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1 ABSTRACT 

With the emergence of 3D-DRAM, Processing-in-Memory has once more become of great interest to the 

research community and industry. Here we present our observations on a subset of the PIM design space. We 

show how the architectural choices for PIM core frequency and cache sizes will affect the overall power 

consumption and energy efficiency. We include a detailed power consumption breakdown for an ARM-like 

core as a PIM core. We show the maximum possible number of PIM cores we can place in the logic layer with 

respect to a predefined power budget. Additionally, we catalog additional sources of power consumption in 

a system with PIM such as 3D-DRAM link power and discuss the possible power reduction techniques. We 

describe the shortcomings of using ARM-like cores for PIM and discuss other alternatives for the PIM cores. 

Finally, we explore the optimal design choices for the number of cores as a function of performance, 

utilization, and energy efficiency.  

Keywords: Processing in memory; Heterogeneous Computing; High Performance 

Computing; 3D-DRAM; Energy Efficient Computing 

2 Introduction 

Over the last decade, we have witnessed the Big Data processing evolution. Existing commodity 

systems, which are widely used in the Big Data processing community, are becoming less energy 

efficient and fail to scale in terms of power consumption and area [21] clearly shows that this is also 

true for any Scale-Out workloads in general. Therefore using hardware accelerators to aid the Big 

Data processing is becoming more and more prominent. With the evolution of new emerging DRAM 

technologies, in particular 3D-DRAM, Processing-in-Memory (PIM) has again become of great 
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interest to the research community as well as the industry [15, 16]. When it comes to Big Data 

processing, systems with 3D-DRAM including PIM could prove to be more energy efficient and 

powerful than traditional commodity systems. Recent studies [14, 19, 8] have shown the potential 

use of PIM in 3D-DRAM chips. However, in order to prove the efficiency and usability of PIM, a much 

larger design space needs to be explored. This includes both software and hardware related design 

choices as well as tackling the challenges which arise from such a complex heterogeneous system. 

From a software perspective, challenges such as programmability, scalability, programming 

interfaces, and usability need to be explored. Major hardware challenges include PIM core micro-

architecture, interconnection networks, and interfaces. Here we present our observations for a 

subset of architectural choices for the PIM cores, e.g. core architecture, frequency, and cache sizes 

to maximize energy efficiency. Our goal is to explore a part of the large design space and investigate 

the trade-offs between certain design choices. We focus on an ARM-like energy-efficient core as a 

PIM core and evaluate design choices for caches, core frequency, and number of cores for a set of 

Big Data analyses benchmarks based on MapReduce as well as scientific OpenMP benchmarks. Our 

findings and observation include: 

• How cache size and core frequency affect the performance of a single PIM core and total power 

consumption 

• How these parameters and metrics translate to overall energy efficiency 
• Power decomposition for different system components 
• Potential number of cores we can place in the logic layer with respect to a power budget 
• Possible design choices for number of cores as a function of frequency, utilization, and energy 
efficiency 
• Bandwidth consumption of the benchmarks and the impact on the decision about the number and 
type of PIM cores 
• Discussion on alternative choices for the PIM cores 

3 Background and Related Study 

3.1 3D-DRAM 
3D-DRAM memory provides high memory bandwidth, which reduces average memory-access latency, 

and lower power consumption than traditional DRAM. A prototype of such 3D-DRAM is already 

available from Micron [22]. A group of different vendors, Hybrid Memory Cube Consortium (HMCC) 

[10], are working on expanding 3D-DRAM capabilities. Current prototype 3D-DRAM, known as Hybrid 

Memory Cube (HMC) has a capacity of 4-8GB and can provide maximum memory bandwidth of 

480GB/s [10]. 3D-DRAM memory is typically consists of several layers of DRAM (nMOS) dies stacked 

on top of each other with a logic layer (CMOS) sitting on the bottom of the stack. Communication 

between different layers is done through high speed TSVs (Through Silicon Vias) [10, 9]. The logic die 

contains necessary interfacing circuits for the DRAM dies, and it still has enough area to 

accommodate additional processing or controller logic [14, 19]. The proposed TDP budget of the 

logic layer is conservatively set at 10W [19] while recent studies show that it can be increased by 

using more effective cooling solution [29].  
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3.2 An Overview on PIM  
Processing-in-Memory (PIM) is the concept of placing computation as close as possible to memory to 

get faster access to memory and achieve higher bandwidth. Processing logic can be integrated in 

different levels of the storage hierarchy, e.g. cache, memory (DRAM), permanent storage (Solid 

State Drive-SSD). In this study, we focus only on processing in DRAM memory. 

Research in the area of PIM can be categorized into two eras from the implementation point of view. 

In the first era, researchers relied on a processing technology that tried to combine both logic and 

DRAM cells on a single die. However the incompatibilities in the manufacturing process of these 

different types of devices made it difficult to integrate DRAM with logic [15, 23]. The invention of 3D-

die stacking technology breathed a new life for PIM research. 3D-Die stacking technology enables 

two disparate technologies to be integrated in the same die. It provides a very useful way of 

constructing a single die that can offer both dense memory and fast logic. Also, some other common 

challenges anticipated by the researchers of the past PIM studies seem to be easily solved with 3D-

DRAM technology.  

PIM, Previous Studies. From the 1990s to 2005, a number of studies proposed appropriate 

architectures employing PIM to achieve lower memory latency, higher memory bandwidth and high 

throughput. Some interesting studies from that era include EXECUBE [24], IRAM [13], FlexRAM [15], 

Smart Memories [25], DIVA [11], and Intelligent Memory Manager [4]. In most of the work, the 

researchers advocated architectures with vector [13] or SIMD type [24, 15, 11, 4] processing units 

sitting close to the memory arrays. 

PIM, Related Studies. Recently proposed Near Data Computing (NDC) architecture [14] and PIM for 

MapReduce applications [8] propose to integrate simple ARM cores as PIM cores in 3D-DRAM 

memory and have shown performance and energy gains. In our study, we closely resemble the 

architecture but the goal of our study differs. In this paper, we explore the design space of PIM cores 

utilizing MapReduce applications as a use case. In TOP-PIM [19] the researchers presented a 3D-

DRAM PIM model with GPUs as PIM cores. For different process technologies, they have shown 

significant energy efficiency with little or no performance degradation for different HPC and graph 

applications. Other studies [15, 2, 3] have also provided useful insights on research directions for PIM-

augmented 3D-DRAM systems. 

4 PIM Integrated 3D-DRAM 

In present data center systems we need to process large amounts of data as fast as possible. The 

main bottleneck in achieving higher speed processing is the gap between processor and memory 

speed, known commonly as the famous memory-wall. Here we discuss the two most important 

issues which create this problem, namely latency and bandwidth. Energy efficiency is another crucial 

requirement for today’s data centers. 3D-DRAM memory cubes provide higher bandwidth and lower 

power consumption. PIM cores integrated in the logic layer of 3D-DRAM are expected to capitalize 

these benefits.  

Latency. Memory access latency for a commodity processor can be divided in two parts [13]. The first 

part is the time to send the address bits to the DRAM. This includes lookups in the cache hierarchy, 
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memory controller overhead, multiplexing the address over the system memory bus, and reaching 

the DRAM pins, etc. The second part is the core DRAM access latency, which may include row 

precharge time (tRP), row address to column address delay time (tRCD) and column access delay 

time (tCAS). DRAM core latency is approximately 40-50ns [14, 5]. PIM core’s DRAM access latency 

will be reduced by the lookup time for L2 and L3 caches as it only has L1 caches. In addition, the off-

chip memory bus delay can be avoided as the PIM cores reside in the same stack as the DRAM dies 

and are connected with high speed TSVs. The reduction in DRAM access latency is expected to be at 

least 30% [2].  

Bandwidth. Today’s processors, which typically have superscalar pipelines, support Out-Of-Order 

execution, and support speculation need an excessive amount of data per second. A good part of 

data can be supplied by large caches. However, present data intensive applications, e.g. Scale-Out 

applications [21], do not benefit from deep cache hierarchies and demand more memory accesses 

resulting in a high bandwidth requirement. Additionally, non-blocking and prefetch-enabled caches 

increase this requirement. The invention of 3D-DRAM memory can provide a viable solution to the 

high bandwidth requirement. Current prototypes [10] offer as much as 480GB/s off-chip memory 

bandwidth. SerDes links are used to support this high memory bandwidth. Each SerDes link can 

support 120GB/s while consuming high power, and in order to provide 480GB/s, 4 such links are 

required. This bandwidth is also available to the logic die sitting at the bottom of the stacked DRAM 

dies through TSV buses. If we integrate PIM cores into the logic layer they will be able to utilize the 

high bandwidth without requiring SerDes links. 

Power. The memory subsystem (memory chip, I/O interface and link) is power hungry, and in modern 

Petascale systems, it consumes approximately 35% of the total system power budget and is 

anticipated to consume more than 60% in future Exascale systems [6]. 3D-DRAM will be able to 

provide 72% less energy per bit as compared to current DDR4 DRAM systems [18]. Nonetheless 

accessing off-chip memory has high overhead in terms of energy. Studies have shown that around 

50%-70% of the DRAM access energy is consumed by the interfaces [6, 7]. Other studies show that 

approximately 20-30 pJ/b are spent when transferring data over DRAM buses [7], 5-10 pJ/b for 

SerDes links, and it is expected to be only 30-110 fJ/b when traversed along 3D TSV [19]. Thus, PIM 

integrated systems would be more energy efficient when running data-intensive workloads.  

Challenges. There exist a number of issues which need to be solved for PIMs to be effective. The 

crucial challenge is designing an appropriate system architecture. This involves many design 

parameters, such as, the host processor, PIM processors, the memory hierarchy, communication 

channels, interfaces, etc. Also a number of changes must be made to the operating system (e.g. 

memory management), programming framework (e.g. libraries), and programming models (e.g. 

synchronization, coherence, data layout). 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

Figure 1 – A system with Processing-in-Memory capabilities consisting of a host processor and multiple 3D-DRAM 
stacks, each stack with a certain number of processing cores in the logic layer. Inter-stack links are optional but 
should be considered allowing for off-stack data accesses for PIM. 

5 Design space exploration  

A general model of a PIM augmented architecture using 3D-DRAM has been proposed by Zhang et al. 

[16] and a similar model has been used in recent studies [14, 8] as well. We use the same model for 

our studies. The model consists of a host processor connected to one or many 3D-DRAM modules 

where each 3D-DRAM module has several PIM cores residing in the logic layer. The host processor 

views all the 3D-DRAM modules as one physical address space shared between the host processor 

and the PIM cores. Previous studies have shown high performance gains and energy reductions for 

PIM-augmented architectures running MapReduce workloads [14, 8]. However, the power analyses 

performed in these studies, for ARM-like PIM cores, are not accurate. The overall power 

consumption of the PIM core is underestimated, and not all power components are considered, e.g. 

cache power. Furthermore, the studies are limited for a fixed cache size and core frequency. Our 

goal is to explore the design space of the PIM cores in terms of cache sizes, operating frequency, the 

number of cores for a specific microarchitecture, and perform more realistic power estimations. We 

take an in-order, single issue, ARM-like core and perform simulations for different MapReduce 

workloads as well as scientific OpenMP benchmarks. We have used gem5 [20] to capture the 

performance statistics of the core and McPAT [26] and CACTI-3DD [27] for the power analyses. 

The architectural choices for cache size and frequency for the PIM cores will depend on two metrics, 

i.e. power consumption and energy efficiency. Total power consumption of a PIM core is an 

important factor because it limits the number of cores we can place in the logic layer within a power 

budget of 10W. We define the energy efficiency as useful work done per unit of energy [work/Joule]. 

We do not focus solely on total execution time, because it would imply the largest cache size and 

highest frequency as optimal choices. This is not a good approach because we want to minimize the 

power consumption while maximizing the performance. We performed experiments with varying L1 

cache sizes with and without enabled prefetching. We have observed a moderate cache size with 

prefetch offers the best energy efficiency. The reason behind this is the low temporal locality and 

streaming-like behavior of map() phases in MapReduce workloads and large structured datasets for 

OpenMP workloads. Note that including another level of cache would consume a significant amount 

of power without providing a significant performance improvement. We also vary the PIM core 

frequency and adjust the supply voltage accordingly [28] to ensure a minimal supply voltage. There 

will be an optimal frequency for which we get the best energy efficiency. Because the power 
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increases exponentially and execution time reduces linearly, higher frequencies than optimal will 

result in low energy efficiency due to high power. Lower frequencies will result in lower energy 

efficiency due to high execution times. We also calculate the maximum number of cores we can 

place in the logic layer within the power budget of 10W. Note that the maximum number of cores 

may not be the optimal choice since the utilization of the cores will depend on the application which 

will run on the PIM cores. We therefore evaluate the optimal number of cores we want to place in 

the logic layer with respect to minimal execution time and minimal energy spent. We calculate the 

execution times using Amdahl’s law for different possibilities of serial fractions. We reason that, 

although the computation done on PIM cores is typically going to be parallel, there may be some 

overhead due to communication, synchronization, or load imbalance. We observe that the more 

overhead we have, the fewer cores we want in the logic layer. We do not get significant 

performance gains with increasing the number of cores but add unnecessary power consumption. If 

we do not place the maximum number of cores, we hardly utilize the available bandwidth within a 3D 

stack. This leads to a conclusion that a SIMD/VLIW/vector processor architecture, which can consume 

much more bandwidth, should be considered as a PIM core.  

6 Methodology 

We used the gem5 simulator [20] to capture the performance statistics needed for our power and 

energy efficiency evaluation. We used the “minor” CPU, an in-order, single-issue CPU model with 

support for ARM ISA. We are aware that this model is not as detailed, but it is the only available in-

order model with ARM ISA support. We used a simple DRAM model with a fixed latency of 40ns [14] 

to match the core latency of the 3D-DRAM. We ran four different microbenchmarks, written in the C 

programming language, which capture the map() function behavior of common MapReduce 

applications and four OpenMP benchmarks from the Rodinia benchmark suite [30]. We execute only 

map() phases of MR workloads. Because of their high degree of parallelism, map tasks seem to be 

most suitable for PIM-like architectures. OpenMP benchmarks are also highly parallel and could run 

efficiently on PIMs. We perform the simulations for four MapReduce micro-benchmarks, wordcount, 

histogram, linear regression, and string match and four OpenMP benchmarks from the Rodinia suite, 

backprop, bfs, nn and euler3d. We vary the L1 cache sizes and core frequencies. L1 cache means split 

instruction and data caches of the same size, e.g. 16KB L1 cache means a 16KB L1 instruction and 16KB 

L1 data cache. We use a 64B block size for cache. For the power consumption modeling we used 

McPAT [26], a power modeling tool with support for power, area and timing optimization. The tool 

uses a CPU model description and the corresponding performance statistics for an application run. 

We take the needed input parameters from gem5 statistics outputs and feed them into McPAT. We 

do so for each benchmark we run with different cache sizes and frequencies. We adjust the supply 

voltage for each frequency accordingly. This also allows us to capture the correct increase in power 

while varying the frequency. The chosen voltage-frequency pairs mimic those in [28]. To keep the 

static power consumption low, we allow power-gating. All the power estimations were conducted 

with respect to the 40nm process, and technology parameters follow the ITRS roadmap. We have 

modeled a 3D-DRAM with respect to JEDEC-HBM [12] standard using CACTI-3DD [27]. We obtained 

the 3D-DRAM access energy of 3.98pJ/bit which is close to 3.7pJ/bit as presented in [14]. The next 

section describes the experiments and results in more detail followed by a discussion. 
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7 PIM cores frequency and cache sizes 

We use the collected statistics from gem5 to evaluate what would be good architectural choices for 

cache sizes and core frequencies. In order to do that, we look at the overall energy efficiency for 

different cache size-frequency pairs. The goal is to find an optimal point where we get the most out 

of the PIM cores with lowest possible power consumption. For that, we take the total execution 

time obtained from gem5 and the power consumption of the core obtained from McPAT [26]. We 

include both static and dynamic power consumption, for the core and caches, as well as the dynamic 

3D-DRAM power obtained from CACTI-3DD [27]. It is important to include the dynamic DRAM power 

consumption because smaller cache sizes can create more accesses to the DRAM and result in 

increased overall power consumption. We calculate the energy efficiency, Eeff as Eeff = 1/Energy 

where 

       (                   )  (                                     ) 

Figure 2 (a through d) shows the overall PIM core energy efficiency in Work/Joule for the 

MapReduce workloads. The data shows that, for applications like wordcount, a PIM core with 16KB 

L1 cache running at 800MHz frequency is the most energy efficient choice. For applications similar to 

histogram, linear regression and string match, a 4KB L1 cache and a frequency of 800MHz results in 

the most energy efficient setup. Even though a lower frequency seem to be less energy efficient it 

could prove useful to ramp down the processing frequency in order to save power when operating 

under stricter power budgets. This is especially important when multiple PIM modules are in place 

since the aggregate power will increase significantly because of the large number of cores in the 

system. A reduction in dynamic power directly translates in reduction in power dissipation which is of 

great importance in large scale systems. Similarly, on the performance end, we can ramp up the 

frequency to get higher performance if power is not critical. Looking at the data we conclude that if 

we are using ARM like cores, for most MapReduce applications, where map functions will be 

executed by PIM cores, the best operating frequencies will range between 600MHz-1000MHz and 

the optimal cache sizes will range between 8KB-32KB. From our results, we observe that the 

MapReduce workloads do not benefit from larger caches and therefore a second level of cache 

would just introduce more power overhead and not provide performance gains.  

 
a) wordcount      b) histogram 
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  c) linear regression     d) string match 

Figure 2 (a-d) - Energy efficiency of MapReduce workloads running map() function on an ARM core. Work equals 
to the input processed by one map() task. PIM cores running on a frequency of 800MHz show highest energy 
efficiency. A frequency of 1GHz provides almost the same energy efficiency and represents a better alternative in 
terms of performance at the cost of higher power consumption, while a frequency of 600MHz can save power at 
cost of performance. Smaller cache sizes are more energy efficient due to poor data locality in MR tasks. 

Figure 3 (a-d) shows the PIM energy efficiency for the four OpenMP workloads from the Rodinia 

benchmark suite. Applications like backprop and bfs which do not benefit from the larger caches 

show higher energy efficiency for lower cache size (4KB – 16KB). This is not true for the other two 

benchmarks (euler3d and nn) which show higher energy efficiency for cache sizes ranging from 

32KB-128KB. Note that in the case of the nn benchmark a PIM core running on 1000MHz and 64KB of 

cache is twice as efficient as the PIM core with only 16KB at the same frequency. The euler3d 

benchmark benefits from a larger cache size at higher frequencies (64 KB cache size is more 

efficient) while at lower frequencies a smaller cache size seems more energy efficient (e.g. 32KB at 

600MHz). This is because euler3d is latency sensitive and has a larger working set size than other 

benchmarks. A higher frequency will cause the PIM core to stall on memory accesses and thus a 

bigger cache will amortize this latency, while on lower frequencies the PIM core will spend less cycles 

sitting idle, because the memory latency is fixed in terms of time, and thus a smaller cache suffices. It 

is important to note that larger caches will increase the static power consumed by the cores and 

thereby reduce the total number of cores we can place in the logic layer under a power budget. 

 
a) backprop      b) bfs 
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c) euler3d      d) nn 

Figure 3(a-d)- Energy efficenncy of OpenMP Rodinia benchmarks. Higher data locality for euler3d and nn makes 
good use of larger caches. However, large caches will reduce the number of cores we can place in the logic layer 
under a power budget. 

8 Power Breakdown 

We obtain the total PIM core power consumption from McPAT [26]. We scale the supply voltage to 

support various frequencies by using the voltage-frequency pairs as in [28]. We separate the power 

consumption into four different components: static core power, dynamic core power, static cache 

power, and dynamic cache power. The power consumption will depend on both frequency and 

supply  

 
a) The effect of cache size on the power   b) The effect of frequency on total power 

consumption for a fixed frequency of 1GHz. consumption for a fixed L1 cache size of 32KB. 

Figure 4a, 4b - Power breakdown of an ARM PIM core when running wordcount. Other workloads exhibit similar 
behavior where the static power is the major power component and where caches consume most of the static 
power. Static power doesn't depend on the workload while the change in dynamic power consumption is +/- 
100mW for the chosen benchmarks. 

voltage and, therefore, will scale exponentially. Figure 4a and 4b show the breakdown of different 

power components within a PIM core. For a cache size of 32KB and core frequency of 1GHz, the total 

PIM power consumption (including cache power) is around 500mW. The core dynamic power is 

roughly 50mW which supports the published data for an energy-efficient in-order ARM core [17]. 

Previous studies [14, 8] used the power specifications for the same ARM core and took into 

consideration only the core dynamic power consumption. However, we notice that the core static 
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power and the cache power are the most significant components and should be taken into account. 

Even after allowing for power-gating, static power consumption is high. This implies that the PIM 

cores should be turned off whenever they are not performing computation. Furthermore, the size of 

the cache as well as the core frequency will be the major factor limiting the number of cores we can 

place in the logic layer. We include the dynamic power of the DRAM to capture the effects of cache 

sizes. 

9 Number of PIM cores 

The maximum number of PIM cores that can be placed in the logic layer of a 3D-DRAM will depend 

on the individual PIM core power consumption as well as the power limit of the logic layer.  

Researchers have proposed a conservative power budget of 10W for the logic layer [19]. Figure 5 

shows the maximum number of cores, within that power budget, for different setups. For 800MHz 

and 16KB L1 cache, we can maximally put 26 cores in the logic layer, while at 1000MHz and 64 KB we 

can put a maximum of 18 cores. This suggests that 16-24 cores would seem the most reasonable 

choice when it comes to the number of cores.  

 

Figure 5- Maximum number of PIM cores we can place in the logic layer within a power budget of 10W. With a 
frequency of 800MHz and cache size 16KBwe can place up to 26 cores in the logic layer. Increasing the frequency 
to 1000MHZ and cache sizes to 64KB will limit us to 18 cores. This suggest a range of maximum 16-24 cores in the 
logic layer. 

Due to various parallel overheads, the parallel code which will run on the PIM cores may result in 

lower utilization of the PIM cores. Therefore, we reason about a good number of PIM cores with 

respect to Amdahl’s law; so, we maintain good performance while minimizing the energy. The rate at 

which the power increases with the number of cores will be higher than the obtained speedup. We 

are trying to find the trade-off between energy consumption and execution time. We do that by 

calculating the execution times for different numbers of cores using Amdahl’s law for different 

parallel overheads (serial fractions). For specific core parameters (cache, frequency), we vary the 

number of cores and obtain different execution times by using Amdahl’s law.  
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a) Parallel overhead=1%     b) Parallel overhead=10% 

 
c) Parallel overhead=30% 

Figure 6 (a-c) - Time-Energy pairs for 3 different parallel overheads. The desirable number of PIM cores are those 
closer to the (0,0) coordinate. As the parallel overhead increases, the configurations with more cores “drift 
away” because more cores do not provide additional performance and increase the power consumption. The 
black line represents the 10W power budget. All the configurations which are on the left-hand side of the slope 
are not possible, since they exceed the power limit. For a parallel overhead of 1% we want as many as 16-24 cores, 
for 10% overhead 8-12 and for 30% 4-6 cores. For each number of cores, we plot the points for different 
frequencies starting with the largest frequency (1600MHz) on the left most side and ending with the lowest 
frequency (200MHz) on the right most side. Note that the 800MHz frequency still gives the best results in terms 
of energy and time 

 

The obtained execution time for n cores, Total Execution Time(n), is then used to calculate the 

energy consumed by n cores, E(n). 

 ( )                       ( ) 

We compute E(n) for different frequencies so we can observe different design alternatives. We plot 

the time-energy pairs in a 2D plane. The points closest to the optimum point (0, 0) will be the 
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configurations which are optimized for both performance and energy. Figure 6 shows how the 

desired number of cores changes because of Amdahl’s law. The general observation is the more 

overhead we have, the fewer cores we want in the logic layer. For a parallel overhead of 1% we want 

as many as 16-24 cores, for 10% overhead 8-12 and for 30% 4-6 cores. The desired number of cores 

depends on the parallel overhead and is subject to Amdahl’s law. Therefore, it would be wise to 

choose highly parallelizable applications with no parallel overhead to run on PIM. MapReduce 

applications are one set of applications which would benefit from larger number of PIM cores. If we 

assume that more general applications are going to run on PIM we might consider putting less cores 

and not waste additional energy.  

  
a) wordcount bandwidth consumption   b) backprop bandwidth consumption 

Figure 7 - bandwidth consumption over time for wordcount(a) and backprop(b). Both workloads were running 
at f=1000MHz. Even when running on 16 cores the bandwidth utilization remains low. This raises concerns 
whether using ARM cores is the best option for PIMs. 

10 Bandwidth and link power 

Figure 7 shows the actual bandwidth consumption of wordcount (7a) and backprop (7b) when 

running on 16 PIM cores. None of the benchmarks exceed 20GB/s bandwidth consumption. This is 

also true for other workloads as well. Four PIM stacks, each with 16 PIM cores, would consume not 

more than 80GB/s which is relatively low to the total available bandwidth. However, the PIM stacks 

would still be more energy efficient then running the code on the host processor. This is due to the 

fact that the host processor would have to transfer the data over high speed SerDes links which are 

power hungry. HMCs provide memory bandwidth of up to 480GB/s [10]. The bandwidth is available 

to the host processor via 4 high speed SerDes links [4], with average energy consumption of 5-

10pJ/bit. However, we can have low bandwidth links between the host processor and the PIMs and 

thereby reduce power consumption because we would offload the memory intensive work to the 

PIMs. The bandwidth utilized within each stack can be further increased by increasing the number of 

PIM cores per stack, however at the expense of higher power consumption and possibly lower 

utilization. To fully utilize the 480GB/s bandwidth, more than 250 PIM cores are needed, but then the 

power consumption will exceed the constraint of 10W TDP for the logic layer. This raises concerns 

about using ARM cores as PIM cores which we discuss in the next section. 
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11 PIM core alternative 

One of the design points for a PIM system is deciding on the type of the processing core for the PIM. 

Loh et al. [3] presented couple of possibilities for the PIM cores including ASICs and fixed function 

PIMs. Our study, as well as some of the previous studies, explored the case where we would employ 

energy efficient low-power ARM cores as PIM cores. An advantage of having ARM cores as PIMs is 

the high energy efficiency. Designed for low power, ARM cores can still provide a significant 

performance for single threaded applications. An increased number of such cores can also provide a 

higher degree of parallelism and deliver a decent throughput as well. However, the amount of 

bandwidth consumed by such cores is very limited. A PIM stack with 16 ARM PIM cores does not 

consume more than 15GB/s when running MapReduce workloads, and not more than 20GB/s when 

running OpenMP benchmarks such as backprop. A system with 4 such PIM stacks would allow for an 

aggregate bandwidth of 4 x 480GB/s but only 80GB/s (aggregate) would be used on average. This 

raises concerns whether such cores are suitable for workloads which could potentially utilize the 

high in-stack available bandwidth. Thus, cores with high energy efficiency and high throughput, such 

as GPGPUs, would seem to benefit more from the available bandwidth. However, GPGPUs are 

suitable only in cases where applications have a high degree of parallelism. On the other hand ARM 

cores are more efficient in running single threaded code with more complex memory access patterns. 

Therefore it is still justifiable to explore ARM cores as an alternative to GPGPUs, specifically because 

we could offload memory intensive functions which are not easily translatable to GPGPU applications.  

12 Conclusion 

In this paper, we presented our observations on a subset of architectural choices for PIM cores. As a 

use case, we have used map() phases of several MapReduce workloads and OpenMP scientific 

benchmarks. Our study shows that a PIM core running at 800MHz clock frequency has the best 

energy efficiency. Smaller caches are more energy efficient for MapReduce workloads while more 

intensive scientific workloads benefit from larger caches. We have shown the power consumption 

components and calculated the maximum number of cores we can place in the logic layer. We 

observed that static power consumption, specifically from caches, dominates the power 

consumption. Also, we have shown how the parallel overhead of a program can limit the advantage 

of having a larger number of cores in the logic layer. We conclude that 16-24 ARM cores are a 

reasonable choice for PIMs utilizing ARM cores. One drawback of having ARM cores as PIMs is the 

low bandwidth utilization. Therefore high throughput processing cores, such as GPGPUs, would be 

better of utilizing the in-stack bandwidth and potentially prove even more energy efficient. 
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