
Smaller split L-1 data caches for multi-core processing systems

Oluwayomi Adamo, Afrin Naz, Tommy Janjusic and
Krishna Kavi

Department of Computer Science and Engineering
University of North Texas, Texas, USA

oluwayomi.adamo@unt.edu, afrin.naz@unt.edu,
tommy.janjusic@gmail.com, kavi@cse.unt.edu

Chung-Ping Chung
Department of Computer Science and Information

Engineering, National Chiao Tung University, Hsinchu,
Taiwan.

 cpchung@csie.nctu.edu.tw

Abstract— As more cores (processing elements) are included in a
single chip, it is likely that the sizes of per core L-1 caches will
become smaller while more cores will share L-2 cache resources. It
becomes more critical to improve the use of L-1 caches and
minimize sharing conflicts for L-2 caches. In our prior work we
have shown that using smaller but separate L-1 array data and L-1
scalar data cache, instead of a larger single L-1 data cache, can
lead to significant performance improvements. In this paper we
will extend our experiments by varying cache design parameters
including block size, associativity and number of sets for L-1 array
and L-1 scalar caches. We will also present the affect of separate
array and scalar caches on the non-uniform accesses to different
(L-1) cache sets exhibited while using a single (L-1) data cache.
For this purpose we use third and fourth central moments
(skewness and kurtosis), which characterize the access patterns.
Our experiments show that for several embedded benchmarks
(from MiBench) split data caches significantly mitigate the
problem of non-uniform accesses to cache sets (leading to more
uniform utilization of cache resources, reduction of conflicts to
cache sets, and minimizing hot spots in cache). They also show
that neither higher set-associativities nor large block sizes are
necessary with split cache organizations.

Keywords - Cache memories, Split data cache, uniform
cache access patterns.

I. INTRODUCTION
Existing cache organization suffers from the inability to
distinguish different types of localities rather than making
any attempt to take special advantage of the locality type.
This causes unnecessary movement of data among the levels
of the memory hierarchy, significant interference between
unrelated data inside the cache, removal of potentially
useful data causing cache pollution, unnecessary increases
in miss ratio and memory access times. At the same time,
because of non-uniformity in memory access pattern, some
cache sets are accessed heavily, while others remain
underutilized. In order to solve this problem, in our
previous work [1, 2], we have proposed Split Data cache
architecture, in which the memory accesses are grouped as
scalar or array references according to their inherent locality
and each group subsequently mapped to a dedicated cache
partition, equipped with architectural constructs built to
exploit that particular locality type. In this system, since the
scalar references and array references are no longer
negatively affecting each other, cache interference,
thrashing and pollution problems are diminished, delivering
better performance. In our design, not only both caches
designed more optimally according to their specific needs, it

will simplify some other general issues and concerns in
cache design, such as the associativity, cache block size or
cache capacity. The selection of proper block size or
associativity to maximize performance while staying within
the cost are the hardest choices in designing cache
memories. In case of embedded systems, total cache size is
also a big concern. By partitioning the cache, our cache
system can implement different configurations exploiting
different cache parameters more selectively and effectively.
The “array cache” is a direct mapped cache with small
stream buffer to exploit spatial localities more aggressively
by (pre)fetching multiple neighboring small blocks on a
cache miss. Whereas the “scalar cache” is a 2-way (or 4-
way) set associative cache with smaller block sizes to
exploit temporal locality. The combination of different
block sizes and associativities together with partitioned
cache architectures provides an effective solution for
alleviating the existing problems in cache designs and
maximizes the effective cache memory space for any given
cache size and cost. Since significant amounts of
compulsory and conflict misses are avoided, the size of each
cache (i.e., array and scalar), as well as the combined cache
capacity can be reduced. In this work we performed
comprehensive analysis of cache miss rates by including
different combinations of cache size, block size and
associativity. We also report on the frequency of accesses to
different cache sets by using third and fourth central
moments (skewness and kurtosis). In this work we have
shown that use of separate L-1 array data and L-1 scalar
data cache can lead to significant decrease in cache size and
number of misses. In this paper we also show that using
smaller array and scalar caches significantly mitigate the
problem for embedded benchmarks in terms of improving
uniformity of accesses to cache sets.

The rest of the paper is organized as follows. To
motivate the reader, in Section 2 we discuss related issues
and performance metrics in more detail. Section 3 describes
benchmarks and experimental set up used in our evaluation,
while section 4 presents the results. We present our
conclusions in section 6.

II. CONCEPTS
In this section, we first briefly introduce issues in general
cache design. Then we will demonstrate how to examine
cache sets’ usage during a program’s execution. After that
we will describe related statistical concepts. Finally we

2009 10th International Symposium on Pervasive Systems, Algorithms, and Networks

978-0-7695-3908-9/09 $26.00 © 2009 IEEE

DOI 10.1109/I-SPAN.2009.118

74

will briefly describe our split data cache
architecture.

A. ABC’s of Cache
For a cache, its performance is dictated by a number of

parameters, including Associativity, Block size and Cache
size. Our work is motivated by the observation that it is not
possible to design a single cache that works well for
different types of localities and data types. We propose
multiple data caches designed with different parameters to
meet the needs of the different data types.

1) Cache Size: Increasing cache size will reduce capacity
misses; however as cache size increases, a capacity miss
will become a conflict miss [6]. On the other hand, Jouppi
[7] reported that for stream data type, increasing cache
capacity actually increases cold-start or compulsory misses.

2) Block Size: The selection of block size depends on the
needs of the different data types. Increasing block size also
implies prefetching of data for applications exhibiting
greater spatial localities, such as the array references. For
scalar references, it is better to have smaller cache block
sizes and more cache lines to eliminate conflict misses and
even capacity misses when smaller caches are used [6].

3) Associativity: Direct mapped caches are simpler,
easier to design. The main disadvantage of a direct mapped
cache is the high conflict miss ratetypically 40% of direct-
mapped cache misses [7]. Conversely for caches with higher
associativity the main advantage is lower miss rate, but they
are more expensive and incur longer access times on hit.

More information about different cache parameters can
be found in [6].

B. Non-Uniform Accesses to Cache Sets
Zhang [3, 4] reported that with direct mapped L-1

caches not all cache sets are equally accessed and the
heavily accessed sets lead to most of the conflict misses and
thus to poor performance. Zhang [3, 4] classified cache sets
as frequent hit sets (FHS) and frequently missed sets (FMS)
if the number of hits and misses are more than twice the
average and least accessed sets (LAS) if the accesses are
one half of the average accesses. In “unpublished”[1] we
repeated Zang’s experiments with a subset of SPEC
benchmarks, some bio-informatics and embedded
benchmarks (from MiBench suite). In order to more
formally describe the behavior of cache access patterns, in
this work we will convert the accesses and misses into
probability distributions. We will then measure various
statistical values knows as central-moments. Most
commonly used moments are: mean (first moment) and
standard-deviation (second moment). Higher moments
describe the shape of the distribution. The shape of a
uniform access distribution will have a flat shape compared
to a normal distribution with a few values clustered around
the mean and long tails. We will report skewness and
kurtosis values associated with (data) cache access patterns.

In order to be self contained, we will describe these
statistical parameters and their value to our analyses.

1) Skewness: Skewness (third central moment) is a

measure of symmetry, or more precisely, the lack of
symmetry.

Figure 1: Positive and negative skewness

A distribution, or data set, is symmetric if it looks the same
to the left and right of the center point (mean). If the left tail
is more pronounced than the right tail, the function is said to
have negative skewness. If the reverse is true, it has positive
skewness. If the two are equal, it has zero skewness.

2) Kurtosis:Kurtosis (fourth central moment) is a
measure of whether the data are peaked or flat relative to a
normal distribution. That is, data sets with high Kurtosis
tend to have distinct peaks near the mean, decline rather
rapidly, and have long tails. This also indicates very few
values near the peak. Data sets with low Kurtosis tend to
have a flat top near the mean rather than a sharp peak. A
uniform distribution would be the extreme case (with zero
Kurtosis). For our pupose, a highly non-uniform behavior
results in a high Kurtosis, while a more uniform access
behavior leads to lower Kurtosis.

Figure 2: Kurtosis values

Fig. 3 shows distributions associated with cache hits

and misses to different sets. We show the distribution with a
single 64 sets of 32Byte unified data cache, and for 32 sets
of array and 32 sets of scalar data caches (using our split

0 1 2 3 4 5

x 10
5

0

2

4

6

8
x 10

-6

x

p
df

 Fig 1A : misses unified

0 1 2 3 4

x 10
5

0

1

2

3

4

5

6

7
x 10

-6

x

p
df

 Fig 1B : misses scalar 32

0 100 200 300 400 500
0

1

2

3

4

5

6
x 10

-3

x

p
df

 Fig 1C misses array 32

0 1 2 3

x 10
7

0

0.5

1

1.5

2
x 10

-7

x

pd
f

 Fig 1D : hits unified 32

0 1 2 3 4

x 10
7

0

1

2

3

4

5

6

7
x 10

-8

x

pd
f

 Fig 1E : hits scalar 32

Dijkstra

0 0.5 1 1.5 2 2.5

x 10
5

0

0.2

0.4

0.6

0.8

1
x 10

-5

x

pd
f

 Fig 1F : hits array 32

Figure 3: Distribution of cache accesses

data caches), for benchmark dijkstra (from Mibench). The
main goal of this figure is to illustrate the importance of the

75

shape of the accesses and misses, when the accesses are
converted to probability distributions.

C. Split Cache Design
Fig 4 shows our Split Data cache architecture, with array
and scalar data caches. Our split data cache

Figure 4: split data cache

 architecture consists of an “array cache” and a “scalar
cache”. Memory accesses are grouped as scalar or array
references according to their inherent locality and each data
group is mapped to a dedicated cache partition. Our array
cache is also equipped with a small 10-line stream
prefetching buffer. The stream buffer is a fully associative,
FIFO buffer specially designed to support direct-mapped
cache through hardware based prefetching [7]. A miss
induces the fetching of the missed block along with next
block stored in the buffer. Our intent is to use the stream
buffer for prefetched blocks and avoid cache pollution
(premature data displacement). In this system, since scalar
references and stream references no longer negatively
affected each other, cache interference, thrashing and
pollution problems will be diminished, delivering better
performance. Specially for array cache, since there is no
more contamination of scalar data the stream buffer will
provide significant decrease in cold misses.

III. SIMULATION ENVIRNMENT
The descriptions of the benchmarks used in our studies are
listed in Table 1.We use selected benchmark programs from
the MiBench suite [9]. MiBench includes benchmarks from

TABLE 1: Descriptions of benchmarks

several representative embedded application domains. In
this paper we included selected programs from these
application domains: (1) Automotive and Industrial Control,

(2) Office Automation, (3) Networking, (4) Security, (5)
Consumer and (6) Telecommunications.

Our experimental environment builds on the
SimpleScalar (version 3.0d) simulation tool set [5] modeling
an out-of-order speculative processor with a two-level cache
hierarchy. We rely on default parameters defined by
SimpleScalar [5].

IV. RESULTS
The next subsection presents total references and

misses. Then we show the values of third and fourth central
moments (skewness and kurtosis) to study non-uniform
access to cache sets.

A. Results with different parameters
By changing the block size, cache capacity and
associativity, attempt is made to obtain the best
configurations for array and scalar caches.

1) Selection of Cache size
Several experiments are performed to determine the

optimum cache size for each data type and the results for
each benchmark are shown in TABLE 2. This table shows
the number of references and misses with increasing cache
sizes for unified cache and for split cache (each direct

TABLE 2: Number of misses with different cache sizes (Direct Mapped)

 mapped and with 8 bytes block size). Here it should be
mentioned that the total size of Array and Scalar cache is

Benchmarks Description Name

bit counts Test bit manipulation bc
qsort Computational Chemistry qs

dijkstra Shortest path problem dj
blowfish Encription/decription bf

AES Advanced Encryption Standard AE
CRC Cyclic Redundancy Check CR

String search Search mechanism ss

n
a
m
e

s
i
z
e

Unified Array Scalar
Total
 Ref.

Total
Miss

Total
Ref.

Total
Miss

Total
Ref.

Total
Miss

A
E

8K 133927460 8392267 77551107 16 55977972 3448827
4K 133927597 15893061 77377863 29 56187955 10224831
2K 133913470 37844548 78162635 7093 55512769 15972202
1K 133903267 50335956 79229364 20536 54480746 19787067
512 133890217 57455389 79518950 2657048 54209594 23439879

d
i
k

8K 81701808 4630365 1491373 25 80237588 968410
4K 81696527 7383228 1489128 48 80226623 2503228
2K 81667486 13695622 1231050 207 80463571 7002213
1K 81647846 18529657 1192468 1184 80505698 12323751
512 81659148 23944713 1129962 8561 80559269 14993876

b
f

8K 109796377 2947143 40587790 13 69121381 1192624
4K 109790778 5923918 40599233 31 69105144 9945644
2K 109785876 19574058 41030991 2424 68677410 20406296
1K 109776066 27166084 41172494 5659 68533133 26199914
512 109756413 31925415 41206622 28101 68490653 29701443

b
c

8K 5043729 2076 607732 10 4436091 330
4K 5043900 2125 607721 16 4436083 437
2K 5043225 2376 607578 25 4435896 662
1K 5043471 11667 607557 46 4435973 1236
512 5044080 321924 607661 117 4435961 1783

C
R

8K 186797013 1989776 133058204 13 53745373 166
4K 186803525 2288668 133058201 22 53745373 177
2K 186803526 5873674 133006233 26018 53797339 230
1K 186803833 9509752 132954272 52024 53849327 297
512 186803982 23073115 132850321 104053 53953267 432

s
s

8K 1116726 26131 635129 21 483129 14044
4K 1121016 66634 634226 45 484718 39032
2K 1120220 113937 634405 93 485622 44493
1K 1120722 198475 635142 216 486710 78177
512 1121665 330717 634353 3815 489159 102722

q
s

8K 137307939 5969335 47823891 2655 89477832 4975916
4K 137315853 6946743 47813528 7849 89495840 5982930
2K 137326611 8698193 47424282 25464 89918603 8246678
1K 137507348 11065903 46859407 66274 90557423 10992870
512 137534354 15252322 46961945 165054 90786913 14323730

buffer Array

CPU

Scalar

L2 Cache

Memory

76

equal to the size of unified cache. Hence for the row with
cache size 8K means that we have 4k-array and 4k Scalar
caches. From TABLE 2 we can see that our split data cache
has significantly decreased the number of misses for all
cache sizes for all benchmarks except for two cache sizes 4k
and 2k for the benchmark “blowfish”. If we compare results
8k uniformed cache, 4k-array and 4k Scalar caches), we see
58.90%, 79.08%, 59.53%, 83.62%, 99.99%, 46.10% and
16.59% reductions in misses for the benchmarks “AES”,
“dijkstra”, “blowfish”, “bitcount”, “CRC”, “stringsearch”
and “qsort” respectively. For both unified and split caches
we see the gradual decrease misses as we increase cache
sizes. As mentioned in section 2, an important criterion for
selecting cache size is the frequency of capacity misses. We
expect that when separate scalar and array caches are used,
the scalar cache can be small since the number of capacity
misses is small with scalar data items. We also expect that
using a small stream buffer with array cache will allow us to
significantly reduce the cache size of array cache. For two
benchmarks, “bc” and “CRC”, the number of capacity
misses are so low that a tiny 256 byte scalar cache is
providing better performance (95% better for “CRC”) than
8k unified cache. For other benchmarks (except “qsort” and
“blowfish”) 1k scalar cache and 512 byte array cache (with
a 10-line stream buffer) provide better results than 8k
unified cache. For “blowfish” a large 4k scalar cache is
needed with a smaller array cache. And t“qsort”, 8k unified
cache.

2) Selection of Block size

TABLE 3 shows the number of references and misses
with increasing block sizes usingn 8k unified cache and 8k
split cache (4k-array and 4k Scalar caches). From TABLE 3
we can see that our split data cache has significant decrease
in number of misses for all block sizes for all benchmarks.

TABLE 3: Number of misses with different block sizes

N
a
m
e

S
I
Z
e

Unified Array Scalar
Total
 Ref.

Total
Miss

Total
 Ref.

Total
Miss

Total
 Ref.

Total
Miss

A
E

32 133910390 8290178 77534341 21 56031082 3081563
16 133921183 8239429 77432837 18 56108021 2933398
8 133927460 8392267 77551107 16 55977972 3448827

d
i
k

32 81699450 1617205 1508783 20 80207908 805859
16 81700436 2768324 1508683 27 80210176 856485
8 81701808 4630365 1491373 25 80237588 968410

b
f

32 109797005 3301215 41507287 16 68206865 1393702
16 109796375 3560287 39883295 16 69832598 1415416
8 109796377 2947143 40587790 13 69121381 1192624

b
c

32 5043447 660 607679 9 4435988 196
16 5043405 1123 607581 9 4435925 236
8 5043729 2076 607732 10 4436091 330

C
R

32 186797011 1312730 133058201 16 53745378 88
16 186797012 1338548 133058203 16 53745371 116
8 186797013 1989776 133058204 13 53745373 166

s
s

32 1116059 13071 635188 25 482724 7912
16 1116328 16927 635080 25 483039 10243
8 1116726 26131 635129 21 483129 14044

q
s

32 137296899 2105032 48459615 4094 88852271 1822313
16 137301183 3211978 48125758 3160 89221813 2919856
8 137307939 5969335 47823891 2655 89477832 4975916

Array and scalar data items exhibit different localities,
requiring different block sizes. For array data, the simplest

way to reduce miss rate is to use large block sizes. However
in a fixed sized cache increasing block size will decrease the
number of lines, leading to an increase in conflict and
capacity misses, which is harmful for scalar data. In our
architecture we can take advantage of both techniques - by
using larger cache blocks for array caches and smaller block
sizes for scalar cache. work [2] For this work, as we are
using stream buffer with our array cache we increase the
block size.

 unified cache, for all benchmarks (except AES)
changing block size has significant effect on number of
misses. Whereas for scalar cache, only two benchmarks,
“qsort” and “stringsearch”, showed similar behavior.

3) Selection of associativity

 TABLE 4 shows the number of references and misses
with increasing cache sizes in unified cache and split cache
with 2-way set associativity and 8 bytes block size. In our
test suite, after removing array references, for our scalar
cache, conflict misses are the main concern. As a result
increasing the associativity to 2-way leads to significant

TABLE 4: Number of misses with different cache sizes (2-way)

improvement. If we compare 4k direct mapped scalar cache
(last column of TABLE 2) with 4k 2-way set associative
scalar cache (last column of TABLE 4) we see 47.65%,
68.90%, 97.88%, 50.07% and 14.07% decrease in misses
for the benchmarks “AES”, “dijkstra”, “blowfish”,
“stringsearch” and “qsort” respectively. However for two
benchmarks, “CRC” and “bitcount” very unusual result is
obtained. With 8k unified cache, 4k-array and 4k Scalar
caches there is actually an increase in the number of misses
with 2-way cache when compared to a direct mapped cache.
Because of the lack of temporal locality, the stream
references will cause more compulsory misses than conflict
misses and direct mapping with prefetching will be the
better option for an array cache.

N
n
a
m
e

s
i
z
e

Unified Array Scalar

Total
 Ref.

Total
Miss

Total
Ref.

Total
Miss

Total
Ref.

Total
Miss

A
E

8K 133713457 987382 77848529 16 55831952 1805293
4K 133717655 2696452 77389542 29 56261928 4729790
2K 133728044 14677571 77560782 3217 56089551 10957994

d
i
k

8K 81722379 2884265 1524280 16 80209668 301108
4K 81721479 3940987 1498052 27 80235733 849784
2K 81708055 6501822 1466076 87 80262740 2166106

b
f

8K 109717681 35830 42516551 13 67197858 25267
4K 109717724 1370778 41047216 24 68663526 1260416
2K 109707348 3945244 40516095 3212 69189954 12661708

b
c

8K 5043878 1957 607494 10 4435784 538
4K 5043539 1976 607592 16 4435896 417
2K 5043737 2030 607796 25 4436160 429

C
R

8K 186803516 2400 133058219 11 53745335 437
4K 186803520 2428 133058210 20 53745358 302
2K 186803530 2022743 133006234 26016 53797345 221

S
S

8K 1117744 9980 633596 18 483288 7012
4K 1118454 15056 634794 34 483338 13545
2K 1119473 30948 634895 69 483530 15663

q
s

8K 137288564 4782955 47864653 2468 89433832 4275591
4K 137291461 5490387 47819079 6372 89480927 4854223
2K 137295563 6467058 47764804 23609 89548311 5441755

77

B. Statistical Analysis
In this section, we are going to perform statistical analysis to
more carefully analyze the benchmarks.

1) Selection of Cache size
TABLE 5 shows the skewness and kurtosis values with
increasing cache sizes for unified cache and for split cache
(each direct mapped and with 8 bytes block size). From the
values presented in TABLE 5 for smaller caches, scalar

TABLE 5: Skewness and Kurtosis values with different cache sizes (Direct

Mapped)

cache portion of split data caches show better uniformity
(smaller kurtosis and skewness), except rAES. For most of
the benchmarks, array cache portion of the split cache also
show better uniformity when using smaller caches. For
several applications, array caches do not appear to be very
useful. The advantage of split caches, in terms of
uniformity, disappears with larger caches.

2) Selection of Block size
TABLE 6 shows the skewness and kurtosis values with

increasing block sizes using 8k unified cache and 8k split
cache (4k-array and 4k Scalar caches). For most
benchmarks and block sizes (except all block sizes for
“AES” and block 8 size for benchmarks “blowfish” and
“bitcount”) the scalar data shows more uniformity resulted
in lower kurtosis values. In some benchmarks (“dijkstra”,
“CRC”, “stringsearch” and “qsort”) we have huge
reductions in kurtosis values for scalar caches. For array
cache, again for most benchmarks (except all block sizes for

“AES” and “bitcount”, block 32 for “dijkstra”, block 8 for
benchmarks “blowfish” and “qsort”) we have considerable
decrease in kurtosis values.

TABLE 6: Skewness and Kurtosis values with different block sizes

3) Selection of associativity

TABLE 7 shows the the skewness and kurtosis values with
increasing cache sizes in unified cache and split cache, each
with 2-way set associativity and 8 bytes block size. If

TABLE 7: Skewness and Kurtosis values with different cache sizes (2-

way)

we compare last column of TABLE 5 and last column of
TABLE 7, we can say that for scalar caches higher
associativity improves uniformitity. On the other hand, for
Array caches, if we compare the kurtosis values for direct
mapped and 2-way (sixth column of TABLE 5 and sixth
column of TABLE 7) we can see that direct mapping is
definitely the better option with more uniformity.

V. CONCLUSION
The goal of a computer architect is to maximize

performance while staying within the cost and power

Name Cache
size

Unified Array Scalar
Skew
ness

Kurtosis Skew
ness

Kurtosis Skew
ness

Kurtosis

A
E

8K 4.14 34.04 16.34 316.07 18.95 396.03
4K 3.41 19.82 13.08 191.42 7.27 83.99
2K 1.66 5.24 9.40 96.09 2.14 10.35
1K 0.74 2.65 5.56 35.23 1.24 4.84
512 0.97 4.04 2.61 9.67 0.69 2.55

d
i

8K 16.96 324.10 12.28 175.58 6.17 62.0
4K 4.24 29.99 12.81 186.86 3.61 23.49
2K 0.94 4.18 9.34 94.15 2.75 11.54
1K 0.34 2.19 5.60 33.21 1.53 5.55
512 0.08 1.91 1.65 4.52 3.12 11.18

b
f

8K 0.33 1.78 17.83 360.09 6.35 47.62
4K 18.67 390.47 14.51 223.21 2.79 9.08
2K 12.08 172.50 11.18 126.00 2.20 6.79
1K 7.41 70.94 7.702 60.83 1.42 3.50
512 4.38 28.58 4.69 24.74 0.56 1.64

b
c

8K 0.33 1.78 17.83 357.29 6.57 67.97
4K 4.36 27.79 13.54 201.89 3.87 19.11
2K 5.44 38.18 10.37 113.80 2.26 8.21
1K 11.17 125.96 7.49 58.73 2.12 8.62
512 5.38 30.04 4.60 24.08 1.21 4.27

C
R

8K 6.91 106.39 19.71 416.44 5.37 44.26
4K 6.30 62.65 14.84 230.42 5.02 34.80
2K 7.60 66.33 11.18 126.00 3.98 22.21
1K 6.29 40.62 7.81 62.01 3.46 16.25
512 4.28 19.37 2.78 8.77 5.38 30.03

S
S

8K 25.18 736.84 20.19 436.30 3.00 16.14
4K 6.28 42.83 15.44 243.96 10.02 112.64
2K 5.25 36.06 10.96 122.78 6.84 53.94
1K 2.32 8.76 7.54 59.12 2.75 9.99
512 1.53 4.61 1.17 2.95 3.56 17.57

qs 8K 2.02 11.96 16.46 291.93 2.02 8.22
4K 1.66 6.98 12.47 168.57 10.30 114.38
2K 9.43 97.18 9.54 98.11 4.31 20.45
1K 3.79 16.38 6.54 46.97 1.63 4.06
512 1.45 3.68 0.89 3.02 1.29 4.36

Name Block
Size

Unified Array Scalar
Skew
ness

Kurtosis Skew
ness

Kurtosis Skew
ness

Kurtosis

A
E

32 4.77 30.87 10.48 115.3 7.69 69.44
16 7.55 74.92 12.68 182.1 13.17 191.82
8 4.14 34.04 16.34 316.0 18.95 396.03

d
i
k

32 9.04 94.03 10.56 116.5 3.2 18.2
16 11.83 156.03 11.26 144.6 5.44 47.36
8 16.96 324.10 12.28 175.5 6.17 62.06

b
f

32 15.75 250.70 9.97 107.4 7.03 59.71
16 22.26 500.84 14.18 215.9 6.52 54.26
8 0.33 1.78 17.83 360.1 6.35 47.62

b
c

32 5.25 36.63 9.21 94.42 3.44 16.33
16 4.98 38.43 13.11 190.1 5.34 39.93
8 0.33 1.78 17.83 357.2 6.57 67.97

C
R

32 13.63 205.98 10.90 121.7 6.57 49.07
16 14.44 275.19 15.51 245.2 5.56 40.40
8 20.04 414.42 19.71 416.4 5.37 44.26

ss

32 12.48 179.70 10.53 116.1 1.94 6.05
16 18.17 376.43 14.96 233.4 2.54 9.86
8 25.18 736.84 20.19 436.3 3.00 16.14

qs 32 13.56 197.36 11.14 6.70 49.87
16 19.71 423.02 15.20 237.5 13.97 212.71
8 2.02 11.96 16.46 291.9 2.02 8.22

Name size Unified Array Scalar

Skew
ness

Kurtosis

Skew
ness

Kurtosis

Skew
ness

Kurtosis

A
E

8K 6.45 64.27 16.34 316.0 14.36 270.21
4K 17.16 350.28 14.18 216.5 3.80 30.96
2K 2.43 13.38 11.18 126.0 3.53 22.07

d
i
k

8K 1.52 18.02 15.00 261.2 12.88 182.62
4K 10.60 144.00 14.05 212.4 7.61 70.21
2K 3.10 15.87 10.59 116.6 3.65 18.92

b
f

8K 0.33 1.78 17.83 360.1 7.27 64.77
4K 13.77 198.88 13.82 208.7 2.67 8.33
2K 4.16 25.33 11.18 126.0 1.53 3.49

b
c

8K 0.33 1.78 17.83 357.3 0.88 4.62
4K 0.99 3.77 13.54 201.9 1.18 6.11
2K 0.64 2.94 10.37 113.8 3.23 15.88

C
R

8K 0.33 1.78 18.14 362.7 1.28 7.28
4K 2.95 20.73 14.50 222.7 2.52 14.91
2K -0.11 1.35 11.18 126.0 4.28 25.65

S
S

8K 4.48 33.17 17.20 343.2 2.21 8.41
4K 2.93 14.58 15.26 240.3 4.86 37.28
2K 13.60 204.20 10.93 122.4 4.62 26.17

qs 8K 1.56 4.02 16.76 301.3 1.57 6.387
4K 1.36 3.78 12.12 159.6 1.42 7.64
2K 0.53 1.72 9.60 99.33 3.00 16.34

78

constraints. It is difficult to achieve a compromised cache
design that works with data exhibiting conflicting behaviors.
This work shows that using separate (data) caches for array
data and scalar data items, we can separate these concerns
and design caches that achieve optimal performance for
different data items. Another significant achievement of this
work is the ability to include prefetching into embedded
systems. While traditional prefetching techniques have been
explored [6], (premature) prefetching can adversely affect
performance if it leads to cache pollution by displacing
needed data in an untimely manner. This is the primary
reason for not using pre-fetching in embedded systems.
However we show that a carefully designed cache system
not only solves the deficiencies of general prefetching, it
also solves the problems of stream buffers. Jouppi’s analysis
[7] included a stream buffer for a unified data cache, and the
buffer was flushed every time a scalar data is accessed
(since stream buffers assume contiguous data items). In our
study, because we are removing scalar data from array
caches, stream buffers associated with array cache are
flushed less frequently and provide a decrease in the number
of misses in the array cache.

As more cores (processing elements) are included in a
single chip, it is likely that the sizes of per core L-1 caches
will become smaller and it becomes more critical to improve
the use of L-1 caches. In this work we have shown that
using smaller but separate L-1 array data and L-1 scalar data
cache, instead of a larger single L-1 data cache, can lead to
significant performance improvements. We have not only
achieved significant reduction in cache size, number of
misses, we also have showed that as we reduce the cache
sizes the uniformity in cache access pattern improves
significantly. However, we do not claim that split data
caches completely solve the non-uniformity of cache
accesses. We contend that different applications need
different approaches to solve the non-uniform accesses. In
some cases our split-caches are adequate. In some cases
profiling and compile time analyses may be adequate to
relocate data that maps to highly utilized sets. Currently we

are exploring how profiling and compile time analyses can
be used to uniformly distribute data among all cache sets.

ACKNOWLEDGMENT

This research is supported in part by the Net-Centric
IUCRC industrial memberships and in part by NSF funds
for the IUCRC.

REFERENCES
[1] A. Naz, A. Adamo, K. Kavi and T. Janjusic, “Improving
Uniformity of Cache Access Pattern using Split Data Caches”,
Proc. 19th ISCA Parallel and Distributed Computing Systems, San
Francisco Sept 2006.
[2] A. Naz, K.M. Kavi, P.H. Sweany and M. Rezaei, “A study of
separate array and scalar caches”, Proc. 18th International
Symposium on High Performance Computing Systems and
Applications (HPCS 2004), Winnipeg, Manitoba, Canada, May
2004.
 [3] C. Zhang, “Reducing Cache Misses Through Programmable
Decoders”, ACM Transactions on Architecture and Code
Optimization, Vol. 4, No. 4, Article 24, January 2008.
 [4] C. Zhang, “Balanced cache: Reducing conflict misses of
direct-mapped caches through programmable decoders”, Proc.
International Symposium on Computer Architecture, June , 2006.
[5] D. Burger and T. M. Austin, “The SimpleScalar Tool Set,
Version 2.0”, Tech. Rep. CS-1342, University of Wisconsin-
Madison, June 1997.
[6] J. L. Hennessy and D. A. Patterson, Computer Architecture A
Quantitative Approach, Morgan Kaufmann Publishers, Third
Edition 2003, pp 423-430.
[7] N. P. Jouppi, “Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully Associative Cache and Prefetch
Buffers,” Proc. 17th ISCA, May 1990, pp. 364-373.
 [8] http://www.mathworks.com/
[9] M. Guthaus, J. Ringenberg, T. Austin, T. Mudge, and R.
Brown, "MiBench: A free, commercially representative embedded
benchmark suite”, Proc. IEEE 4th Annual Workshop on Workload
Characterization, Austin, TX, Dec. 2001.

79

