Submitted Aug 18, 2003 Informatica Jr. (ISSN 0350-5596) published by Slovene Society Informatika (http://ai.ijs.si/informatica/)

Multi-Agent System Case Studies in Command and Control,
Information Fusion and Data Management !

Frederick Sheldonl, Thomas Potok' and Krishna Kavi’

'Oak Ridge National Laboratory
Computational Sciences and Engineering
Oak Ridge, Tennessee 37831-6363
Phone: 865-576-1339/ Fax: 865-241-6275
SheldonFT | PotokTE@ornl.gov

Abstract

On the basis of three different agent-based development
projects, we assess the fitness of software (SW) agent-
based systems (ABS) in various application settings: (1)
distributed command and control (DCC) in fault-tolerant,
safety-critical responsive decision networks, (2) agents
discovering knowledge an open and changing environment,
and (3) light weight distributed data management (DM) for
analyzing massive scientific data sets. We characterize the
fundamental commonalities and benefits of ABSs in light
of our experiences in deploying the different applications.
Key Words: Intelligent software agents, ontology,
information fusion, collaborative decision support.

1 Introduction

Systems whose information-processing structures are fully
programmed are difficult to design/evolve for all but the
simplest kinds of applications. Changing and dynamic open
environments will characterize future real-world software
application context. Such systems must be able to modify
their behavior by changing their information-procession
structures [1]. Software agents (SAs) are the latest
advancement in the trend toward small modular pieces of
code where each module performs a well-defined, focused
task or set of tasks. Programmed to interact with and
provide services to other agents, including humans, SAs
autonomously with prescribed backgrounds, beliefs and
operations. Systems of agents can access and manipulate
heterogenecous data such as information available on the
Internet [2]. Not all agent systems have to have the above
properties but any agent-based paradigm must have the
ability to engender agents with some or all of the
aforementioned properties.

1.1 Agent Technology, Maturation & Evolution

SW development methods have been transformed over the
years from structured analysis methods, where processing
and data were kept separate [3], to Object-oriented (OO)
methods, where processing and data are combined into SW
entities called objects [4, 5] (§1.6-1.7). Object technology

*Department of Computer Science
The University of North Texas P.O. Box 311366
Denton, Texas 76203
Phone: 940-565-2767 / Fax; 940-565-2799
Kavi@cs.unt.edu

was further enhanced with distributed capabilities,
allowing an object on one system to communicate with
objects on other systems [6]. Objects may be transmitted
across a trusted network and executed on another
computer, commonly known as mobile code [7].

Furthermore, component-based software development
(CBSD) can be viewed as a similar evolutionary trend,
which differs from traditional software development. For
example, CBSD includes activities selection and creation
of SW architectures, as well as the customization of
components, while implementation deals with component
integration. Typically, this process involves developing
wrappers that bond reusable components into a cohesive
system rather than extensive coding “from scratch”
construction. Indeed, developers must architect/design
extensibility into a system and all of its parts to make
components independently producible and deployable. SAs
offer a great deal of flexibility and adaptability within this
context. Agent-oriented SE provides developer’s high-level
flexible abstractions from which to represent and
conceptualize distributed application systems (e.g.,
delegation of information search, analysis, negotiation and
presentation).

SA systems, to some degree, are characterized by
being persistent, mobile, knowledgeable, adaptable,
autonomous and collaborative, which facilitates the
building and evolving of software systems as technologies
and requirements change [8]. Developers use increasingly
pervasive message-based middleware and component
technologies, Java, Extensible Markup Language, and the
Hypertext Transfer Protocol to create agent-based software
systems. Mobile appliance-oriented application servers and
portal technologies based on these technologies provide a
basis for more robust agent-oriented systems. These
technologies will make the use of mobile appliances,
adaptive content, and SAs quicker and easier.

1.2 Distributed Computing

Distributed or ubiquitous computing envisions devices
ranging from super computers to nanoscale CPUs acting in

*This manuscript has been authored by UT-Battelle, a contractor of the U.S. Government (USG) under Department of Energy (DOE) Contract DE-AC05-000R22725. The
USG retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

concert to solve problems. Current distributed computing
approaches include the Common Object Request Broker
Architecture (CORBA), the Distributed Component Object
Model (DCOM), and Remote Method Invocation (RMI)
Each provides a way of executing a SW function needed by
one computer on a different computer. Remote execution
places a number of constraints on the SW. For example,
assume that a source object (e.g., program or function) is
attempting to execute some function on a target object; the
source object must have the capability to resolve the
network and computer memory address of the target object.
Next, the source object must have detailed prior knowledge
of the functions (methods) and parameters available on the
target object, as well as return information. There are also
assumptions that these remote functions will be accessed
synchronously and that the network connections are
available and permanent. If any of these assumptions does
not hold, then these distributed interactions will fail [9].

1.3 Agent infrastructure

The dynamic interaction of multiple SAs requires an
architecture that supports “our definition” of an agent (i.e.,
is a program P, written in a language 1, P, an agent?), what
underlying infrastructure is needed to support agents to
interact effectively, and how the agents will utilize the
infrastructure to interact. The Oak Ridge Mobile Agent
Community (ORMAC) is a communication/mobility
framework developed over the course of several agent-
based research projects. ORMAC is generic framework
providing transparent agent communication and mobility
across Internet connected hosts (Fig. 1). This architecture
enables an agent community to be quickly created using a
set of machines with each machine executing the ORMAC
agent host software (SW): (1) SAs migrate among
machines as necessary to facilitate communication among
agents within the community, and (2) ORMAC SAs can
also interact with systems and agents that are not part of
the community. Internet mobility is very limited based on
enforced Internet security/firewall constraints. ORMAC
uses the Foundation for Intelligent Physical Agent (FIPA)
compliant agent communication language (ACL)
messages. Any FIPA compliant agent can interact with an
ORMAC agent [10, 11]. Within an ORMAC community,
each agent host has a name server responsible for tracking
where agents are currently hosted. In addition, the name
server is responsible for answering queries from agents
trying to locate other agents in the community. For
example, an agent may want to broadcast information to all
agents within the community. The name server for each
agent host is used to locate all such agents for delivery of
said message(s).

Agents migrate among machines by changing agent
hosts. When an agent is received at an agent host, the agent
host provides it with an agent context. This agent context
is the agent’s only point of contact with the machine it is
running on and provides machine specific environments for
the agent to work. The agent is not allowed to directly

communicate with the agent host or other agents. This
provides an architectural layer for security in the ORMAC
system (written in JAVA, ORMAC uses Remote Method
Invocation (RMI) to communicate among agents).

1.4 Heterogeneous agent interoperability

Ontology-based thesauri have been an important part of
research in Natural Language Processing. As the need for
distributed software configurations has risen, Ontologies
have become increasingly important. Ontologies have
evolved as a convenient way to permit agents using diverse
vocabularies to specify common concepts. There are two
main approaches (1) creating a large general ontology, or
(2) many domain-specific ontologies. Most ontologies or
thesauri are constructed manually, however, methods have
been developed for automated construction of such [2]. In
our Virtual Information Processing Agent Research
(VIPAR) case study, agents use a flexible RDF (Resource
Description Framework) ontology to transform
heterogeneous HTML documents to XML tagged
documents, and their ability to rapidly cluster newspaper
articles that arrive in an asynchronous manner.

Agents move from one machine to another by
changing agent hosts. The ontologies move with the
agents. When an agent is received at an agent host, the
agent host provides it with an agent context. This agent
context is the agent’s only point of contact with the
machine it is running on and provides machine specific
environments for the agent to work. The agent is not
allowed to directly communicate with the agent host or
other agents. This provides an architectural layer for
security in the ORMAC system (written in JAVA,
ORMAC uses Remote Method Invocation (RMI) to
communicate among agents).

15

Agent-based architectures provide several advantages over
OO technologies where objects communicate through
messages. The sender object must know the address of the

Independent asynchronous communication

Agent Context Agent Context
Ontology | | Ontology 14 I»| Ontology | | Ontology
Agent A | | AgentF « I» AgentG | | AgentZ

Ty vy
; :

Agent Host Agent Host
Agent Context ID Agent Context ID
Agent ID Agent ID
Machine X Machine Y

-4 > Mobility Path <——® Communication path

Fig. 1 ORMAC mobility-communication architecture.

receiver object (i.e., public methods). In contrast, the
ORMAC framework imposes a communication protocol
that allows messages to be sent without having to know the
specific address/method(s) of the recipient [12]. This
allows agents to migrate among host and still be in
connected with other agents via direct or broadcast requests
to any number of other agents. ORMAC provides the
ability to use an ontology to direct agents through a task.
An ontology can act as a script, or rule base for an agent to
follow. This difference is perhaps more conceptual than
practical because there currently is very little ontology
standardization. For example, in our information fusion
case study, an RDF ontology is used to describe the
characteristics of each Internet newspaper within the
system while agents use the ontology to correctly interpret
and retrieve the appropriate information (see 2.2).

Furthermore, agents can suspend processing on one
machine, move to another, and resume processing. In this
way, the possibility exists to prioritize agents (tasks) by
sending high priority agents to faster resources, and for
example, load balance a system depending on the workload
of each agent. The priority and/or allocation of agents can
be determined cooperatively thereby preempting the need
for global scheduling (to avert single-point-failure risk).

1.6 Agents cognitive development framework

Kavi, et. al. [13, 14] present a framework for modeling,
analysis and construction of agent-based systems. The
framework is rooted in the Belief Desire Intention (BDI)
formalism and extends the Unified Modeling Language
(UML) to model MAS. Several modeling constructs are
introduced including Agent, Belief, Goal, Plan, FIPA
Performative, KQML-Performative, and Blackboard. In
addition, the following diagrammatic constructs are
introduced: Agent Goal Diagram to model the relationships
between the goals and the environment of an agent; Use
Case Goal Diagram to model the relationships between use
cases and goals; Agent Domain Model to facilitate
understanding of domain knowledge of an agent; Agent
Sequence Diagram to model interactions within an agent.
Similarly, Agent Activity Diagram and Agent Statechart
Diagram are introduced. The framework is illustrated by an
agent-based intelligent elevator system.

The framework is based on extensions to UML to
support multi-agent systems (MAS) development. Their
approach is rooted in the BDI formalism [15], but stresses
practical software design methods instead of reasoning
theories. In particular, we propose to extend UML with
modeling constructs called Agent, Belief, Goal, Plan, FIPA
Performative, KOML Performative, and Blackboard. Agent
is the super-type for all agent types. Belief, Goal and Plan
model the reactive and proactive behaviors of agents. An
agent has, among other data types, a collection of beliefs,
goals and plans. Beliefs are the agent’s observations and/or
sensing of the environment and are updated by sensors or
other agents. Changes in an agent’s beliefs trigger the re-
evaluation of the utility values of goals of the agent.

Changes to goals’ utility values result in pre-empting some
plans and initiating new plans. Execution of plans affects
the environment, which in turn changes the beliefs, and so
on. Agents communicate with each other through agent
communication performatives such as FIPA or KQML, or
shared blackboards as in Linda or its extensions. In the
conceptual model of our framework the Agent Goal
Diagram (AGD) is introduced to model the relationships
between the goals and the environment, the Use Case Goal
Diagram (UCGD) to relate use cases and goals, Agent
Domain Model (ADM) to facilitate understanding of agent
domain knowledge, Agent Sequence Diagram (ASD) to
model interactions within an agent. Similarly, Agent
Activity Diagram and Agent Statechart Diagram are
introduced.

1.7 Integration of Mobile Agents/Genetic Algorithms

Papavassiliou et. al. [16], present an agent based approach
for building a framework where resource allocation is
provided under the control of different and often-
competing stakeholders (users, network providers, service
providers, etc.). They describe the efficient integration and
adoption of mobile agents and genetic algorithms in the
implementation of an effective strategy for the
development of effective market based routes for brokering
purposes (i.e., in the future multi-operator network
marketplace). The agent based network management
approach represents an underlying framework and structure
for the multi-operator network model, and can be used to
collect all the required management data. The proposed
genetic algorithm provides a kind of stochastic search for
optimal resource allocation strategies. [16]

Agent programming was developed in the distributed
programming field as a flexible and complementary way of
managing resources of a distributed system. Distributing
intelligence across the network allows the fast exploitation
of advanced services that dynamically adapt to the user’s
requirements. User requirements are automatically
translated into network requirements, and this implicitly
assumes the possibility to interact with network equipment.
For example, network providers who need application level
information to better manage their resources can better
satisfy their user needs while minimizing their costs.
Moreover, content providers can gain the knowledge of the
network resources needed by their services to be properly
accessed.

2 Case studies

2.1 Distributed command and control

ABSs are particularly suitable for satisfying both
functional and nonfunctional DCC requirements, especially
in satisfying application scalability, mobility, and security
(SMS) expectations. A general set of DCC SW
requirements (SRs) was developed based on needs aligned
with current computer science technology and inherent
limitations [12]. ABS advantages (i.e., SMS) are enabled

mainly through a stronger messaging/coordination (MC)
model; however, the impact of key DCC system/functional
requirements poses the greatest SW challenge. While
information fusion, information summary and analysis, and
decision support are only tangential to SW technology
advances (see Figure 2). Our analysis indicates six key
challenges best-addressed using agent technology to
provide:

1. Higher-level interfaces to distributed objects,

2. Asynchronous object interaction,

3. Message support for sporadic network connections,

4. Secure object communication and information system
operation,

5. Support for richer peer-to-peer programming models,

6. Accelerated SW development productivity.

ABS is an evolving paradigm that strives to create SW
that can mimic certain human behavior. Agents are
typically endowed with human-like characteristics. For
example, agents are normally considered to be
autonomous, adaptable, social, knowledgeable, mobile, and
reactive [17]. Lets consider therefore, the comparative
benefits of agent technology.

A representative agent architecture by Sycara et al.
[18] describes planning, communication and coordination,
scheduling, and execution monitoring of agent activities.
Agents’ access shared information, implemented through a
coordination model that can be both domain specific or
independent. Griss et al. [19] describes a generalized agent
architecture with facilities for locating and communicating
with mobile, disconnected agents, and for gathering
information about groups of agents. Griss’s architecture
provides services and support for mobility, security,
management, persistence, and the naming of agents.

In general, most agent architectures include support for
DCC aspects through a general MC paradigm (i.e., any
agent can communicate with one or more agents). This

SwW

Requirements

Fault Tolerance
Information
Decision Support
SW Productivity

Fusion
Information

Distributed
cmptng
Mobile Code
Analysis
Summarv

Security

SW Technology
Limitations

Higher-level
Interfaces

e
e

Asynchronous
Interaction

e

Sporadic Network
Support

Security x| X

Peer-to-peer
Models

SW Productivity X

Figure 2. A mapping of the SW requirements to the
limitations of the current SW technology

approach encapsulates messages that agents send and
receive [17]. OO methods utilize the concept of data
encapsulation, which provide for simple SW functions to
access an object’s data. These functions, not direct data
access, are responsible for data retrieval and update. This
capability limits the SW (i.e., coupling) that must change
due to nonconforming data formats, etc. The agent
paradigm extends encapsulation from data to messages sent
among agents through an agent coordination model [20].
The model defines how agents communicate among
themselves, and can be seen as coordinating
communication based on the time a message is sent
(temporal) or the names of the target agents (spatial). These
models provide the ability for communication that is
encapsulated and asynchronous with the use of
blackboards, and tuple space models and associated pattern
matching, such as Linda [21]. Agents that use a blackboard
or Linda type coordination provide a level of indirection
for agent communication (i.e., agents post messages to a
blackboard, while subscribers to the blackboard retrieve the
message). The agent that sent the message may have no
idea who actually receives it. This concept allows for
asynchronous and encapsulated communication among a
collection of connected or disconnected agents, a capability
not currently available in non-agent systems.

Messages are written in an agent control language [22]
(ACL) such as KQML or the FIPA ACL, which provide a
structured means of exchanging information and
knowledge among agents. ACLs support a higher-level
communication protocol that does not currently exist for
distributed objects. On this basis, lets consider how the
DCC concept challenges ABS SW development.

2.1.1 Higher level interfaces to distributed objects
Agent technology, based on a flexible MC scheme and
control language, (conceptually) require agents to be
connected to blackboards, not other agents[17]. The
encapsulation of messages allows for agent interfaces to
change, requiring only minor modifications to a
blackboard, not to all calling agents. This capability
provides for a more robust interface than is currently
available in distributed object systems. Moreover, ACLs
provide the ability to pass propositions, rules, actions, and
states among agents. In this way, messaging is not merely a
way of activating a function on a remote host, but provides
a way of sending information to another agent. This
information can be used to describe what requirements
need to be met for an agent to take action, what states the
sender and receiver will be in after the action takes place,
or what states the agents will be in when the overall
transaction is complete [22]. Information sent from one
agent to another may also be informative or declarative
thereby causing no agent action.

The challenge of implementing such an agent interface
is selecting both an MC architecture and an ACL.
Currently, no universally accepted MC architecture or ACL
means that for an ABS to take advantage of this high-level

interface, there must be very specific and precise
specifications on how agents will communicate (i.e., using
precise ACL syntax).

2.1.2 Asynchronous object interaction

Griss et al. [19] points out that ABS typically have simple
interfaces, and derive capability from loose coupling and
asynchronous messaging (i.e., messages are sent and
retrieved through a loosely coupled temporal agent
coordination model). Cabri et al. [20] reference two
coordination models that provide asynchronicity. The first
coordination model is blackboard-based and provides a
shared area where agents’ send/retrieve messages. Any
authorized agent can read messages posted to the
blackboard. Other agents determine whether to retrieve the
message based on the sending agent’s identifier and
therefore knowledge of the agent identifiers is required.
The second is based on the Linda coordination model,
which defines a messaging protocol, made up of a tuple of
information (e.g., a tuple may include the data format, the
date of creation, the classification, or a list of keywords).
These tuples are placed in a shared area, such as a
blackboard. Agents access these messages, not based on
agent identifiers, but on a query of the tuple information,
(i.e., an agent may retrieve all messages created yesterday
with the “Taliban” keyword). This model is asynchronous,
and does not require knowledge of the agent identifier.

Both model types are mature and widely used. They
provide needed asynchronous behavior but suffer from
single-point failure outages. Thus, a single blackboard
ABS is exposed to security and performance failures and
requires multiple blackboards to provide fault tolerance.

2.1.3 Message support for sporadic networks

One main advantage that ABS provide is flexibility (i.e.,
ability for agents to change location) along with
communication path redundancy. Vogler et al. [23]
propose a distributed transaction model using a two-phase
commit protocol to verify message delivery. The model
must support storage of undelivered messages within the
agent, or support the ability to rollback the transaction, if
synchronous transactions are required. If a transaction has
not completed, then various network/graph theory
algorithms can be used to determine a viable path prior to
reattempting the transaction. Alternatively, agents can
move to another location and try again. If a physical path
cannot be found then the transaction is not possible.

Both messaging and mobility can be effectively used
to communicate over a sporadic network; however, if the
network degrades too much, communication becomes
infeasible. Distributed transaction protocols are very useful
for verifying the success of transactions, and can be used to
ensure network security with the caveat that this capability
will limit overall system response time.

2.1.4 Secure communication operations

As Abadi [24] notes, it is practically impossible to
construct a truly secure information system.
Communications are secure if transmitted messages can be

neither affected nor understood by an adversary; likewise,
information operations are secure if information cannot be
damaged, destroyed, or acquired by an adversary.

Security in a distributed system can be enforced
through system wide policies, which are often static, and
difficult to modify and enforce [25] ABS can enforce a
security policy defining what must be done and what must
not be done when information is moved, stored, created, or
destroyed. ABS provide multiple, standalone, persistent
processes that can act at high speeds to ensure that all rules
are always followed. Encapsulated instructions concerning
what actions to take under what circumstances enables
agents to execute very complex operations, enabling
participation in complex collaborative security protocols
(e.g., key updating/multiparty authorization).

2.1.5 Peer-to-peer programming models

Fortunately, through the use of blackboard and Linda type
coordination models, the programming model of agents can
be very general. Any number of agents can send messages
to one or many blackboard(s), and any number of agents
can receive messages from one or many blackboard(s).
Virtually any topology can be created which allows for
very broad scalability of the network. Care must be taken
in defining the bandwidth, messaging rates, and processing
requirements and will require tuning to enhance fault
tolerance and performance.

2.1.6 Increasing SW development productivity

There are indications that agent technology may provide
some SW development productivity improvement [19].
While there exists no empirical evidence to support this,
the theory claims that ABS increase the level of SW reuse.
Agents are SW components that have their messaging,
functionality, and location encapsulated thus increasing
productivity. Likewise, if standard MC protocols and
ACLs can be defined, the agent development teams may
require less communication overhead because the
interfaces are far richer than with traditional programming.

22

In theory, an information SA scours multiple
heterogeneous information sources to proactively acquire,
semantically understand, process and distribute information
and perform other information processing related tasks at
the behest and bidding of a specified user. This technology
focuses on obtaining a battery of semantic insights from
the information-glut/overload that we now face and
delivering this semantically digested information in an easy
to use/navigate interface.

One so-called Digital Assistant (DA) ABS offers a
variety of information gathering/management and
processing features where you can: (1) set up a personal
watch-list for companies, news and keywords; (2) monitor
various online newsgroups and topics of interest; (3)
monitor what companies and topics are favored by media;
(4) track regular financial data to get a statistical sense of
bullish/bearish Sentiment in the market. Results are made

Information fusion

available in a decision-ready format (tabular and
statistically aggregated percentages) with the flexibility of
setting up an email alert containing the digest [26, 27].

The most advanced feature of the DA is an attempt to
gauge investor sentiment from various online message
boards in the form of an Opinion Rating. Various public
message boards are scoured to understand what investors
are saying about the companies and based on a semantic
understanding of these messages a quantitative Public
Opinion index is formed (assessing the opinion-pulse in the
stock markets). Future enhancements could include a news
opinion engine that will (at the aggregate level) understand
what people are saying about a company or how the media
is profiling a particular company as well as the ability to
query the DA through email. Such enhancements could
provide insights into when and by how much market
psychology, herd mentality and media exposure has an
impact on a stock's price.

The VIPAR project/tool employs ABS technology 1)
to utilize the ability for broadcast and peer-to-peer
communication among agents, 2) to follow rules outlined
in an ontology, and 3) provide persistence (because of the
ability for agents to suspend processing on one machine,
move to another, and resume processing). These strengths
are combined for the purpose of providing an Internet-
based DA to support aspects of intelligence, surveillance,
and reconnaissance (ISR) in multiple languages[28].

2.2.1 Background
Detailed analysis of large collections of heterogeneous
unstructured information is an obvious ISR need”. The
problem can be viewed in two parts, first how to gather and
structure information, and second how to organize and
classify information.

2.2.2 Approach

Two broad approaches exist to efficiently gathering and
structuring frequently changing heterogeneous Internet
accessible information. First, we could obviously use
Internet search engines (ISE), which (typically) use
programs that recursively traverse links, capturing non-
trivial terms on each page. Pages are organized based on
the relevance of encountered terms enabling a wide variety
and number of documents to be categorized according to
relevance and made available for further refined
searches/reorganization.

ISE weaknesses include 1) existing pages in the
system are infrequently re-traversed tending to make the
information stale, 2) the Internet pages have no consistent
format, and therefore, the semantic content of a page
cannot be easily discerned, 3) the documents are organized
based solely on the presence of a keyword in a document
(regardless of other attributes like timeliness).

Alternatively, the second approach gathers and

? Virtual Information Center (VIC) at US Pacific Command, gathers,
analyzes, and summarizes information from Internet-based newspapers on
a daily basis (a manual, time and resource intensive process).

structures Internet information using agents. The agents
provide various ways to retrieve and organize information,
including agents that are capable to access multiple
sources, and to filter based on the relevance to the user [18,
29]. Non-cooperating agents perform the information
retrieval task, cooperating agents organize the information
based on relevance, and finally, adaptive agents deal with
uncertain, incomplete, or vague information [30].
Additionally, transforming the inherent and chaotic
structure of newspaper articles into a common schema is a
difficult problem that must be overcome.

2.2.2.1 VIPAR: unique approach

The VIPAR server uses a set of information retrieval
agents to gather news related, non-redundant
heterogeneous information from the Internet newspapers,
and to format the information using XML (Fig. 3). A
whiteboard agent acts as an information-clearing house.
Agents submit their articles to the whiteboard agent, who
preempts/deletes duplicate articles, archives stale articles
(beyond a prescribed age), and feeds articles to agents that
have “subscribed” to the whiteboard. A team of cluster
agents organizes articles into a vector space model (VSM),
then into clusters of articles.

2.2.22 VIPAR: information agents

These agents gather and organize information through the
transformation of HTML formatted information into XML
formatted information. The conversion from HTML to
XML is a two-step process. An ontology is defined to
provide a common semantic representation and structuring
of the heterogeneous information. This ontology embodies
the transformation of HTML formatted information to
XML formatted information. This ontology is expressed in

%4—» Information Agents
Lnternet

Whiteboard Agent [« Text Analysis Agen|

||!|'\

A
‘ Agent Communities ‘

Database || Information Agems
cdtapase

Cluster Agent

CQ@”‘ Information Agents ‘
Lommunities

Multi-agent ORMAC Framework | RDF Ontologies | Java + Hava RMI | FIPAACL

Wen Ho Lee

. i \/ D 1 Wen Ho Lee Spends First Day Savoring

Home Delights
[\Wen Ho Lee

2 Clinton Calls e Case

se - Reno On
Demand White House

e Points up Scientists' Attitude on

India and Pakistan

| 6. India and Pakistan: Troubled relations

7. Troops dic in Kashmir clashes
India/Pakistan { S China Trade | = TAEA Meeting
\
[] 7 3 8. IAEA Supports Putin Nuclear Power Initiative

\
9. China Rejects Moves to Tighten Regulation of
Nuclear Materials
« U.S. China Trade
10 US. China Trade Vote Milestone on Rocky
Road

/ \\)I\AEA Meeting
/ AN
m a
Fig. 3. VIPAR architecture and end results.

an XML variant called the Resource Description
Framework (RDF, see http://www.w3.org/RDF/). The RDF
syntax allows directed graphs to be expressed in an XML-
like format. An Internet site is a collection of linked
Internet pages. A site is viewed as a directed graph and
RDF provides a way to model the linked pages.
Furthermore, our agents understand these RDF
instructions. A series of RDF ontologies have been
developed for the newspapers accessed by the VIPAR
system. Each site ontology describes a newspaper: (1)
meta-information about the newspaper, and (2) describes
site-specific agent actions (e.g., login, etc.). Based on the
ontological description of a newspaper site, the agent
monitors and manages the information at the site.

An HTML—=XML conversion is completed using the
defined ontology. An agent, using the RDF ontology, to
understand the site layout/semantics can autonomously
retrieve articles of interest, and perform the conversion into
a structured XML formatted document. Each converted
article contains a rich set of XML tags ranging from the
time and date the article was discovered, URL location, to
the XML tags that format the article. Each agent monitors
the site looking for new articles. Fresh articles are
formatted and posted to the whiteboard agent.

The ontological site description (OSD) includes a root
URL where the agent begins traversal of the site and from
which the agent resolves relative site URLs. The OSD
includes a series of regular expressions used to describe the
table-of-contents for the site. The site description includes
a series of regular expressions that describe article pages of
interest along with contextual information (i.e.,
differentiating the text of an article from the myriad of
unimportant information (boilerplate, banners, ads, etc).
Meta-information is maintained which includes the
newspaper's name and the name of the collection under
which VIPAR classifies the newspaper, as well as site-
specific actions taken by the agents (e.g., search depth limit
[hops from the root URL], minutes to wait between
rescanning for new articles, etc.).

Using the RDF ontology agents’ monitor/manage each
site. They check each link against its ontological criteria to
discriminate table-of-contents versus article pages. If an
article page of interest is found, the agent requests the
whiteboard agent verify that the article is not already
posted. If the article is not posted, the agent reads the
page, distills out clean article text (i.e., filters the raw text
from nonessential/extraneous information). The agent
marks up the clean text using XML, tagging the parts of the
article (title, author, date, location, paragraphs, etc)
depending on the site, and then posts the information to the
VIPAR whiteboard agent. The agent continues to monitor
the site, posting new information of interest as it becomes
available. The VIPAR client is also an ORMAC agent that
contains a graphical user interface. The client agent
communicates with both the whiteboard and cluster agents
to direct/refine searches and clustering.

The whiteboard agent maintains all current articles,
ensuring no duplicates, and removing articles beyond a
certain age. The cluster agent subscribes to the whiteboard
agent and thus is notified when an article is added or
removed from the whiteboard. When the cluster agent is
notified of a new article (as discussed below), it examines
the contents of the article and adjusts its search and
clustering tables appropriately. Likewise, the tables are
adjusted when the whiteboard removes an article.

2.2.2.3 VIPAR: dynamic article clustering

Two basic steps are taken to organize articles into clusters.
The first creates a VSM from the articles. The VSM
presumes that newspaper articles and their significant
terms (words) can be represented as elements of a multi-
dimensional vector space. Within this space, each
significant term is represented by a new dimension, and a
document is represented as a vector within this
multidimensional space [31]. The value of each vector
coordinate is an entropy-based function of “local” and
“global” frequencies of the word corresponding to this
dimension. The cluster agent maintains information
containing the frequency of occurrence of terms within a
document, called local term frequency, and over the entire
set of documents, called global term frequency. These
term frequency counts are then used to calculate a weight
for each term in each document, which is called the
document term weighting.

The second step creates a similarity matrix (SM) that
provides a pair wise comparison of each document in the
system. We use the dot product (i.e., cosine of the angle
between the vector pair) as the measure of similarity
between two document vectors. This generates a global SM
of size n x n, where n is the number of documents
contained in the document collection. Only the upper
triangular portion of this matrix is needed because it is a
symmetric matrix. Note, when a document is added or
removed the VSM must be updated. This is due to the
changes in the global frequency of words that are contained
in this document. The brute-force approach is to re-
compute all the document vectors in the document
collection (i.e., document term weights of each document
vector) as well as a global similarity matrix. However, the
time/space complexity is O(n-d)+O(n”), where d is the
document vector space dimensionality. This is very
expensive when the collection size grows. An approach is
needed to more efficiently update the SMs. A sliding-
window-based approach is used.

The whole SM is modeled as a circular array of size

n(n-1) with a pointer initially pointing to the first array
2

element. When a new document is added or removed from
the collection the p percentage of the SM is updated and

the pointer is forwarded p- nn-1) steps from its current
2

position, thus pointing to the next stale entry of the array.

A series of experiments was conducted to determine
how changes in global term frequency affect the similarity
values. Updating 5% of the global SM every time a single
document is added or deleted preserves high accuracy. To
compare SMs, several measures were made based on the
values of their determinants, traces, and x* distribution. In
other words, it takes 20 document additions or removals to
fully update the SM. This method resulted in acceptable
dynamic similarity update performance.

Finally, a global SM is used to perform on-demand
clustering of the documents of interest (e.g., the documents
retrieved in response to a user query). For a set of
documents to be clustered, the local SM is constructed by
including the cells of the global SM that in turn
corresponds to the documents of interest. This local SM is
used to analyze the documents of interest based on their
closeness in the document vector space. The documents are
merged into clusters using an agglomerative hierarchical
clustering algorithm [32]. When all of the documents are
combined, a Phylips Tree is generated to illustrate the
hierarchical tree structure of the clustered documents (see
Fig. 3 lower half). The Phylips Tree (or cluster diagram) is
a type of dendrogram. The nodes of the tree represent each
article while the edges (or links) between nodes represent
relationships. In general, the closer (based on distance and
hops) two nodes are, the more similar the articles. If links
from two nodes share a vertex, then these articles are the
closest in the set of articles. The longer links between
article nodes indicate greater dissimilarity.

2.2.3 Results

Organization of the acquired information using the VIPAR
system was very successful. In an experiment comparing
the organization of news articles done manually, versus
organized by VIPAR, results favor VIPAR as the preferred
method. The experiment involved searching a collection of
newspapers for key terms that produced a number of
relevant news articles. This collection of articles was then
manually organized based on the contents of the articles.
Following this manual process, VIPAR was used to
organize the same article set and the results from both
methods compared. A search was performed on September
21, 2001, using the phrase “nuclear weapons.” At the time,
five newspapers were in the VIPAR system, (1) Japan
Times, (2) Pacific Islands Report, (3) Inside China Today,
(4) Russia Today, and (5) Sydney Morning Herald. The
results produced 10 articles, with various titles (see Fig 3
lower half).

These results are typical of an average search engine,
except that VIPAR targets newspapers only and is timelier
because it filters out articles older than a few days.
Manually clustering these articles put the same articles into
the same category. This articles collection covers four
broad areas, 1) the Los Alamos Nuclear Scientist Wen Ho
Lee, 2) the India and Pakistan conflict spurring nuclear
weapons development, 3) an International Atomic Energy
Agency meeting dealing with nuclear material, and 4) U.S.

China Trade Policy dealing with nuclear material. To
manually organize a small number of articles like these can
be done fairly quickly by a knowledgeable person.
However, as the number of articles increases so does the
time required to manually organize the articles.

VIPAR clustered articles within a few seconds and
produced 4 distinct groupings. Fig. 3 (lower half) shows a
comparison of the VIPAR cluster to the manual clustering.
The four groups determined by VIPAR match extremely
well to the four groups of articles manually organized.
VIPAR clusters provide an intuitive (i.e., natural, quick and
effective) way to organize and visualize this information.

2.3

This case study uses SAs to divide and concur massive
amounts of distributed data. The SAs, which run on the
machines where the data resides, collaborate to produce
movies from the requested data, which are sent back to the
remote client for display. The quality of the movies can be
varied depending on the available network bandwidth.

2.3.1 Background

Simulationists who model physical phenomena commonly
deal with massive (terabytes) datasets widely distributed
and derived from months of supercomputing. Refining
these models and algorithms to maturity requires numerous
iterations where the scientist modifies the algorithm, and
validates the resulting output. The scientist either
examines the candidate dataset in raw form or invests
considerable time and effort to analyze the data using
highly specialized hardware and software tools.

2.3.2 Approach

We proposed a large system of distributed SAs spread over
the distributed data as a simple and flexible way to help
scientists validate simulation results and refine the
simulation model/algorithm. We used 100 time steps of
data from a supernova simulation segmented into 800
individual pieces, managed by 800 agents, running on
conventional systems. We have developed a system where
a single software agent is responsible for each individual
segment of data. Upon request, these 800 agents work
together to produce a visual representation as shown in Fig.
4. Our results illustrate that a large system of software
agents is a simple and flexible solution to the problem of
data validation during the development of scientific
simulation models. In work with numerous scientists at
various laboratories and universities, we have been
successfully using this approach to render data from a
supernova simulation.

The agent architecture of this experimental system
involves multiple software agents, each of which has one
of three basic tasks. The first type of agent is called the
data controller agent. The data controller agent monitors
the simulation output directory for newly created data files.
When one is found, this agent then creates and assigns
eight new data agents to eight equal sub-cubes of the new
file. These data agents are the second type of agent used in

Data management

the system. The creation of eight agents per new file is
arbitrary and easily changed. Each of these new agents is
then responsible for fielding requests from other agents.
The typical request is for an agent to provide an image
from an XY plane of data under its control. In this case, the
individual agents will generate an image of a 2D plane
from the 3D sub-cube that they are responsible for. If the
requested plane falls outside of this cube, the agent ignores
the request. The agents also have the ability to vary the
quality of the images produced. A blackboard is used to
collect images from various responding agents. From this
blackboard, the third type of agent, the movie producer
agent, assembles the images into a movie that shows an
XY plane through the 100 time steps of data. Using
different video compressors and decompressors (CODECs)
allows the movies to be produced at different detail levels
(See Fig. 4 top half).

2.3.3 Results

The dataset was provided by the DOE’s Terascale
Supernova Initiative (TSI) project. We used a portion of
the TSI supernova simulation data to demonstrate that a
system made up of a large number of SAs is a viable
solution. The original data contains 192 times steps. Each
time step containing data from 5 variables, X, Y, and Z
velocities, pressure, and density. Data from each variable is
represented in a 320 x 320 x 320 matrix of floating point
values stored in Hierarchical Data Format (HDF) 4 format
in 960 files requiring approximately 128GB of storage. For
demonstration purposes, we chose 100 time steps of Y

ﬁnﬁﬁu E:>

8 Agents per step 4 JPGS perstep 120 Frame MPEG

cr Control Cemts
Status Information
cu MMH\ 100
cutbnt 3'1’07 GB =lolx|

Current gents: 800 Z Position: 120 Time: 1090-1189 Quality: 100
2roatin 1189 : 9330038 1189 1896045474

0 W m ® M W

Sart (End Tewe

h

Video Gusty
© Low[30WE] © Medm[ME) & HghzME|

Cortrols
AT

Fig. 4. Agent coordination architecture and client GUI.

velocity data showing significant activity. This equates to
100 files, each 133 MB stored on two separate PCs.

3 Discussion and conclusions

Lets briefly review our conclusions from the three case
studies described here.

3.1 Distributed command and control

A comparison of DCC functional requirements with the
capabilities of existing SW technology reveals the
limitations of low-level interfaces, synchronous
interactions, and requirements for continuous network
availability, limited redundancy, and limited productivity
improvements. Current technology would require major
enhancements (if even feasible) to enable the DCC
concept. Moreover, the main strength provided by ABS is
derived from the MC model thereby supporting a more
flexible and consequently more robust programming
model. The intellectual integrity and congruency gained by
mapping the DCC requirements onto the ABS model gives
a compelling and natural consistency. Furthermore, ABS
can support the DCC functional requirements including
security, information analysis/summary, and decision
support, but the technology does not explicitly provide
these capabilities, and these are challenging problems.

3.2

The ISR/VIC problem involves gathering/analyzing more
information that can be reasonably accomplished manually
(i.e., the common information-glut/overload dilemma that
promises to worsen). To address this challenge, the multi-
agent VIPAR system was developed using software agents
to retrieve, organize, and graphically present Internet-based
newspaper information comparable to that accomplished
by human intelligence analysts. VIPAR extends the field of
agent technology through the use of a flexible RDF
ontology for managing information including the capability
to dynamically add and cluster new information entering
the system.

Agent technology is well suited to this type of problem
for three main reasons. First, the communication
mechanism allows for broadcast and peer-to-peer message
passing. Second, using an external ontology allows for an
easily maintainable and/or replaceable mechanism for
adapting to an open/changing information environment and
rules (intelligence needs). Consequently, agents can be
redirected without the need to modify code. Finally, agents
are mobile, a natural solution to the needs of intelligence
gathering. The ability for agents to suspend operations,
move to another computer, and resume operations on
command provides for various design/implementation
options needed for rapid deployment.

3.3

A multi-agent system (MAS) for analyzing massive
scientific data was developed successfully as flexible and
economical solution for distributed data management.

Information fusion

Data management

Agents monitor the output of a simulation model/run.
Anytime the simulation produces new data, the primary
monitoring agent logically divides the new data into pieces
and creates a new agent for each piece of the new data.
Each agent responds to queries about the piece of data that
they are responsible for.

In collaboration with scientists from various labs and
universities, this approach has been used to render data
from a supernova simulation experiment under
development. Using 100 time steps of data segmented into
800 individual pieces, managed by 800 agents, running on
conventional systems, the agents work together to produce
a visual representation of the dataset (Fig. 4). The results
indicate that a large system of software agents spread over
the candidate dataset can be an adaptable and cost effective
method to aid scientists with validating the dataset.

4 References

1. Patel, M., Forward: Advances in the Evolutionary Synthesis
of Intelligent Agents, 1st ed. Advances in the Evolutionary
Synthesis of Intelligent Agents, ed. P.J. Mukesh, V. Honavar,
and K. Balakrishnan. 2001, Cambridge: MIT Press. 480
pages.

Subrahmanian, V.S, et al., Heterogenous Agent Systems, 1st

ed. 2000, Cambridge: MIT Press pages.

3. Demarco, T. and P.J. Plauger, Structured Analysis and

System Specification. 1985, New York: Prentice Hall. 352

pages.

Sheldon, F.T., K. Jerath, and H. Chung, "Metrics for

Maintainability of Class Inheritance Hierarchies," Jr. of

Software Maintenance and Evolution, 2002. 14(3): pp. 147-

160.

5. Booch, G., Object-Oriented Design with Applications, 2 ed.
1991, Redwood City: Benjamin/Cummings. 608 pages.

6. Chin, R.S. and S.T. Chanson, "Distributed, Object-Based
Programming Systems," ACM Computing Surveys, 1991.
23(1): pp. 91-124.

7. Thorn, T., "Programming Languages for Mobile Code,”
ACM CS 29, No. 3 (1997)." ACM Computing Surveys, 1997.
29(3): pp. 213-239.

8. Kim, H.Y., Jerath, K. and Sheldon, F.T., Assessment of High

Integrity Components for Completeness, Consistency, Fault-

Tolerance and Reliability, in Component-Based Software

Quality: Methods and Techniques, A. Cechich, M. Piattini,

and A. Vallecillo, Editors. 2003, Springer-Verlag:

Heidelburg. pp. 259-86.

Geihs, K., "Middleware Challenges Ahead," Computer, 2001.

34(6): pp. 24-31.

Potok, T.E., N.D. Ivezic, and N.F. Samatova. "Agent-based

Architecture for Flexible Lean Cell Design, Analysis and

Evaluation," in Working Conf. on Design of Info.

Infrastructure Sys., Melbourne Australia: Kluwer, 2000, pp.

181-8.

Ivezic, N., T.E. Potok, and L. Pouchard, "Multiagent

Framework for Lean Manufacturing," IEEE Internet

Computing, 1999. 3(5): pp. 58-9.

Potok, T.E., Phillips, L., Pollock, R., Loebl, A. and Sheldon,

F.T. "Suitability of Agent-Based Systems for Command and

Control in Fault-tolerant, Safety-critical Responsive Decision

Networks," in ISCA 16th Int’l Conf. on Parallel and

10.

11.

12.

10

13.

14.

15.

16.

17.

18.

19.

20.

21

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Distributed Computer Systems (PDCS), Reno NV: ISCA,
2003.

Kavi, K.M., M. Aborizka, and D. Kung. "A framework for
the design of intelligent agent based real-time systems," in
Proc. 5th Int'l Conf. on Algorithms and Architectures for
Parallel Processing, Beijing: IEEE CS, 2002, pp. 196-200.
Kavi, K.M. and H.B. D.C. Kung, G. Pandcholi, M. Kanikarla
and R. Shah. "Extending UML to modeling and design of
multi agent systems," in Proc. of 2nd Intl Workshop on
Software Engineering for Large-Scale Multi-Agent Systems
(SELMAS collocated with ICSE03), Portland: Springer,
2003.

Rao, A. and M. George. "BDI agents: From theory to
practice," in Proc. First Int'l Conf. on Multi-Agent Systems
(ICMAS-95), San Francisco: AAAI Press, 1995, pp. 312-319.
Papavassiliou, S., et al. "Integration of Mobile Agents and
Genetic Algorithms for Efficient Dynamic Network Resource
Allocation," in Sixth IEEE Symp. on Computers and
Communications (ISCC'01), Hammamet, Tunisia, 2001, pp.
456-63.

Jennings, N.R., K. Sycara, and M. Wooldridge, "A Roadmap
of Agent Research and Development," Jr. of Autonomous
Agents and Multi-Agent Systems, 1998. 1(1): pp. 7-38.
Sycara, K., et al., "Distributed Intelligent Agents," IEEE
Expert, 1996. 11(6): pp. 36-46.

Griss, M.L. and G. Pour, "Accelerating Development with
Agent Components," Computer, 2001. 34(5): pp. 37-43.

Cabri, G., L. Leonardi, and F. Zambonelli, "Mobile-agent
Coordination Models for Internet Applications," Computer,
2000. 33(2): pp. 82-9.

. Gelernter, D. and N. Carriero, "Coordination Languages and

Their Significance," 1992. 35(2): pp. 96-107.

Labrou, Y., T. Finin, and Y. Peng, "Agent Communication
Languages: The Current Landscape," IEEE Intelligent
Systems, 1999. 14(2): pp. 45-52.

Vogler, H., T. Kunkelmann, and M. Moschgath. "An
Approach for Mobile Agent Security and Fault Tolerance
using Distributed Transactions," in Int'l Conf. on Parallel and
Distributed Systems, Seoul: IEEE, 1997, pp. 268-74.

Abadi, M., "Secrecy by Typing in Security Protocols," Jr. of
the ACM, 1999. 46(5): pp. 749-786.

Liu, Z., et al. "Pluggable Active Security for Active
Networks,” in IASTED Proc. Int’l Conf. PDCS, Nov. 2000,"
in Int’] Conf. PDCS, Las Vegas: IASTED, 2000.

K-Praxis, "SonicBoomerang: Semantic Prime-Time for
Intelligent Information Agent Technologies." 2003, K-Praxis,
http://www.k-praxis.com/archives/000036.html.
CCNMatthews, "Intelligence Gathering Service Wins
Information Highways Magazine's 2002 E-Content
Innovation Award." 2003, CCNMatthews: Toronto,
http://www.ccnmatthews.com/scripts/headlines].pl.

Potok, T., Elmore, M., Reed, J. and Sheldon, F.T. "VIPAR:
Advanced Information Agents Discovering Knowledge in an
Open and Changing Environment," in SCI 2003 Proc. 7th
World Multiconference on Systemics, Cybernetics and
Informatics (Special Session on Agent-Based Computing),
Orlando: IIIS, 2003.

Mladenic, D., "Text-learning and Related Intelligent Agents:
A Survey," IEEE Intelligent Systems, 1999. 14(4): pp. 44-54.
Klusch, M., "Information Agent Technology for the Internet:
A Survey," Data & Knowledge Engineering, 2001. 36.
Samatova, N.F., T.E. Potok, and M.R. Leuze, "Vector Space
Model for the Generalized Parts Grouping Problem,"

Robotics and Computer-Integrated Manufacturing, 2001.
17(1-2): pp. 73-80.

32. Anderberg, M.R. "Cluster Analysis for Applications," in
Probability and Mathematical Statistics, 19, New York:
Academic Press, 1973.

11

