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Abstract. This paper shows that even very small data caches, when split to serve data streams exhibiting temporal and spatial
localities, can improve performance of embedded applications without consuming excessive silicon real estate or power. It also
shows that large block sizes or higher set-associativities are unnecessary with split cache organizations. We use benchmark
programs from MiBench to show that our cache organization outperforms other organizations in terms of miss rates, access times,
energy consumption and silicon area.
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1. Introduction

Both experience and common sense tell us that care-
ful design of memory systems is crucial to achieving
good performanceon any computer architecture. Many
different memory organizational ideas have been eval-
uated in the literature. However, too often these studies
are used to make generalizations as to the effectiveness
of memory techniques across a very wide range of ar-
chitectures, and not for specific application domains.
Our experiments show that two cache memory tech-
niques provide significant benefits for embedded sys-
tems. More specifically, our studies show that victim
caches and cache line prefetching are effective in em-
bedded systems when used in conjunction with split
data caches.

Challenges to the design of processing elements for
embedded applications are more stringent than those
for desktop applications. Embedded applications place
requirements along a number of dimensions includ-
ing tighter constraints on functionality and implemen-
tation. Not only must the application’s functionality
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be correct, it often must meet strict timing constraints
and be designed to function within limited resources
such as memory size, available power, and allowable
weight. In embedded systems research, investigators
have begun to focus on the use of cache memories for
achieving ever increasing performance requirements.
In this paper we explore how to design small caches that
achieve high performance for embedded applications
while remaining both energy and area efficient.

For two decades computer architects have proposed
smart cache-control mechanisms and novel cache ar-
chitectures that detect program access patterns and fine-
tune cache policies to improve both overall cache use
and data localities for desktop applications. In our pre-
vious research [29,30], we proposed split data-caches
for scientific applications: an array cache and a scalar
cache. Our results have shown that the split-cache or-
ganization achieves lower miss rates and shorter aver-
age access times even when the combined size of array
and scalar caches is roughly one quarter the size of the
unified data cache used in our comparisons. In this pa-
per we show that split caches benefit even nonscientific
applications. The profound benefits are evident when
working with the small L-1 caches often found in em-
bedded systems. This work makes several significant
contributions. First, leveraging our previous studies of
split data caches for scientific applications, we evaluate
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split data-caches for applications often encountered in
embedded systems. Second we evaluate a cache ar-
chitecture that uses split data caches with both a vic-
tim cache and a stream buffer to further reduce (sili-
con) area, access time, and dynamic power consumed
by cache memories while retaining performance gains.
Victim caches are based on the fact that reducing the
cache misses due to line conflicts for data exhibiting
temporal locality provides an effective way to improve
cache performance. Stream buffers tend to eliminate
cold misses and prefetch data exhibiting spatial locality.
Victim cache nicely complements the direct mapped
scalar cache in terms of minimizing conflict misses.
Stream buffers add to our array cache with prefetching
capabilities. When using our augmented split caches
for embedded applications, our results show excellent
reductions in both memory size and memory access
time, translating into reduced power consumption. Our
cache architecture (scalar cache 512 bytes, array cache
4096 bytes, victim cache 256 bytes and stream buffer
128 bytes) reduces the overall cache size by 80%, ac-
cess time on average by 39%, and energy consumption
on average by 26% when compared with an 8k unified
direct-mapped cache with a 32 k level-2 cache.

We organize the remainder of this paper as follows.
Section 2 provides a survey of cache optimization tech-
niques, while Section 3 discusses limitations of caches
in embedded systems. In Section 4, we describe our
proposed cache organizations. Section 5 describes
benchmarks and experimental set up used in our eval-
uation, while Section 6 presents the results. Section 7
provides a survey of related research. We present our
conclusions in Section 8.

2. Cache and its optimization

Although caching dates back to Von Neumann’s clas-
sic 1946 paper that laid the foundation for modern com-
puting, cache memories have become critical to pro-
cessor performance since the beginning of 1990’s – as
the gap between the processor cycle and memory la-
tency times has increased dramatically. Cache mem-
ories reside between a large, relatively slow, inexpen-
sive information source (main memory) and a much
faster consumer of that information, the processor. The
success of cache memories has been explained by the
property of locality of reference [34], which all pro-
grams exhibit to a large degree. Programs exhibit two
types of localities, temporal and spatial. Temporal lo-
cality implies that, once a location is referenced, a high

probability exists that it will be soon referenced again,
and less likely to do so as the time passes. Spatial
locality implies that when an instruction or datum is
accessed, nearby instructions or data will likely be ac-
cessed soon. Caches exploit locality to shorten the ef-
fective access time to data, thereby reducing the cost of
accessing main memory. Numerous techniques have
been proposed in the literature to further improve the
efficiency of cache memories for desktop applications.
Major cache optimization techniques (to improve either
or both miss rate and miss penalty) are generally cate-
gorized as: (1) increasing block size and cache size, (2)
increasing associativity, (3) complementing the regular
cache with victim cache, (4) prefetching data, or (5)
including additional cache hierarchy.

2.1. Increasing block size and cache size

The simplest way to reduce miss rate is to use large
block sizes; large blocks reduce cold misses and aid
in data prefetching. Unfortunately, larger blocks in-
crease miss penalty, which may outweigh the benefits
of reduced miss rates. Actually, increasing block size
without increasing the total cache size increases other
types of misses because increasing only block size (not
cache size) reduces the number of lines, leading to an
increase in conflict and capacity misses [13]. Current
desktop computers have used larger caches with larger
block sizes for off-chip caches. Some of these caches
are as large as the main memories of a decade ago [13].

2.2. Increasing associativity and modifying
associative caches

Another common technique for reducing miss rates
is increased associativity. Caches with higher associa-
tivity (4- to 8-way associativity) have become common
in both desktop and server systems. Unfortunately,
the design of a first-level cache always involves funda-
mental tradeoffs between miss rates and access times.
Direct-mapped caches have proven to be simpler, eas-
ier to design and require less silicon area than caches
with higher associativities. The main disadvantage of
a direct-mapped cache is the high conflict miss rate –
conflict misses typically account for 40% of all direct-
mapped cache misses [18]. Conversely for caches with
higher associativity, the main advantage becomes lower
miss rate, but such caches have higher access times as
they require associative searches of sets and multiplex-
ing of the appropriate data words to the processor.
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2.3. Complementing cache with victim cache

A Victim cache is a fully associative cache, with
typically 4 to 16 cache lines that reside between a direct-
mapped L1 cache and the next level of memory [18].
On a main cache miss, the victim cache is checked
before going to the next level of memory. If the address
hits in the victim cache the desired data is returned
to the CPU and swapped (or promoted) with the data
currently occupying the primary cache. Upon a miss
in victim cache, the next level of memory is accessed
and the arriving data is placed in the primary cache,
moving the current data to victim cache. In this case
an element from victim caches has to be removed (or
written back to next level of memory) to make room
for the newly victimized data.

While set-associative caches, with fewer conflict
misses, offer lower miss rates than direct-mapped
caches, they cost more and incur longer access times on
a hit. Victim caches, in contrast, reduce conflict misses
of direct-mapped caches without affecting its fast hit
access times. Because victim caches are fully associa-
tive (albeit small), they can simultaneously hold many
blocks that might conflict in direct-mapped cache. If
most of the conflicting blocks can fit in victim cache,
both the miss rates and the average access times im-
prove.

2.4. General prefetching

As another technique to improve efficiency,prefetch-
ing or exploiting the overlap of processor computations
with data access has proven to be effective in tolerating
large memory latencies in desktop systems [3,26]. Al-
though increasing line size presents the simplest way
of prefetching, line sizes cannot be made arbitrarily
large without both increasing miss rates and greatly in-
creasing the amount of data transferred on cache misses
(thus increasing miss penalties) [13]. Prefetching can
be either hardware or software based [3,26]. Hardware-
based prefetching requires additional hardware con-
nected to the cache; prefetches are dynamic without
compiler intervention. Software prefetching relies on
compiler technology to insert explicit prefetch instruc-
tions. In desktop systems, both instruction and data
prefetching frequently occur in hardware outside the
cache. Typically, on a miss the processor fetches addi-
tional blocks along with the requested block. The pro-
cessor places the requested block in the primary cache
and places the prefetched blocks either in the primary
cache or in an external buffer. On a future reference, if

the processor locates the requested block in the buffer,
the original cache request to next level of memory is
cancelled, the processor reads the block from buffer and
issues the next prefetch request. For data with spatial
locality, prefetching is beneficial.

The stream buffer is a fully associative, FIFO buffer
with 4 or 5 entries specially designed to support
direct-mapped cache through hardware based prefetch-
ing [18]. A miss induces the fetching of the missed
block along with successive blocks stored in the buffer
rather than the cache. Our intent is to use the stream
buffer for prefetched blocks and avoid cache pollution
(premature data displacement).

2.5. Multilevel caches

Inclusion of additional cache hierarchy provides a
common technique to improve performance of desk-
top applications. Adding a second level of cache be-
tween the original cache and the main memory im-
proves access times. The first-level cache can remain
small enough to match the clock cycle time of fast CPU,
while the second-level cache can become large enough
to capture most accesses, thereby lessening the access
time. Some recent architectures contain a third level
cache, whereby an even larger cache is placed between
the second-level cache and the main memory.

3. Issues in embedded systems

Embedded systems present new challenges to com-
puter architects. First, extreme cost sensitivity requires
that designers pay more attention to optimization of
physical size requirements. This may, in turn, require
new approaches to the design of memory hierarchies
and cache systems. Second, for almost all battery-
operated systems, reducing total energy consumed is
critical. Studies have shown that on-chip caches are
responsible for 50% of an embedded processor’s total
power dissipation [7,22,38] and, thus, any savings in
cache memory power can be significant in the overall
power savings. For multimedia applications, the band-
width and power requirements become more important
issues in designing memory systems. Within embed-
ded systems, hard real-time systems present additional
problems. The strict deadlines of hard real-time sys-
tems require not only shortaverageaccess times, but
also narrow upper bounds on memory access time. Be-
cause caches generally lead to unpredictable execution
times, real-time systems have traditionally not used
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caches [16]. At the same time, caches’ performance
benefits should not be ignored. Because of these often,
conflicting demands, considerable interest in cache de-
sign has arisen within the real-time systems research
community [9,17,19,22,31].

Caches with higher associativity remain unpopular
for embedded systems mostly because higher associa-
tivity leads to high power consumption [31,38]. Thus
most cache design efforts have concentrated on opti-
mizing direct-mapped cache organizations. For desk-
top applications, the simplest way to improve perfor-
mance is to increase the cache size and block size.
Unfortunately, embedded systems cannot include large
caches or arbitrarily large block sizes because of the
physical size and power constraints. It should also be
noted that victim caches commonly appear in desk-
top computing because energy consumption is gener-
ally less critical than higher performance requirements.
Traditionally, designers have viewed complementing
direct-mapped cache with a victim cache as an inappro-
priate choice for embedded systems [40], because fully
associative victim caches require additional energy and
silicon area. Similarly, although successful prefetch-
ing can reduce miss rates, any useless prefetching not
only wastes the embedded system’s valuable power but
may also cause cache pollution. And cache pollution
leads to additional misses and wasted energy. How-
ever, as we show in this paper, one can design embed-
ded systems with victim caches and stream buffers, to
improve cache performance without increasing energy
requirements. While performing design space explo-
rations, we have made another key observation. For
desktop systems, designers typically emphasize speed
or throughput, based on average-case behaviors. In
contrast, designers of real-time embedded systems em-
phasize the system’s accuracy, predictability, and reli-
ability, all related to the system’s worst-case behavior.
When a real-time embedded system controls critical
equipment, execution time variability is unacceptable.
Access times of traditional hardware-managed caches
are unpredictable and thus not suitable for embedded
systems [16]. However, for the majority of (soft) real-
time systems, the performance gains resulting from ef-
fective caches should not be ignored. Instead, analyses
for bounding access times of cache memories should
be explored.

4. Our proposed cache organization

We propose a split data cache organization for em-
bedded systems. This split organization permits us to

fine tune the two types of localities (viz., temporal and
spatial) exhibited by data. Our evaluation methodol-
ogy is discussed as a two-step process. We believe that
cache splitting is a step in the right direction, since it
will play a role in achieving cost/performance goals for
embedded systems by exploiting temporal and spatial
localities to improve performance, minimizes memory
footprint, and lower energy consumption. To prove
this claim, we first have performed a comprehensive
evaluation of the split data cache, with separate array
and scalar caches. We show the advantages of our split
cache using the SPEC2000 benchmarks as well as em-
bedded programs of the MiBench suite. Next, we have
investigated the integration victim caches and stream
buffers to further improve the slit cache design. In order
to eliminate the potential data cache pollution caused
by prefetching, a small stream buffer is used to supple-
ment the array cache, while victim cache supplements
the scalar cache. In our experimental evaluations of the
integrated approach for embedded applications, we use
benchmarks from the MiBench suite.

4.1. Evaluation of split data caches

We have simulated various cache techniques de-
scribed in Section 2 for comparing our split data cache
organization with these alternate organizations. For
each of these cache configurations we have measured
miss rates, access times and power consumptions.

Use of separate caches is not a new idea. Modern
processors rely on split instruction and data caches, at
least at the first cache level. However it is not common
to see separate data caches based on the types of locali-
ties exhibited by different data items. Since not all data
items exhibit both spatial and temporal localities, a uni-
fied treatment of references makes the data cache inef-
ficient. Generally, caches exploit temporal locality by
retaining recently referenced data for a long time, and
spatial locality by fetching multiple neighboring words
as a cache block. If a data item exhibits no temporal
locality, bringing it into the cache is useless. Likewise
bringing an entire cache block is needless if no spatial
localities are exhibited by data. Thus traditional treat-
ment of cache misses causes unnecessary movement of
data among the levels of the memory hierarchy, causing
significant interference between unrelated data inside
the cache, leading to the removal of potentially useful
data, causing cache pollution, higher miss ratios, longer
memory access times and higher memory bandwidths.

In order to solve these problems, more recently,
several split data cache architectures have been pro-
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posed, including Dual cache [10,33], Split Tempo-
ral/Spatial(STS) [27], Split Spatial/Non-Spatial cache
(SS/NS) [28], array and scalar cache [35], HP-7200 As-
sist cache [23], Non-Temporal Streaming (NTS) [32]
and Minimax cache [36]. In our prior work [29], we
have evaluated a split cache architecture that grouped
memory accesses as scalar or array references accord-
ing to their inherent locality and each group has sub-
sequently been mapped to a dedicated cache partition.
The “array cache” is a direct mapped cache with larger
block sizes to exploit spatial localities more aggres-
sively by prefetching multiple neighboring small blocks
on a cache miss. The “scalar cache” is a 2-way set
associative cache with smaller block sizes to exploit
temporal locality. In this system, since scalar refer-
ences and streamed (or array) references have no longer
negatively affect each other; and since significant num-
bers of compulsory and conflict misses are avoided, the
size of each cache (and the combined cache capacity),
as well as the power consumptions have greatly been
reduced.

In this paper, we extend our case for split data caches
to embedded applications. We use a simulation envi-
ronment and models for estimating power consumption
to compare the split caching with traditional cache de-
signs when executing SPEC 2000 and MiBench bench-
marks. We compare our cache designs with a direct
mapped cache, a 2-way set associative cache, a cache
supported by prefetching and a direct mapped cache
augmented by a victim cache. For prefetching, we use
a simple prefetching scheme where every miss induces
prefetching of the next two blocks. The victim cache
is an 8-line fully associative cache (with swapping of
cache lines between the primary and victim caches on
a miss).

The results illustrate the benefits of split data caches
even for embedded systems. While considering only
miss rates, for most of the applications split cache per-
forms as well as or better than any of the other methods.
Moreover, when we consider the overall performance
with access times and power consumption, split cache
delivers higher performance (improvements of more
than 60%). Details of these comparisons are included
in Section 6.1.

4.2. Generalization of split caches with victim cache
and stream buffer

In the next set of experiments, we augmented our
split cache design with a small victim cache and small
stream buffers. Our goal is to demonstrate the applica-

bility of victim caches and data prefetching to embed-
ded systems. We compared our new designs with the
alternate cache organizations using only MiBench suite
of benchmarks. We compared our cache designs with
set-associative caches, hardware prefetching where ev-
ery miss induced prefetching of the next two blocks
and victim cache augmenting a unified data cache. In
this section we also compare our organization, which
does not use any L-2 cache, with a direct-mapped cache
supported by L-2 cache. It should be mentioned that
other alternate cache organizations (2-way set associa-
tive cache, unified data cache augmented with victim
cache or prefetch) did not include any L-2 cache. We
compare the designs for average access times, silicon
areas and energy consumptions. For all of the bench-
marks except one, our split data caches deliver higher
performance than any of the alternate organizations
(with improvements of up to 69% in access times when
compared with that of a direct mapped cache with L-2
cache and 62% reduction in power consumption when
compared to a 2-way set associative cache). To our
knowledge the benefits of split data caches that use vic-
tim caches and/or stream buffers for embedded appli-
cations have not been reported in the literature.

5. Experimental methods

In this section we describe the experimental environ-
ment used in this study. We also define performance
metrics and power models used in our studies.

5.1. Benchmark

We use selected benchmark programs from both the
SPEC 2000 [14] and MiBench suite [12], for the first
set of comparisons shown in Section 6.1. For the
second set of experiments when we augmented array
caches with stream buffers and scalar caches with vic-
tim caches, we only used MiBench benchmark pro-
grams. MiBench includes benchmarks from several
representative embedded application domains. For our
purpose we included selected programs from these ap-
plication domains: (1) Automotive and Industrial Con-
trol, (2) Office Automation, (3) Networking, (4) Secu-
rity, (5) Consumer and (6) Telecommunications. The
descriptions of the benchmarks used in our studies are
listed in Table 1.
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Table 1
Descriptions of benchmarks used in the experiment

Benchmark Family Benchmark name Description Name in figure

Mibench Network Suit dijkstra Shortest path problem dk
Mibench Telecommunication Suit rawcaudio Voice Encoding rw
Mibench Automotive Suit bit counts Test bit manipulation ability of a processor bc
Mibench Automotive Suit qsort Sorts a large array of strings using quick sort qs
Mibench Office Suit ispell Fast spelling checker is
Mibench Security Suit blow fish Encryption/decription bf
Mibench Consumer Suit cjpeg Image compression cj
SPECfp2000 179.art ImageRecognition/Neural networks ar
SPECfp2000 188.ammp Computational Chemistry am
SPECfp2000 177.mesa 3-D Graphics Library me

Table 2
Configuration of Memory hierarchies of different cache types

Scalar cache configuration Size – 512 bytes, Block size – 32bytes, Associativity – Direct mapped
Array cache configuration Size – 4 k, Block size – 32bytes, Associativity – Direct mapped
Scalar Victim configuration Size – 256 bytes, Block size – 32bytes, Associativity – Fully associative, Replacement policy – LRU, non

swapping
Stream buffer configuration Total Size – 128 bytes, Block size – 32bytes, Number of Buffer – 2
Direct-mapped Level 1 cache Size – 8 k, Block size – 32bytes, Associativity – Direct mapped
Direct-mapped Level 2 cache Size – 32 k, Block size – 32bytes, Associativity – Direct mapped
Victim cache configuration Main cache Size – 8k, Block size – 32bytes, Associativity – Direct mapped
Victim cache Size – 256 bytes, Block size – 32bytes, Associativity – Fully associative, Replacement policy – LRU,

swapping
Prefetching cache configuration Size – 8k, Block size – 32bytes, Associativity – Direct mapped Prefetches 2 lines

5.2. Simulation

In order to compare the various cache design alterna-
tives we developeda suite of simulators. We used trace-
driven simulations where executables are instrumented
using ATOM instrumentation and analysis functions;
the traces collected by the instrumented programs are
fed to the cache simulators to compute cache hits and
misses [8]. We mark traces as array accesses and scalar
accesses. For our purpose in this study, we identified
array references by assuming that such references in-
volve some form of indexing. Our ATOM analysis
program track indexes so that any data item that uses
an index will be marked as an array reference. While
we cannot assure that all array data items are captured
by our method, our analyses for selected sample pro-
grams show that most of the array data items (better
than 99%) have been correctly identified. In an actual
implementation of split caches, compile time analyses
can be used to separate array and scalar data references.
By using different instructions (e.g., ArrayLoad and
Array Store, Load and Store) data can be directed to ar-
ray and scalar caches. A similar approach was used in
dataflow architectures. Table 2 lists the various archi-
tectural parameters for each cache configuration used
in our studies.

5.3. Evaluation framework

In this section we define the four performance met-
rics used in our comparisons: miss rate, silicon real-
estate area, access time, and power consumption.

5.3.1. Miss rate
Miss rate is the percentage of cache accesses that are

not found in the cache. Reducing miss rate can lead
to improved access times, although miss penalties also
affect access times. Energy consumed by an application
is also affected by miss rates.

5.3.2. Access time
Memory access time is the average number of cycles

required to successfully access a referenced address.
We use CACTI [37] using a 0.8 micron technology to
compute access times for cache hits. The equations for
different cache configurations are included in Table 3.
This metric proves useful in evaluating the performance
of a cache scheme because, although a particular cache
design may demonstrate lower miss rates, the lower
miss rates may have been achieved at the expense of
the hit access times. For example a cache with higher
associativity can have lower miss rates than a direct-
mapped cache,but an associative cache will have longer
access times.
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Table 3
Timing equations used to compare performance

Cache name Equation to compute the Access Time
Direct-mapped cache with L2 cache ((Level 1 Hit*HAT)+ (Level 2 Hit*(Level 1 FTM+ (4*HAT))) + (Miss*(Level 1 FTM+ Level 2

FTM + OAT)))
Direct-mapped and victim cache ((Hit*HAT)+ ((Victim cache Hit*(FTM+ Victim cache HAT+ Victim cache SW))+ (Miss*(FTM

+ Victim cache FTM+ MSW + OAT)))
Prefetching cache ((Hit * HAT)+ (Miss*(FTM + OAT + EWP)))
Array cache with stream buffer ((Hit*HAT)+ (Stream buffer Hit*(Array cache FTM+ Stream buffer HAT))+ (Miss*(Array cache

FTM + Stream buffer FTM+ OAT + replacement cost+ (2*EWP)1

Scalar cache with victim cache ((Hit * HAT)+ ((Victim cache Hit*(Scalar cache FTM+ Victim cache HAT)+ (Miss * (Scalar
cache FTM+ Victim Cache FTM+ MSW + OAT)))2

1In any miss writing in array cache is accompanied by writing two lines in a Stream Buffer.
2In our Victim cache we do not swap lines on hit.

Table 4
Power consumption equations used to compare performance

Cache name Equation to compute the Power Consumption

Direct-mapped cache with level two cache ((Level 1 Hit*PCR)+ (Level 2 Hit*(Level 1 FTM+ PCR))+ (Miss * (Level 1 FTM+ Level
2 FTM + OPC+ PCW)))

Direct-mapped and victim cache ((Hit*PCR)+ ((Victim cache Hit*(FTM + Victim cache PCR+ Victim cache SW PC))+
(Miss *(FTM + Victim cache FTM+ MSW PC+ OPC+PCW)))

Prefetching cache ((Hit * PCR)+ (Miss * (FTM + OPC+PCW+ EWP PC)))
Array cache with stream buffer ((Hit * PCR)+ (Stream buffer Hit*(Array cache FTM+ SB PCR))+ (Miss*(Array cache

FTM + Stream buffer FTM+ OPC+ PCW+ (2*EWP PC))))
Scalar cache with victim cache ((Hit * PCR)+ ((Victim cache Hit * (Scalar cache FTM+

Victim cache PCR)+ (Miss*(Scalar cache FTM+ Victim cache FTM+ OPC+ PCW)))

5.3.3. Area consumption
Our performance evaluation also includes silicon

area needed for cache systems, because embedded sys-
tems designers are interested not only in the perfor-
mance but also in better use of silicon area. We
use CACTI [37] for computing silicon areas need by
caches.

5.3.4. Power consumption
We also use energy consumed by an application in

our experimental evaluations. We include energy con-
sumed due to misses and off-chip accesses. Our analy-
ses have used the following general equations to com-
pute the dynamic power consumption for a cache.

power = Hit ∗ power hit + Miss

∗power miss

power miss = OPC + PCW + FTM

We obtain values forhits andmissesfor the various
caches by executing benchmark programs. Power hit
is the power consumed when accessing the cache (com-
puted using CACTI [37]). Different cache structures
show differentpowerhit values depending on the cache
type, size, and hit type of each access. In Table 4,
we describe the equations used to computepowerfor
the different cache types. ThePCW is the power

consumed to write an entire line to the cache, which
is computed using CACTI [37]. OPC is the power
needed for off-chip access and calculated as0.5 *
Vdd2* (0.5 *Wdata+Waddr)) * 20pF [19–21,37],where
Wdata andWaddr are the number of bits for both data
sent/returned and the addresses sent to the next lower
level of memory on a miss request. On any miss, FTM
includes the overhead for searching a cache. All the
terms used in Tables 3 and 4 are defined in Table 5.

6. Results

The next two subsections present the results of our
study. In the first section we show the results for our
split data cache. The second section shows the results
for our split caches that are augmented by a victim
cache and stream buffers.

6.1. Evaluation of split data caches

Since our goal is to evaluate the benefits of a split
cache, we do not include data that compares the sili-
con areas needed by the alternate cache organizations.
For the study reported in this section we compare our
split cache organization (with an array and a scalar
cache) with a direct mapped cache, a conventional 2-
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Table 5
Definition of terms used in timing and power consumption equations

Abbreviation Term Definition

HAT Hit Access Time Time to read a cache line in case of hit
FTM First Time Miss Time overhead to search in case of miss
OAT Off-chip Access Time Time to get data from next memory level
SW Swap Time Time to swap line for victim cache hit
MSW Miss Swap Time Time to swap line for victim cache miss
EWP Extra Write for Prefetching Time to prefetch for stream buffer or prefetching cache
PC Power Consumption Power Consumption for any activity
PCR Power Consumption to Read Power Consumption to read a cache line in case of hit
PCW Power Consumption to Write Power Consumption to write a cache line in case of miss
OPC Off-chip Power Consumption Power Consumption to get data from next memory level
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Fig. 1. Comparison of the Miss rate of split data cache with traditional cache architectures.

way set associative cache, a directed mapped cache
that uses prefetching and a direct mapped cache that is
augmented by a victim cache.

In Fig. 1, weighted effective miss rates for our
method are compared with the miss rates of different
conventional cache architectures. Since we use two
separate caches (an array and a scalar), the effective
miss rate is given by,

Effective miss rate= Array miss rate *(Number of
Array references/Number of total references) + Scalar
miss rate * (Number of Scalarreferences/Number of
total references)

For the benchmark “bit counts” (bc) although our
split data caches have lower miss rates than other cache
configurations, the miss rates are for all cache organi-
zations are very small (compared to other benchmarks)
to be visible in the figure. In Figs 2 and 3 we com-
pare our split data cache organization with other cache
organizations in term of access times and power con-
sumptions, respectively. In these figures we show the
percentage improvement resulting from our approach
when compared to other organizations. In other words,
these figures show the relative advantage of using sep-
arate array and scalar cache. In each figure, we also

include the average benefits accumulated over all the
selected benchmarks. Both figures show that the split
data cache organization has led to a significant reduc-
tion in access time and power consumption. For exam-
ple, for benchmark “art” our split cache achieved more
than 60% reduction in access time when compared with
a direct mapped cache augmented with a victim cache.
For benchmark “bf” our split data cache shows more
than 60% reduction in power consumed when com-
pared with a 2-way set associative cache. The average
across all benchmarks shown in the figures indicate a
23% reduction in access times when compared to direct
mapped cache, 21% when compared to 2-way set as-
sociative cache, 32% when compared to direct mapped
cache with a victim cache and 31% when compared
to direct mapped cache with prefetching. Likewise, in
terms of power consumption our cache shows reduc-
tions of 27% when compared to direct mapped cache,
26% when compared to 2-way set associative cache,
23% when compared to direct mapped cache with a vic-
tim cache and 35% when compared to direct mapped
cache with prefetching.
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Fig. 2. Percentage improvement in Access time by using the split data cache.

0

10

20

30

40

50

60

70

ar               am              me           bf              bc            cj 
avg

P
er

ce
nt

ag
e 

im
pr

ov
em

en
t 

in
 p

ow
er

 
co

ns
um

pt
io

n DM

2-way

Victim cache

Prefetch

Fig. 3. Percentage improvement in Power Consumption by using the split data cache.

6.2. Generalization of Split caches with victim cache
and stream buffer

In this section we present the experimental results
of our split caches augmented by a victim cache and
stream buffers. Since access time and power consump-
tion are more important than the miss rate for embedded
systems (and since we are actually using the miss rate
to compute both access time and power consumption),
in this section our evaluation compares cache designs
for three metrics: cache area, access time, and power
consumption.

In Fig. 4, we show the percentage improvement in sil-
icon area (reduction in area) achieved by our cache or-
ganization when compared to the area needed by other
cache organizations. It should be mentioned that the
silicon area required depends only on the cache design
and does not depend on the actual application. The
Y-axis shows the percentage improvements (i.e., reduc-
tion in silicon area) exhibited by our cache design. For
example, our cache organization shows an 80% reduc-

tion in the area when compared to a unified 8k direct-
mapped cache with a 32 k L2 cache; 43% reduction
when compared to a unified 8 k 2-way set-associative
cache without an L2 cache. It should be noted that
our cache organization does not include an L2 cache.
Figure 4 clearly shows that our cache architecture con-
sistently requires smaller silicon area when compared
to the other cache organizations.

In Fig. 5 we compare our cache organization with
other cache organizations in term of access times. In
this figure we show the percentage reduction in access
times resulting from our cache system when compared
to the access times for alternate organizations. Our
organization shows faster access times over all other
cache designs across all of the benchmarks. For ex-
ample, for benchmark “qsort” our split cache achieves
more than 69% reduction in access times when com-
pared with an 8 k direct mapped cache using 32 k L-2
cache. In this figure we also include the average reduc-
tions accumulated across all benchmarks. Our cache
design improves in average by 39% when compared
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Fig. 4. Percentage improvement in area consumption by using the integrated approach.

to a direct mapped cache with L2 cache, 27% when
compared to a 2-way set associative cache, 27% when
compared to a direct mapped cache with a victim cache,
and 43% when compared to a direct mapped cache with
prefetching.

The percentage improvements in power consump-
tion achieved by our design when compared to other
cache organizations are plotted in Fig. 6. The figure
shows that our split data caches result in a significant
energy savings for all benchmarks except “ispell”. This
benchmark is a spelling checker and contains more
scalar data items than array data. As a result, our tiny
512-byte scalar cache is too small for accommodating
the needs of the benchmark, leading to more cache
misses that must be satisfied by longer accesses paths
to main memory, which in turns leads to higher energy
consumption. Note that we do not have L-2 cache,
thus all L-1 misses must be satisfied by access to main
memory. It would have been beneficial if the space
used by the array cache were reconfigured to support
scalar data for this application. However, this will add
to the complexity of the organization, in terms dynamic
reconfiguration of the cache.

For streaming benchmarks “rawcaudio” and “bit
counts” our approach achieves more than 60% energy
reduction when compared with a conventional 8 k 2-
way set associative cache configuration. The average
reductions over all benchmarks are also included in
the figure. The average across the benchmarks show
that our cache reduces the power consumption by 25%
when compared to a direct mapped cache with a level 2
cache, 24% when compared to a 2-way set associative
cache, 21% when compared to a direct mapped cache
with a victim cache and 38% when compared to a direct
mapped cache with prefetching.

7. Related work

We group the related research into those that are
related to the using a single data cache, and those that
are related to split data caches.

8. Optimizations of unified data caches

The exploitation of various cache parameters such
as associativity and block sizes offer the most common
approaches to improve cache performance for desktop
systems [34]. Following this approach, Givargis, et
al. have explored the effects of cache size, block size
and associativity on the cache performance in embed-
ded systems [9]. Another common practice in desktop
application includes additional cache hierarchies [4],
which is becoming more common for even embedded
systems [2,11]. For desktop applications, other cache
performance improvement techniques include augmen-
tation of a cache with additional structures and hard-
ware prefetching. Jouppi [18] originally proposed com-
plementing a direct mapped cache with an additional
victim cache and stream buffers. Vahid, et al. [40] ex-
plore the role of victim caches in embedded systems.
They conclude that because of its high energy required,
victim caches do not offer a good option for embed-
ded systems. Data prefetching, has long been known
to significantly decrease cache miss latency and both
hardware and software prefetching approaches have
been studied extensively for desktop applications [3,
26]. However, they have not extensively been inves-
tigated for embedded systems because designers be-
lieve that they add to the embedded processors’ energy
requirements [13].
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8.1. Different cache splitting techniques

The use of split caches has been investigated for
desktop applications. Gonzalez, et al. [10,33] propose
a dual data cache consisting of both a fully associative
buffer called a temporal module along with a direct-
mapped cache called a spatial module. At compile
time, memory references are tagged as bypass, spa-
tial, or temporal, and directed to appropriate modules.
Tomasko, et al propose a separate array and a scalar
cache and explore the effects of cache parameters [35].
In STS (Split Temporal/Spatial) cache, proposed by
Milutinovic, et al. [27] the temporal part is organized as
a two-level hierarchy with one-word block size while
the spatial part is organized as a one-level cache with
four word blocks (128 bit blocks), assisted by a hard-
ware prefetching mechanism. In a later study, Miluti-
novic, et al. [28] propose a split cache design called the
Split Spatial/Non-Spatial cache (SS/NS) which uses a
flag-based method for detecting data references to ap-

propriate caches. The NTS (Non-Temporal Stream-
ing) cache proposed by Rivers and Davidson [32] dy-
namically detects temporal (T) and non-temporal (NT)
data references and caches them separately. Their NTS
cache system includes a non-temporal detection unit
(NTDU) to monitor the reuse behavior of the blocks.
There have been other studies of split caches [23–25].
Unsal et al. [36] propose minimax cache which has a
2-way set associative cache for non scalar data while
the scalar data is directed to a 512 byte fully asso-
ciative mini-cache. Intel’s StrongARM SA-1110 [2,
15], a low-power processor for embedded system, has
a 8k data cache with 32-way set associativity and a
512 byte fully associative mini-data-cache to enhance
performance when dealing with temporal references.

Our proposed integrated cache differs from these
split caches in three ways. First, our proposed cache is
augmented by a victim cache and stream buffers while
the others are not. Second, unlike the other reported
studies (except minimax cache),we performed analyses
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not only with miss rates but also on power consumption
and access times. Finally, all of these caches except
minimax cache (they used only selective multimedia
benchmarks) and StrongARM, were investigated for
desktop applications and not embedded applications.

9. Conclusion

In this paper we have shown that when carefully
designed, embedded systems can benefit significantly
from small split caches. Our proposed integrated
method permits a systematic trade-off between memory
size, power and performance, which has up to now, not
been feasible for embedded systems. Our approach can
significantly reduce the power consumed as well as the
memory size while providing better performance (by
reducing execution time) – compared to the same appli-
cations executing with conventional direct-mapped or
set associative caches. We have shown that by separat-
ing data accesses into scalar and array (or stream) refer-
ences, one can eliminate conflicts between these com-
peting locality types. This, in turn, allows us to reduce
total cache size. A smaller (combined) cache leads to
smaller footprints and reduced power requirements.

The most significant achievement is the ability to
include prefetching and victim caching into embedded
systems. As mentioned earlier, because of their high
energy requirements, victim caches and prefetching are
seldom used in embedded systems. Our experimental
data using a unified direct-mapped data cache with a
victim cache and a unified direct-mapped data cache
with stream buffers do support this assertion. How-
ever in this paper we show that a split-data organiza-
tion with very small scalar and array caches can bene-
fit significantly from victim caches and stream buffers.
While traditional prefetching techniques have been ex-
plored [3], (premature) prefetching can adversely af-
fect performance if it leads to cache pollution by dis-
placing needed data in an untimely manner. This is the
primary reason for not using pre-fetching in embedded
systems. However we show that a carefully designed
cache system not only solves the deficiencies of gen-
eral prefetching, it also solves the problems of stream
buffers. Jouppi’s analysis [18] included a stream buffer
for a unified data cache, and the buffer was flushed ev-
ery time a scalar data is accessed (since stream buffers
assume contiguous data items). In our study because
we are removing the contaminating scalar data from
array caches, stream buffer associated with the ar-
ray cache are flushed less frequently. Likewise vic-

tim caches are not popular in embedded system be-
cause fully associative victim cache consumes signif-
icant amounts of energy. Again, we show that care-
fully designed cache systems can benefit from victim
caches while maintaining low energy requirements. In
a split cache organization, as the array references are
removed from the scalar cache, the victim cache only
has to deal with fewer scalar references. In our study
the reduced costs of using non-swapping victim cache
that augments our tiny scalar cache (of 512 bytes) allow
us to achieve up to 30% reduction in power consump-
tion when compared with a traditional unified caches
with victim caches. Our proposed integrated cache per-
forms better than larger unified caches using additional
levels of cache hierarchy (such a large L-2 cache). Ide-
ally, the split cache organization should be dynamically
reconfigurable to meet the application requirements.
For example for applications that have very little array
or stream references, the array cache should be used
to supplement the scalar data cache. However, such
dynamic reconfigurations require additional hardware.
We will investigate the trade-offs and reconfiguration
options in our future work.
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