg the
~ selection of scheduling discipline to mﬁt tm:ung _

““requirements are not covered here.

4. Fault tolerance. Issues regarding the amount and

type of redundancy, error detection, location, and
recovery techniques are not covered here.

b N

B Ty W

B e L

'quirements. _Based on these analyses, initial
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5. Design support tools. The design of any complex
software system can benefit greatly from interactive

(preferably graphical) debugging and mnnrtnnng
tools. :

3. DESIGN METHODOLOGIES

The fundamental aim of all real-time deslgn:rs is to
produce a *“‘good™” software system. By good we mean
a system that not only satisfies the functional and
performance requirements, but that is reliable and easy
to maintain. Another implied requirement of software
systems in general, and real-time systems in particular,
umatdwsymnbcpmdumdmnmmamsmahl:
cost. Finally, the system should be adaptable to
ing (enhanced) requirements and new hmtwm
However, good designs often require experience, gaud
engineering practices, and good tunls to ald lhc Mgn
process. SEAR ﬁ
As with any dr:s:gn a real-time system must start
with the specification of requirements. From ﬂm m—
quirements, basic systempmmnﬂmcanbe:xtmcwd
The parameters may either directly or indirectly, mﬁu—
ence the software system. It is sometimes noc:ss:rz
simulate the desired system to verify performance. fpﬁﬁ-- e

' on the choice of hardware (for example, whether m'“u’ﬂ ;
‘a’ dedicated hardware unit to cope w:thrl'mstringm

‘_-\._'--\.
g B . e, 4

LN Bl

: Phe - R
2 e 0. e —
Tobl, e E

e T
i

terms of software, the initial decisions rclatet%ﬂu
choice of the operating environment (for example, dﬁ- iy i L
tributed “or shared multiprocessing), run-time system,
programming language, and software dcv
environment. i

 Although often e g < g e dmgnu' :

" curent activities and umel;.r adjustnmm o mmpemate ﬂmld be involved during the choice of the hardware

 configuration. "Once frozen, the hardware cmﬁgunuun ;

(the processor, memory management, 1/O processing), .«

significantly affects the software design. For l.'.nmplq! o

the reliability of the x]rst:m may require the mc] b5
T of software-level exception handling, voting, mm

ﬁguratmrn of ‘hardware units. The performano: _

' dictate the gmnu]anqr nfﬂ'oemmunmttasks g
#}“"‘ %) -f'.a'fp« oS A -4*?:3 S

3. ‘l Svstem Dm:nmpusmurn Mathnds £ :

Rultlnu: software is tjfplﬂllj' designed as a mnf
_ communicating concurrent processes. In many ca.m
these processes execute asynchronously in crnier tﬂ
accommodate devices and sensors with varying F
The processes communicate either to exchange data or
control information at synchronization points. Thus, the
decomposition of the real-time system into component
processes is a major issue. System decomposition with
respect to time, space, size, control flow, data flow,
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subfunctions, objects, and data structures has been
thoroughly investigated by software engineers over the
past three decades. In the next several sections we will
study the applicability of some of these approaches to
structuring real-time software systems.

3.1.1 Structured designs and functional decompo-
sitions. These approaches (see, for example, Cameron
[11], Jackson [12]) are similar to traditional structured
approaches. Often the designer starts with an analysis
of system functionality to obtain a data flow diagram of
the system. The system is then hierarchically decom-
posed into subsystems. Entity-relationship diagrams are
~ also used to identify the relationship between the (data)

entitics. A data dictionary is often created to capture
the data flows and data entities.

When designing software for a real-time system con-
taining multiple processors, decomposition may require
two phases: subsystems and tasks. A subsystem con-
sists of one of more tasks, and these tasks usually run
on a single processor. Structuring of the application
into subsystems is often based on functional decomposi-
tion to achieve high cohesion within a subsystem and
~ weak coupling between the subsystems. Functional co-
“besion refers to the similarity of the functions per-
<. formed. anr.:l.mmﬂ)r similar activities may require ex- _
mwdmmummn and they should begmuped
medmmasmglc subsystem (or even into a single
- task) to limit communication overheads. Activities may
be related in other ways. For example, several activi-
ties may be triggered by the same event (temporal
cohesion), or the activities must be executed sequen-
tially in a prescribed order (sequential cohesion). It

.may be desirable to group together activities with such

dependencies. The degree of coupling among the mod-
+- ules (and tasks within a module) determines the amount

of concurrency and delays due to synchronization. It is
dﬂlmﬂﬁmmﬂwmphngmm:mﬂmm
drmwsmmumymﬂmx}rmm

“The subsystems are then decomposed into concurrent
lﬂh Thedltaﬂow&ugmnufﬂnsyswmjssmdmdm
ﬂmfyﬂmtlmfnrmﬂmnsm:anbeummdm
mrem!:flndt]mﬂntmustbeexmuudmnuﬂly
A number of guidelines have been suggested for deter-
mining if a transformation should be a separate task or
grouped with other transformations into one task. For
ulmple Gmma[ﬂ-li] suggests the following:

1. I/O depmdmcy since transformations that depend
on input or output must run at the speed of the [/O
device, separate tasks must be used for such trans-
formations. It may be desirable to have a different
task for each asynchronous I1/0 device (at least for
each device type).

e ————— e T
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2. User interface dependency: like with transforma-
tions that depend on /O, transformations that de-
pend on user interactions should be strucmrcd mm
separate asynchronous tasks.

3. Periodic execution: transformations lhm‘. arc exe-
cuted regularly at predetermined intervals should be
designed as separate tasks to facilitate scheduling.
Also, independent tasks are used for p-ermdlr: ll,r'Cl

activities.

E:nr i 5 .
4. Time-critical functions: ac:wmm that haw: smng;nt
response-time requirements should be s:pammd mtu :

tasks to permit priority scheduling. L:I:r.wml, 13911_
time-critical but computationally mt:nswe -
tions should be assigned low priority task:

To illustrate this approach, consider the rﬂrm tem-
perature sensor problem (section 2.1.3). Mmordfng
the guidelines, a separate process should bﬁ 1l ,'”_
for each external device. This leads to two' prmr.s
one to interface with the digital thermometer {whch

reads the temperature of a furtm}andﬂwqulitrtﬂ '

interface with the host computer. The pcnodfé ﬁum: -

of temperature sensing may indicate that a s:pamie task

be allocated for recording the tmpcmturc : :ﬂ:h

*furnace. sk
~In ttmcaseoftha cruise :orml pmblm‘s.qmnn
Ll 4} the functional ducompmmnn may lead

,r.rﬂtmn f supnrm:tnsktupmmsmhof&
. = wa.ﬂ‘m

from the accelerator (its current state), the

compute the current speed), ﬂmbrake[tu ey tu "; 5

manual control), and so on, and asanﬂeptmeﬂ
the output (to control the throttle). The ¢
part of the system |sd=mmpuscdbuudunfl.mﬂima]
cohesion. For example, ﬂemayuset]mf ving
‘processes: Obtain-Desired-Speed, Gel'*Cﬁrftm-
Speed, Calculate-Throttle-Value. It may be nmsaqr
to further decompose some of these tasks mto

rent t!u'l:.ads tl:: m:u:mm‘- muplmg a.lmrng the ad:v:tm

1--_.'

3 }' 2 Gb;ecr—anenred' merﬁudafogy.
« oriented methodology [7] differs from functional
_ proaches primarily in the manner the nmdulesf

-r liu.

~tems or tasks are identified. mrumumalntedlncﬁ,udl I

. module represents a_major transformation. If‘
~ oriented methods, each module is rcspuns:b]: fnruun

" aging a major object of the system. lnmlmrwmﬂs mn‘ -

* functional approach, several modules may operate on -

an object (e.g., a data item), performing different trans-
formations. In an object-oriented approach, a:single

module is allowed to operate on the object, performing i

all the transformations. e

Nntcthai&wr:mmﬁgmenmntcnwhﬂubpﬂ
orientation really means. Object-oriented language de-
signers firmly believe that inheritance, polymorphism,

o
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and dynamic binding are essential. According to Meyer

[16], the following properties distinguish object-ori-

~ ented languages from procedural and functional lan-

1. Object-based modular structure: systems are modu-
larized on the basis of their data structures.

2. Data abstraction: objects should be described as
implementations of abstract data types.

3. Automatic memory management: unused objects
should be deallocated by the underlying language
system, without programmer intervention.

4. Classes: every nmnpletype:s module and every
~ high-level module is a type.
- 5. Inheritance: aclm maybedﬁﬁnndasan extension
or restriction of ln:lh:r
.+ 6. Polymorphism and dynm'uc binding: program enti-
. ties should be permitted to refer to objects of more
than one class and operations should be permitted to
have different realizations in different classes.

7. Multiple and repeated inheritance: it should be pos-
sible to declare a class as heir to more than one class
and more than once to lhe same class.

_ Wmﬂmﬂ#ﬁmfmrcnmmr:gardad
- - as object based. Imguagumustnweta]l se\rmchanc-
'_xmhucsmber:gnrddlsubjactumnwd i
o 'n::mvuprmry of the Ubjﬂ:t-orlmlﬂj
: 'appfw.busndhyadmuflhm method are abstrac-
~ tion and information ludmg An abstraction is a simpli-
*_fied description of a system emphasizing certain aspects
* of the system while hiding other details. The informa-
* tion-hiding principle requires that design decisions about
a subsystem be local and invisible to other subsystems.
Proponents claim that these two properties together
- lead to the following advanmgﬂ the objects match
- closely to the real system, and the effects of changes
" are localized. In r:alrt__v,r {bam:t on Meyer's [16] criteria),
. these appma::hes should ‘be- cmmderod ahject-basnd
ol SR
- Regardless, let examine the slcps in nh;e:ct
" oriented devel
{.;5_!_ objects and their amﬂj‘gﬁ ypically, this implies the
e identification of the nmajor ' lgmts and servers. in
4" the problem space lnd lha duﬁnmun of their roles in the

- system. Next, rhetrmfammunns that must be per-

. formed on the objcﬂs Ind the services (if any) offered
" by the objects must be identified.. To satisfy the infor-
mation-hiding pnm:l.pk it is. nmmsary to define the
“interfaces to the object that are visible. Finally, the
services and transfurmannns associated with each ob-
ject are implemented. The actual implementation details

shnuldumbevmhhmodmrobjms

As may be seen from the “above dlscussmn I:Iurmg

the initial phases of the dmgn one can use transforma-
tions and services common to objects in defining object

e, - L W PR T—
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classes and class hierarchies. In turn, this can lead to
the use of inheritance and polymorphism properties for
defining subclasses, and transformations on dlﬁ'ﬂ'ﬂll
data types.

For example, mns:d:r the bﬂttia-ﬁllmg problem (sec-
tion 2.1.2). The behavior of the different lines (for
different bottle sizes) can be modeled using inheritance.
Thus, the operation of filling bottles can be captured
into a class hierarchy, and each instance of the class is_
instantiated for a specific bottle size. The inheritance
then automatically instantiates the appropriate values
for controlling the process of filling the bottle, mmrmg

the bottles, releasing a new (empty) botdle, mdio oo, T
As another example to illustrate the differences b‘éi ;

tween object-oriented and structured app
sider the cruise control problem (section 214} Tﬂ:
demn;mmon resulting from the structured :mmh
was discussed earlier. In the object-oriented approach,
a separate module /object /task is allocated to deal wnh

a clearly identifiable entity (or object). For example, a -

separate task will be assigned to control each of the
devices—the accelerator, throttle, wheel, etc. These
tasks are responsible for all computations (or u-mfor

mItluns] required to control that device.
 #The thnﬂ(-un:ﬂtnd approach seems nal:ural fur I‘ﬂl-
ﬁm: sy umh sensor and “actuator

or uh;em in between these. Mormm-
" and maintainability are, among others, the pmme
attributes of the approach, because of their capability uf
abstraction, information hiding, and inheritance, Hﬁm—

ﬂcr, the approach has some drawbacks. th, lht.-.

‘system often results in too many objects. For l:nmplc,
in telephone switching systems we may have thousands
. of subscriber and link objects. This requires clustering
of_,objecl.s to avoid the overhead, which is a design

'tburd:n Smund anﬂmwcjmpomnﬂ}f. it" is usually

* harder to p-redu:i the timing behavior of the system with

_the objar:t-om:med approach than with the fl.lﬁﬂua] _
~_approach. This is because transformation of the system  °

{mth which the timing constraints are assnnnted}

ﬁrststep is to identify the ";:ﬁmst of multiple threads among multiple aﬁ;::u

‘E_Alﬂ‘mgipsmmwrk{cg [I'?]}hasbo:ndpgquu‘,_‘
. object-oriented  design and _timing, upncta!!y pﬁ!-
"?ﬂiémbﬂuy,ﬂﬂslsammrmfm flm.ire -

.'1; P

mllmmlunmcanbcusadmdcalw:ﬂ]medﬁlgnof
complex real-time systems. Typically, this approach
__involves the creation of a set of layered abstractions
" that simplify the design process by deferring implemen-
tation details to lower level machines. If properly used,
" this approach promotes a high degree of maintainability
and portability, since it is possible to replace any layer
with a new one [18]. In many practical systems, this

-

o Pirmaf mac:'urres‘ Hil:mrcluca]ljr layemd .vu'- ;
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may not be easy to accomplish because of the depen-
dencies between the abstractions at various layers.

At the higher levels of the abstractions, the virtual
machine representation of a real-time system usually
consists of processes, channels, buffers, shared pools,
synchronization events, and interrupts. Processes repre-
sent agents that implement activities or functions. Proc-
esses communicate with each other using channels,
buffers, and pools, and synchronization is achieved via
events. Channels usually connect two processes (one to
one), and they are either uni- or bidirectional. Buffers
with channels permit asynchronous communication.
Shared pools are used to represent communication
_ among several processes (one to many and many to
. many). Wait, Signal, and Interrupt are among the
common types of synchronization events. The decom-
position of the system into processes can be based
. either on functional or object-oriented approaches.

As opposed to hierarchically layered virtual ma-
chines, some methods advocate vertical layers in deal-
ing with complex systems [19]. In a vertical partition,
each subsystem (or partition) encapsulates all the hier-
archical layers of a traditional virtual machine. Each
layer within a partition can be optimized for the parti-

tion; in a traditional layered approach, the gmmht}r

fulm I:ss-llmn-opumum lmpiemmtatluns

R

; w-:h to the identification of tasks (particularly when

. Ada is the implementation language for real-time em-

bedded systems) known as entity-life model. In this
approach, the designer starts looking for complex yet
purely sequential behavior patterns in the problem
space. The objective is to capture the functionality of
the problem in as few subsystems as possible. Each
functionality can be as complex as required (describing
_- lnquem:la.l processing). However, it is difficult to define
exactly what entity-life modeling means. It can only be

1--u-m-d,..l‘I -_E i .:....':"

" 3.1.4 Other methods. Sanden [20, 21] advocates an

_ vaguely related to the guidelines suggested by Sanden_
[20, 21] that we structure (define concurrent processes,

packages, tasks, communication, and synchronization)
~ the software based on **real-life’” entities and activities.

This approach advocates decomposition based on the

- constructs provided by the implementation language.

" account during the decomposition. It is our observation

that the entity-life approach relies on both functional
and object-oriented approaches. In some applications,
the entity-life approach derives more parallelism than
the object-oriented approach and less parallelism than
functional decomposition. Sanden contends that the

functional approaches produce more parallelism (finer

grain) than can be used in realistic implementations.
Consider the temperature-sensing example (section

_.__tomnmummtcugﬂ::adluﬂmrtuexﬂmlge :
% flows), control mformﬂm (event flows), T'. share
'data(damsmrm} Itiacmmmnmusegrapluc'
"umsmmplﬁemﬂie. 5
-”sactmnwawﬂldlscnslsom:mdlahumcumsa :
_'t_oﬂwmalumdqelguu fa

(FSM} is mmm!y u:w:l to descnbe the b -= Vi

For example, the synchronous natre of Ada ren-

* dezvous and the use of Ada tasks must be taken into_ ":-_'mmm{mmmmmlmdm}ﬂmtmedie’

i_frmnmwmtemmhnr andﬂmumpump

Finite state machines are usually memmm—
 cally as state transition diagrams. Euchpossmlnstn'lt.of

.usuaﬂymmmmdethecmle} and the

¥ nmmssuwwuﬂ =93
i ,.

2.1.3). Enuty-i:fe modeling leads to separate mlc fm'
each of the furnaces. Eaphmkrmrdsdnfurm
temperature, sends the value read, and idles until the .-
next temperature-reading mtcnra] Compare ti:is mth_t_"

to read thztcmperatum of each fumacnatspmﬁed
intervals. When using Ada, mcuscnfscpurmuukfcr
each furnace requires a complex “lntemwdfa;&; ‘task
tumptﬂmumpmrmmadmgsform [
funmuesatspmﬁdmtenrnls :

b |

i Uil ..;.._"".J' ""." 1"

pmltm.andmmuatcam,agmd

results from a clear understanding of the ﬂ- )

E e

ﬂwh;gh—lmltanguagc.a_:ﬂtbapmmsmr itec
chosen for the implementation. Ittsuupurtam.
sumcfomﬂlspnmﬁcmmandvenﬁcmﬁn_ B
muxf&mfonmhmdnmgumtecfml g
error-free implementation. Theyr.mmwﬂlbmrmt
shortcomings of the implementations. = =~ L
Strict adherence to any one decomposition m A2
ag:,rmaylmdmdmgusthalmmthm'mwl-"'

e il

unnatural. Any good software cnglmnngquz; nvi

mm{mmm)mumgm
methodologies. 'Ihaamrtyhfemdnl_

Gnncsubsystmm {ol:qects tasks, pa:hgcs} are identi
fied, the activities (transformations, funcnnm)afgﬁ
perfurmndbymesu&ymmmﬂﬂmmwrfamw T
the subsystems must be defined. Concurrent tm.ﬂmd 2 4,35»

of subs}'s.

i Hﬁ-ﬁ; i

@fzﬂ? .-4?‘

mm:!um:, A ﬁmtc smtc.

S i

 3.2.1 Finite sta

i ,M‘gm'

4“’“@
o

N -‘ﬁ?ﬁf
between states represent state transitions. Arcs a.rc. of- 3 :

ten labeled with the nputs that cause the ransitions. I
i -

ﬂmpmmsszsdmwnasammta{thnnameafﬂmsmnis




- S

T

94 1. SYSTEMS SOFTWARE
1992; 18:85-99

some cases, outputs are also listed on arcs. When using
FSMs as an abstraction, the states represent completion
of an activity. The inputs represent events or condi-
tions. The functions (transformations) performed by the
process are abstracted into the states, implying that the
process performs operations of transformations while
residing in a state. The process accepts inputs and
transitions to the next state upon completion of the
activities associated with the current state.

3.2.2 Extended data flow diagrams. A data flow
diagram for a process consists of three elements [22,
23] '

1. Data transformations: the functions carried out by
the process. These nodes are usually represented as
circles or boxes.

2. Flows: directed arcs between the nodes represent
data flows between transformations.

3. Data stores: usually represented by two bars; act as
repositories of data.

Although data flow diagrams have been used exien-
sively, they are not adequate for representing real-time
processes. Si:eclﬁﬂlly, data flow diagrams cannot de-

'_,lﬂibtaﬂemalstmﬂmthedependmcyuftmnsfm"
ﬂl]prwosedmmmns The extended data flow
dugn.ms contain li'H: following elements:

. Td overcome these limitations, Ward

I Transt'onnmmns rhere are two 'Ly'pcs -::-f transforma-
tions—data and control. Data transformations (rep-
resented as solid circles) describe the functions of a
process and are identical to transformations in stan-
dard data flow diagrams. Control transformations

*. (represented as dotted circles) define how the data

transformations are activated and deactivated. The
+ control transformations must be associated with a

state machine to rcprﬁmt the sequence of amm m_ -

beptrfarmed h}' the process.

o 2.. Flows: as:nstandarddamﬂowdmgmms ﬂ)m:a.r:
- . arcs (represented as solid arcs) to represent flow of
.~ ‘data among data transformations. The flow can lndl-_
7 7 cate either discrete data (solid, single-arrow arcs) or

“continuous dam (solid, double-arrow arcs). A com-

_tinuous ﬂnw is an abstraction or a real-world quan-

tity such as a temperature of pressure monitored by
the system. In addition to data flows, control flows
connect the control transformations to data transfor-
mations. A dotted, single-arrow arc represents a
signal. A ﬂgna! is used to indicate the occurrence of
an event. A dotted arc with double arrows repre-
sents activations. A dotted arc with reversed arrow-
heads represents deactivation.

- 3. 2 4 Orher prmxr abs.rmcfmm Dm ﬂow:grnphs 5
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3. Stores: data stores are represented by a pair of
parallel straight lines. Buffers are represented by a
pair of dotted parallel lines. o

4. State machine: as stated earlier, a state madtun is
used to describe the control transformations of the

system. ik o
Although extended data flow diagrams attempt to ad-
dress the representation of control flow, the use ufm
machines results in a nonuniform model. '

3.2.3 Petri nets. Petri nets have gained considerable
popularity over the past decade because of their graphic
nature and their ability to represent asynchmm'm
currency. Petri nets consist of two types of nodes called
places (represented as circles) and transitions (rqm'.-
sented as bars). Transitions represent activities, “func-
tions, or transformations, while places represent events
such as signals and completions of activities. The oc-
currence of an event is indicated by placing a token in
the appropriate place. Transitions are enabled (or start
executing their operation) only when all its input places
contain tokens. (See the article by Ostroff in this issue
for a more detailed treatment of Petri nets and how they
can be used for !'-:er'ml spcc:ﬁcatmn nrf rul-umc

[25-28] are similar to Petri nets and can be used as
executable process abstractions. The data flow graph

s models have their roots in data flow languages {mh as

VAL [29] and SISAL [30]) and data flow mmptum

'[31, 32]. Computations (or data :rhnsfurrnauun} are

represented using actors (nodes in the graph). The
execution of the data flow graphs is data driven—an
actor is enabled only when all the necessary :nputs are

_available. Data flow - gmphs represent asy
‘concurrency, since computations with no dcpmd:ncles
“can be executed in parallel. In addition to data tm:sfﬂr—
‘mation and data flows, data flow graph models Pemu
- the representation of control using special actors (for
“example, disjunctive input and selective nmp.tt} wu!'l
'mmmlmputs These actors select a subset of the i i
 or produce a subset of outputs based on the value on the g
" control input. For a more detailed description of the '
- model, see references [25-27]. The data flow graphs,

unlike the extended data flow diagrams, represent both
the data and control transformations in a_ uniﬁnd

‘manner. i i

Hierarchical multistate machines (HMS) [33] are
proposed to model multiple active states. The goal is to
preserve ‘‘concurrency’’ even when dealing with
higher-level abstractions. HMS permit the definition of
a collective transition of a set of states. This mechanism
is similar to Petri nets, where the concurrency is pre-
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served by defining markings. HMS attempt to reduce
the exponential growth in the number of possible states
(and possible combinations of multistate transitions) by
defining “‘objects’* with sets. Objects represent data (or
control) values. This should be contrasted with abstrac-
tions that define separate states for each possible data
value.

Process abstractions are either synchronous or asyn-
chronous in nature. Finite state machine-based models
are synchronous. In most cases, real-time specifications
can only be achieved by treating time as a state variable
rather than as a function of the state transition. Petri
nets and data flow graphs are asynchronous process
models. Events that trigger actions are more natural in
such asynchronous abstractions.

3.3 Implementation Methodologies

The graphic representation of tasks also identifies the
interfaces to the tasks. Concurrent tasks need to com-
municate with each other to exchange data (data flows),
share data (data stores) and control information (event
flows). During the final stages of the real-time system
design, the abstract representations of the processes and
their interfaces are translated into programs in a chosen

xlﬁgb—lml language. This requires the design of data

‘structures, control structures, task structures, and com-

_ munication and synchronization structures among tasks.

Obviously, the choices are constrained by the imple-
mentation language chosen.

When the language does not provide nmcha:usms f-::-r
the definition and control of concurrent tasks, the de-
signer is forced to rely on the primitives provided by a
real-time executive. However, some modern languages
(for example, Ada) have incorporated most of the
primitives required for a concurrent system. It is neces-
sary to understand the responsibility of a task (and
hence the programmer who writes it) and the responsi-
bility of the system (compiler, run-time system) in
achieving correct and predictable execution of the sys-
tem. It is important to understand the model of concur-
rency and communication offered by the language. If
the language provides only synchronous communica-
tion, it may be necessary to create structures to simu-
late asynchronous execution (for example, by creating
intermediary tasks). It is also necessary to understand if
the communication is one to one or one to many. In
Ada, for example, the calling task must know the name
of the called task (and its entry points), but not vice
VErsa.

The mechanisms for activating tasks are also differ-
ent in different languages. Tasks may be active at all
times, they may become active as soon as the proce-
dures containing them are invoked (as in Ada), or they

4. DESIGN TOOLS L i i By
Real-time design tools should pern'ut ﬂ'u: rﬂptﬂ&mﬁﬂun

4.1 STATEMATE Flpie. 1
STATEMATE is a set of g,mphma!!jr unc.ntcd tools
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may be activated on demand. The activation of tasks at
specified times is supported in some languages. How-
ever, in most cases, the programmer has to fine tune
the time specification for the activation of tasks in
meeting the requirements of the application. The run-
time overhead increases with the delay in binding
(activation) of tasks; the flexibility also increases with
dynamic binding. Some languages permit the definition
of exception handling. Unusual (and unexpected) events
can be handled using these capabilities. 15+
The information-hiding principle can be lm[ﬂemcmtd
easily if the language provides abstract data l}rpc
modules, or packages. Such data abstractions p

the definition of visible interfaces while Qhﬁmg thc :

implementations. Object-oriented languages also facili-
tate information hiding. Note, however, that ﬂ'le con-
cept of inheritance may violate the mfnrmaum-hldmg
principle. - .

Often, embedded systems must deal with luw-lmrel
1/O from sensors and instruments. Such I/O is neces-
sarily machine dependent, and earlier languages tended
to ignore [/O, relying instead on the supportprmﬁed
by the operating systems. More recent Iangulgﬂ ex-
hibit features specifically designed to deal with low-level

;"'.‘%!"k'v a2l

_ 1/O. A survey of languages and language muﬂﬁggm for

" real-time systems by Stoyenko can n]so ‘ba found elsc-" g
'whm:mmls:ssug _ - N B

of concurrency, communication, synehmnmnnn. and
timing constraints. Additionally, the tools shmlifauh—
tate the analysis of the temporal cham:tmm for
feasibility, predictability, and correctness.  Although
various computer-aided software cnglne:cnng fﬂﬁ.SE}
tools are available for many applications, tﬂnh for
" design of real-time systems are still suame I this

section we briefly review three existing tools: E" TE- i
MATE from i-Logix, Inc., mPUIﬂr-ﬂlded et

_ design tools (CARDtools) fn:un Ready Sjrntmf‘and
. Software through Picture (StP) by Il:memcqu:cﬁ
““ment Environments (IDE). A gem:ral review, of |

mois can be fuu:ld in [34]

intended for the specification, analysis, design, and
- documentation of large and complex reactive

" such as real-time embedded systems, control and com-
munication systems, and interactive software or hard-
ware [35]. STATEMATE provides three differem
graphic or diagrammatic languages. Module chans
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represent the structural view of the system, activity
charts represent functionality, and state charts represent
behavior of the system. STATEMATE makes it possi-
ble to execute, debug, and analyze a system as specified
using the graphic representations. Figure 6 illustrates
the um’a]t structure of STATE.MATE

4.2 CAHDtanIs | 4‘4;

* CARDtools is an integrated set of tools designed for the
development of complex real-time embedded systems
[36]. The front-end dﬁigxl tools of CARDtools are
designed with real-time systems in mind. They enable
engineers to model real-time software and detect design
errors through simulation of the software architecture.

'As illustrated in Figure 7, CARDtools provides fs:rul.‘

hvdsufmﬁumsu;pm‘t_

" 1. conventional CASE

2. real-time extensions

3. multitasking design with target knowledge
4. Ada/government

The primary real-time facility is the TaskTimer,

- which is implemented using multipath simulation tech-
... miques. ltlﬂmrssnﬂv.mdwclopcrs to evaluate the
i performance of their software architecture early in the
duignplme befuregmmngmde leumedevcl

- '{ i STATEMATE
6 - Database

et

s i

T

i ——— T A o s R
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opers can visualize how paths preempt one another and
how concurrent tasks compete for resources. Task-
Timer simulates the timing behavior and operating
system overhead of multiple paths in the suﬁv-ran:
design.

The sofiware behavior is simulated according to lhg
mechanisms provided by VRTX /ARTX real-time exec-
utives. VRTX is a development and runtime environ-
ment that makes full use of the Sun Unix network, and
is integrated into Sun's extensible Window System.
ARTX stands for Ada real-time executive. Issues con-
cerning concurrency, task priorities, scheduling, syn-
chronization, and communication are managed by
TaskTimer. In addition, TaskTimer deals with both

activated at appropriate times during the simulation.
SmTukTmmmrpumdmnHmﬂmufﬂ:

upunmgsyncmnndﬂnﬁrgﬁnﬂnteﬂnm,oﬂf
dutgnandpetfnrmammmbedmctedud

eliminated during the development stages. _f_w,:__
b

b T - : e » :rlu

43P e

StP is nsed fur :ni:nddnd nnd mmrm:rmal

" ‘development [37]. StP provides a collection nfmplﬂ'c
-ersﬂlmmFIdlfﬂcmmmddcmgumuhodol

PR‘?; i T
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“synchronous and asynchronous interrupts, which can be :Q*
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Pushbutton 2167 A or 2167
Lite Cycle Support
Tracaability

Ada Design Support

5u||ware Ar:hltoctuu
Design Pariitioning

. Concummency and Mulitasking

. Paraliel Procassing
Multi-Path Parformance Simulation
Soltware/Hardware Interface
VATX/ARTX Kunwladga

1|'|'ard Malht E:un:bn:
State Transition Diagrams
Agomatic & Configurable Generation

of PDL from State Transiion Diagrams
Caontrol Flow Diagramming it
Control Specification B3
Stale Activation Tables

Structured Analysis .

Structure Dasign

Program Design Languagamtrﬂ-&poc
5 - Top-Down Step-Wisa Relinement

Conventional CASE Built-in Logic Checker

Multi-View Consistency

Cpen Archatecture/Data Base Access

Figure 7. CARDtools offers four levels of software support (adapted from [36]).

ogy and are linked by a relational data base manage- _'speclﬁnumpimw:thﬂwedqtprlnthi&
~ ment system, as shown in Figure 8. Among others, StP .Ippmpnatesetofdmﬁ:ddmgnwnﬂmls
.+ supports the object-oriented structured design (OOSD) cluded, andnodecnnbcpmc[uced for the give
approach [38], not only through the drawing of the  guage. For example, a language-specific editor, suchas
0O0SD chart but also consistency checking, code gener- the OOSD/Ada design editor, linked with a structured

ation, design reuse, and comprehensibility. A graphic  editor and an Ada programming environment (com-
editor for OOSD is configured for a particular pro- piler, linker, debugger, etc.) produces an UGSD devel-
gramming language by associating a set of language- _opumm mwmnmem fm‘ Ada :

st
s

e
S
= ot

og;i;:P“" el “””“adaip,

e ﬁ-' vrw

WW S-&’?!"-”?‘
Figure 8. StP integrated environment (miapmd from [39]).
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5. SUMMARY AND RESEARCH ISSUES

In this survey we described examples of real-time
systems, identified key issues in the design of such
systems, examined design methodologies, and reviewed
three commercial design tools. Real-time systems can
be characterized by their real-time response and inher-
ent concurrency. The critical nature of many real-time
applications requires the systems to be ultrareliable.
Future real-time systems will be more complex and
require distributed implementations. Although several
design methods and tools have been proposed, they fall
short in meeting all the requirements. Based on our
studies, we list the following as the major research

~ Not all rwf-ﬁmé h.'s'_r.&i‘em are the same. Although
all real-time systems share commeon aspects, they differ

“" in their scale, criticality, complexity of communication

requirements, and execution environments. Some are
only a few thousand lines of code, while others are
millions of lines of code. Some require formal verifica-
tion of logic and timing correctness. Some applications
rely on tightly coupled communication, while others
operate in loosely coupled environments. Some systems

%ﬁ( must be ultrareliable. Thus, it is highly desirable to
' eategorize real-time sysl‘.ﬂns such that appropriate de-

. sign methods, architectures, and faﬂ]l—m!eranet strate-
gh can be nd:nt:ﬁad .

s .{_\..\_t' i

Specgﬁmrmn and ana{jms af time. The auai}rsm of

- timing requirements of real-time system must be car-
ried out at several phases of development, including

. _specification, design, and implementation, for their
completeness, cmsl,st:m:y. and ‘correctness. Existing
mﬂysm techniques are either too complex or too lim-
. ited in their scope to bc useful in all phases of develop-

‘ment. Distributed or parallel computing environments

K. M. Kavi and 5.-M. Yang

systematic way of designing multiple versions must be
investigated. Design of effective error-detection mecha-
nisms, i.e., voting and acceptability check routines
with multple software versions is another ch.allcng:ng
area. Specification of timing requirements in light of
fault tolerance needs investigation. Although reliability
models have been proposed for hardware components
and fault-tolerant software, models for the study of
system-level reliability are needed. The future reliabil-
ity model must include not only hardware and mﬁmr:

Dratgel

components, but also communication subsystems

. .'_\"!;:;.__r._: 3
Reuseable software components. It is generally be-

lieved that software reuse can reduce dcvclnpnmnt cost

while reducing the possibility of errors. Hnwcver, ‘the
reuse technology is far from useful in complex systems.

It is necessary to develop new methodologies for.the

specification, customization, cataloguing and rﬂm:\rmg
of software components. It is also necessary for mﬂh

odologies to optmize the software after integration of

reusable components to meet timing and rt.ltabqllty
requirements.

Z : ;f gt e
Automated :mp!'ememaﬂon and CASE Iaufs Al-

_thnugjl many CASE tools are available, tools forffgrqm-

_plex distributed ml-umr: systems design and Ep{”e "

. mentation are mrc: We beheve the :u:r.t generation

- tools should stmre s ;
I..to assist the system dmgncrs in ldcnuﬁ.rmg a.nd

310 support the analysis of the temporal behamr of

in. which timing behavior depends on many factors,

- including task allocation, scheduhng, and cm:unumca—_ ;
' “.. tion, complicate the analys:s of timing requirements.

. Thus, appmactm to cope with the analysis of time
2 dmmg all phases of real-time system dmelopnmnt are _
2 needed. Thcamlys:sof:hcumcfm:rmrdewcum,'

" also facilitate the nnalyms 0{" the syswm t'or r:&llabllv__r_
:"ltyam:lperfummnce . 5 B e

recovery, and reuunﬁgurazmn must be an mtegral part ad

- “'1‘_.",, o
I 5y

Inregrarmn of faufrwmfemnce and re.!'mbmry aﬂaf-
yses. Fault tolerance is paramount in all life-critical

systems. Although fault-tolerance techniques have been -

investigated thoroughly, problems in the practical ap-
plication of these techniques remain. One of the more
serious problems is the cost of designing and imple-

menting multiple software versions. An efficient and

S

defining the target applications. They should s suppon

systematic decomposition of the system and ﬂm.

- definition of interfaces among the compunenu; v s
2. to support principles of abstraction and reuse. “They
. 'should support the automatic cataloguing, storagc,
+. retrieval, and update of components; 4

- systems for completeness, correctness, fmlbji:ty,

and predictability. They should aid in the szlectmn 55
of proper timeout mtl:nra.ls am:l other synchmnm e

tion points; - i i

4. 1o assist in the mcmpuratmn of rcdundancy,w e,

“detection, and recovery mechanisms. They:

F'naily, 1o cope wﬂ:h future dlstnbuted real um':sys- r_
tems, the development environment and tools must

permit the use of a variety of formalisms, dmgn
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