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Abstract— As more cores (processing elements) are included in a 
single chip, it is likely that the sizes of per core L-1 caches will 
become smaller while more cores will share L-2 cache resources. It 
becomes more critical to improve the use of L-1 caches and 
minimize sharing conflicts for L-2 caches. In our prior work we 
have shown that using smaller but separate L-1 array data and L-1 
scalar data cache, instead of a larger single L-1 data cache, can 
lead to significant performance improvements. In this paper we 
will extend our experiments by varying cache design parameters 
including block size, associativity and number of sets for L-1 array 
and L-1 scalar caches. We will also present the affect of separate 
array and scalar caches on the non-uniform accesses to different 
(L-1) cache sets exhibited while using a single (L-1) data cache. 
For this purpose we use third and fourth central moments 
(skewness and kurtosis), which characterize the access patterns. 
Our experiments show that for several embedded benchmarks 
(from MiBench) split data caches significantly mitigate the 
problem of non-uniform accesses to cache sets (leading to more 
uniform utilization of cache resources, reduction of conflicts to 
cache sets, and minimizing hot spots in cache). They also show 
that neither higher set-associativities nor large block sizes are 
necessary with split cache organizations. 

Keywords - Cache memories, Split data cache, uniform 
cache access patterns. 

I.  INTRODUCTION  
Existing cache organization suffers from the inability to 
distinguish different types of localities rather than making 
any attempt to take special advantage of the locality type. 
This causes unnecessary movement of data among the levels 
of the memory hierarchy, significant interference between 
unrelated data inside the cache, removal of potentially 
useful data causing cache pollution, unnecessary increases 
in miss ratio and memory access times. At the same time, 
because of non-uniformity in memory access pattern, some 
cache sets are accessed heavily, while others remain 
underutilized.  In order to solve this problem, in our 
previous work [1, 2], we have proposed Split Data cache 
architecture, in which the memory accesses are grouped as 
scalar or array references according to their inherent locality 
and each group subsequently mapped to a dedicated cache 
partition, equipped with architectural constructs built to 
exploit that particular locality type. In this system, since the 
scalar references and array references are no longer 
negatively affecting each other, cache interference, 
thrashing and pollution problems are diminished, delivering 
better performance. In our design, not only both caches  
designed more optimally according to their specific needs, it 

will simplify some other general issues and concerns in 
cache design, such as the associativity, cache block size or 
cache capacity. The selection of proper block size or 
associativity to maximize performance while staying within 
the cost are the hardest choices in designing cache 
memories. In case of embedded systems, total cache size is 
also a big concern. By partitioning the cache, our cache 
system can implement different configurations exploiting 
different cache parameters more selectively and effectively. 
The “array cache” is a direct mapped cache with small 
stream buffer to exploit spatial localities more aggressively 
by (pre)fetching multiple neighboring small blocks on a 
cache miss. Whereas the “scalar cache” is a 2-way (or 4-
way) set associative cache with smaller block sizes to 
exploit temporal locality. The combination of different 
block sizes and associativities together with partitioned 
cache architectures provides an effective solution for 
alleviating the existing problems in cache designs and 
maximizes the effective cache memory space for any given 
cache size and cost. Since significant amounts of 
compulsory and conflict misses are avoided, the size of each 
cache (i.e., array and scalar), as well as the combined cache 
capacity can be reduced. In this work we performed 
comprehensive analysis of cache miss rates by including 
different combinations of cache size, block size and 
associativity. We also report on the frequency of accesses to 
different cache sets by using third and fourth central 
moments (skewness and kurtosis). In this work we have 
shown that use of separate L-1 array data and L-1 scalar 
data cache can lead to significant decrease in cache size and 
number of misses. In this paper we also show that using 
smaller array and scalar caches significantly mitigate the 
problem for embedded benchmarks in terms of improving 
uniformity of accesses to cache sets. 

The rest of the paper is organized as follows. To 
motivate the reader, in Section 2 we discuss related issues 
and performance metrics in more detail. Section 3 describes 
benchmarks and experimental set up used in our evaluation, 
while section 4 presents the results. We present our 
conclusions in section 6. 

II. CONCEPTS 
In this section, we first briefly introduce issues in general 
cache design. Then we will demonstrate how to examine 
cache sets’ usage during a program’s execution.  After that 
we will describe related statistical concepts. Finally we 
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will briefly describe our split data cache 
architecture. 

A. ABC’s of Cache 
For a cache, its performance is dictated by a number of 

parameters, including Associativity, Block size and Cache 
size. Our work is motivated by the observation that it is not 
possible to design a single cache that works well for 
different types of localities and data types. We propose 
multiple data caches designed with different parameters to 
meet the needs of the different data types. 

1) Cache Size: Increasing cache size will reduce capacity 
misses; however as cache size increases, a capacity miss 
will become a conflict miss [6]. On the other hand, Jouppi 
[7] reported that for stream data type, increasing cache 
capacity actually increases cold-start or compulsory misses. 

2) Block Size: The selection of block size depends on the 
needs of the different data types. Increasing block size also 
implies prefetching of data for applications exhibiting 
greater spatial localities, such as the array references. For 
scalar references, it is better to have smaller cache block 
sizes and more cache lines to eliminate conflict misses and 
even capacity misses when smaller caches are used [6]. 

3) Associativity: Direct mapped caches are simpler, 
easier to design. The main disadvantage of a direct mapped 
cache is the high conflict miss ratetypically 40% of direct-
mapped cache misses [7]. Conversely for caches with higher 
associativity the main advantage is lower miss rate, but they 
are more expensive and incur longer access times on hit.  

More information about different cache parameters can 
be found in [6].   

B. Non-Uniform Accesses to Cache Sets 
Zhang [3, 4] reported that with direct mapped L-1 

caches not all cache sets are equally accessed and the 
heavily accessed sets lead to most of the conflict misses and 
thus to poor performance. Zhang [3, 4] classified cache sets 
as frequent hit sets (FHS) and frequently missed sets (FMS) 
if the number of hits and misses are more than twice the 
average and least accessed sets (LAS) if the accesses are 
one half of the average accesses. In “unpublished”[1] we 
repeated Zang’s experiments with a subset of SPEC 
benchmarks, some bio-informatics and embedded 
benchmarks (from MiBench suite). In order to more 
formally describe the behavior of cache access patterns, in 
this work we will convert the accesses and misses into 
probability distributions. We will then measure various 
statistical values knows as central-moments. Most 
commonly used moments are: mean (first moment) and 
standard-deviation (second moment). Higher moments 
describe the shape of the distribution.  The shape of a 
uniform access distribution will have a flat shape compared 
to a normal distribution with a few values clustered around 
the mean and long tails. We will report skewness and 
kurtosis values associated with (data) cache access patterns. 

In order to be self contained, we will describe these 
statistical parameters and their value to our analyses. 

 
1) Skewness: Skewness (third central moment) is a 

measure of symmetry, or more precisely, the lack of 
symmetry.   

 

 
Figure 1: Positive and negative skewness 

A distribution, or data set, is symmetric if it looks the same 
to the left and right of the center point (mean). If the left tail 
is more pronounced than the right tail, the function is said to 
have negative skewness. If the reverse is true, it has positive 
skewness. If the two are equal, it has zero skewness. 

2) Kurtosis:Kurtosis (fourth central moment) is a 
measure of whether the data are peaked or flat relative to a 
normal distribution. That is, data sets with high Kurtosis 
tend to have distinct peaks near the mean, decline rather 
rapidly, and have long tails. This also indicates very few 
values near the peak. Data sets with low Kurtosis tend to 
have a flat top near the mean rather than a sharp peak. A 
uniform distribution would be the extreme case (with zero 
Kurtosis). For our pupose, a highly non-uniform behavior 
results in a high Kurtosis, while a more uniform access 
behavior leads to lower Kurtosis. 

 

 
Figure 2: Kurtosis values 

 
Fig. 3 shows distributions associated with cache hits 

and misses to different sets. We show the distribution with a 
single 64 sets of 32Byte unified data cache, and for 32 sets 
of array and 32 sets of scalar data caches (using our split  
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        Fig 1E : hits scalar 32
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Figure 3: Distribution of cache accesses  

 
data caches), for benchmark dijkstra (from Mibench). The 
main goal of this figure is to illustrate the importance of the 
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shape of the accesses and misses, when the accesses are 
converted to probability distributions. 

C. Split Cache Design 
Fig 4 shows our Split Data cache architecture, with array 
and scalar data caches. Our split data cache  

 

 

 

 

 

 

 

 

Figure 4: split data cache 

 architecture consists of an “array cache” and a “scalar 
cache”. Memory accesses are grouped as scalar or array 
references according to their inherent locality and each data 
group is mapped to a dedicated cache partition. Our array 
cache is also equipped with a small 10-line stream 
prefetching buffer. The stream buffer is a fully associative, 
FIFO buffer specially designed to support direct-mapped 
cache through hardware based prefetching [7]. A miss 
induces the fetching of the missed block along with next  
block stored in the buffer. Our intent is to use the stream 
buffer for prefetched blocks and avoid cache pollution 
(premature data displacement). In this system, since scalar 
references and stream references no longer negatively 
affected each other, cache interference, thrashing and 
pollution problems will be diminished, delivering better 
performance. Specially for array cache, since there is no 
more contamination of scalar data the stream buffer will 
provide significant decrease in cold misses.  

III. SIMULATION ENVIRNMENT                                                              
The descriptions of the benchmarks used in our studies are 
listed in Table 1.We use selected benchmark programs from 
the MiBench suite [9]. MiBench includes benchmarks from  

 
TABLE 1: Descriptions of benchmarks 

 

several representative embedded application domains. In 
this paper we included selected programs from these 
application domains: (1) Automotive and Industrial Control, 

(2) Office Automation, (3) Networking, (4) Security, (5) 
Consumer and (6) Telecommunications.  

Our experimental environment builds on the 
SimpleScalar (version 3.0d) simulation tool set [5] modeling 
an out-of-order speculative processor with a two-level cache 
hierarchy. We rely on default parameters defined by 
SimpleScalar [5].  

IV. RESULTS 
The next subsection presents total references and 

misses. Then we show the values of  third and fourth central 
moments (skewness and kurtosis) to study non-uniform 
access to cache sets.  

A. Results with different parameters 
By changing the block size, cache capacity and 
associativity, attempt is made to obtain the best 
configurations for array and scalar caches. 
 

1) Selection of Cache size 
Several experiments are performed to determine the 

optimum cache size for each data type and the results for 
each benchmark are shown in TABLE 2. This table shows 
the number of references and misses with increasing cache 
sizes for unified cache and for split cache (each direct  

 
TABLE 2: Number of misses with different cache sizes (Direct Mapped)  

 
 mapped and with 8 bytes block size).  Here it should be 
mentioned that the total size of Array and Scalar cache is 

Benchmarks Description Name  

bit counts Test bit manipulation bc 
qsort Computational Chemistry qs 

dijkstra Shortest path problem dj 
blowfish Encription/decription bf 

AES Advanced Encryption Standard AE 
CRC Cyclic Redundancy Check CR 

String search Search mechanism ss 

n
a
m
e 

s 
i 
z 
e 

Unified Array Scalar 
Total 
 Ref. 

Total 
Miss 

Total  
Ref. 

Total  
Miss 

Total  
Ref. 

Total 
Miss 

A 
E 

8K 133927460 8392267 77551107 16 55977972 3448827 
4K 133927597 15893061 77377863 29 56187955 10224831 
2K 133913470 37844548 78162635 7093 55512769 15972202 
1K 133903267 50335956 79229364 20536 54480746 19787067 
512 133890217 57455389 79518950 2657048 54209594 23439879 

d 
i 
k 

8K 81701808 4630365 1491373 25 80237588 968410 
4K 81696527 7383228 1489128 48 80226623 2503228 
2K 81667486 13695622 1231050 207 80463571 7002213 
1K 81647846 18529657 1192468 1184 80505698 12323751 
512 81659148 23944713 1129962 8561 80559269 14993876 

 
b 
f 
 

8K 109796377 2947143 40587790 13 69121381 1192624 
4K 109790778 5923918 40599233 31 69105144 9945644 
2K 109785876 19574058 41030991 2424 68677410 20406296 
1K 109776066 27166084 41172494 5659 68533133 26199914 
512 109756413 31925415 41206622 28101 68490653 29701443 

 
b 
c 
 

8K 5043729 2076 607732 10 4436091 330 
4K 5043900 2125 607721 16 4436083 437 
2K 5043225 2376 607578 25 4435896 662 
1K 5043471 11667 607557 46 4435973 1236 
512 5044080 321924 607661 117 4435961 1783 

C
R 
 

8K 186797013 1989776 133058204 13 53745373 166 
4K 186803525 2288668 133058201 22 53745373 177 
2K 186803526 5873674 133006233 26018 53797339 230 
1K 186803833 9509752 132954272 52024 53849327 297 
512 186803982 23073115 132850321 104053 53953267 432 

s 
s 

8K 1116726 26131 635129 21 483129 14044 
4K 1121016 66634 634226 45 484718 39032 
2K 1120220 113937 634405 93 485622 44493 
1K 1120722 198475 635142 216 486710 78177 
512 1121665 330717 634353 3815 489159 102722 

q
s 

8K 137307939 5969335 47823891 2655 89477832 4975916 
4K 137315853 6946743 47813528 7849 89495840 5982930 
2K 137326611 8698193 47424282 25464 89918603 8246678 
1K 137507348 11065903 46859407 66274 90557423 10992870 
512 137534354 15252322 46961945 165054 90786913 14323730 

buffer Array

CPU 

Scalar

L2 Cache 

Memory 
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equal to the size of unified cache. Hence for the row with 
cache size 8K means that we have 4k-array and 4k Scalar 
caches. From TABLE 2 we can see that our split data cache 
has significantly decreased the number of misses for all 
cache sizes for all benchmarks except for two cache sizes 4k 
and 2k for the benchmark “blowfish”. If we compare results  
8k uniformed cache, 4k-array and 4k Scalar caches), we see  
58.90%, 79.08%, 59.53%, 83.62%, 99.99%, 46.10% and 
16.59% reductions in misses for the benchmarks “AES”, 
“dijkstra”, “blowfish”, “bitcount”, “CRC”, “stringsearch” 
and “qsort” respectively. For both unified and split caches 
we see the gradual decrease misses as we increase cache 
sizes. As mentioned in section 2, an important criterion for 
selecting cache size is the frequency of capacity misses. We 
expect that when separate scalar and array caches are used, 
the scalar cache can be small since the number of capacity 
misses is small with scalar data items. We also expect that 
using a small stream buffer with array cache will allow us to 
significantly reduce the cache size of array cache. For two 
benchmarks, “bc” and “CRC”, the number of capacity 
misses are so low that a tiny 256 byte scalar cache is 
providing better performance (95% better for “CRC”) than 
8k unified cache.  For other benchmarks (except “qsort” and 
“blowfish”) 1k scalar cache and 512 byte array cache (with 
a 10-line stream buffer) provide better results than 8k 
unified cache. For “blowfish” a large 4k scalar cache is 
needed with a smaller array cache.  And t“qsort”,  8k unified 
cache. 

 
2) Selection of Block size 

TABLE 3 shows the number of references and misses 
with increasing block sizes usingn 8k unified cache and 8k 
split cache (4k-array and 4k Scalar caches). From TABLE 3 
we can see that our split data cache has significant decrease 
in number of misses for all block sizes for all benchmarks. 

 
TABLE 3: Number of misses with different block sizes 

N 
a
m
e 

S 
I 
Z 
e 

Unified Array Scalar 
Total 
 Ref. 

Total 
Miss 

Total 
 Ref. 

Total 
Miss 

Total 
 Ref. 

Total 
Miss 

A 
E 
 

32 133910390 8290178 77534341 21 56031082 3081563 
16 133921183 8239429 77432837 18 56108021 2933398 
8 133927460 8392267 77551107 16 55977972 3448827 

d 
i 
k 

32 81699450 1617205 1508783 20 80207908 805859 
16 81700436 2768324 1508683 27 80210176 856485 
8 81701808 4630365 1491373 25 80237588 968410 

b 
f 
 

32 109797005 3301215 41507287 16 68206865 1393702 
16 109796375 3560287 39883295 16 69832598 1415416 
8 109796377 2947143 40587790 13 69121381 1192624 

b 
c 

32 5043447 660 607679 9 4435988 196 
16 5043405 1123 607581 9 4435925 236 
8 5043729 2076 607732 10 4436091 330 

C
R 

32 186797011 1312730 133058201 16 53745378 88 
16 186797012 1338548 133058203 16 53745371 116 
8 186797013 1989776 133058204 13 53745373 166 

s
s 
 

32 1116059 13071 635188 25 482724 7912 
16 1116328 16927 635080 25 483039 10243 
8 1116726 26131 635129 21 483129 14044 

q 
s 

32 137296899 2105032 48459615 4094 88852271 1822313 
16 137301183 3211978 48125758 3160 89221813 2919856 
8 137307939 5969335 47823891 2655 89477832 4975916 

Array and scalar data items exhibit different localities, 
requiring different block sizes. For array data, the simplest 

way to reduce miss rate is to use large block sizes. However 
in a fixed sized cache increasing block size will decrease the 
number of lines, leading to an increase in conflict and 
capacity misses, which is harmful for scalar data. In our 
architecture we can take advantage of both techniques - by 
using larger cache blocks for array caches and smaller block 
sizes for scalar cache. work [2] For this work, as we are 
using stream buffer with our array cache we  increase the 
block size.  

 unified cache, for all benchmarks (except AES) 
changing block size has significant effect on number of 
misses. Whereas for scalar cache, only two benchmarks, 
“qsort” and “stringsearch”, showed similar behavior.  

 
3) Selection of associativity 

 TABLE 4 shows the number of references and misses 
with increasing cache sizes in unified cache and split cache 
with 2-way set associativity and 8 bytes block size.  In our 
test suite, after removing array references, for our scalar 
cache, conflict misses are the main concern. As a result 
increasing the associativity to 2-way leads to significant 

 
TABLE 4: Number of misses with different cache sizes (2-way) 

improvement. If we compare 4k direct mapped scalar cache 
(last column of TABLE 2) with 4k 2-way set associative 
scalar cache (last column of TABLE 4) we see 47.65%, 
68.90%, 97.88%, 50.07% and 14.07% decrease in misses 
for the benchmarks “AES”, “dijkstra”, “blowfish”, 
“stringsearch” and “qsort” respectively. However for two 
benchmarks, “CRC” and  “bitcount” very unusual result is 
obtained. With 8k unified cache, 4k-array and 4k Scalar 
caches there is actually an increase in the number of misses 
with 2-way cache when compared to a direct mapped cache.  
Because of the lack of temporal locality, the stream 
references will cause more compulsory misses than conflict 
misses and direct mapping with prefetching will be the 
better option for an array cache.  

N
n
a
m
e 

s 
i 
z 
e 

Unified Array Scalar 
 

Total 
 Ref. 

 
Total 
Miss 

 
Total  
Ref. 

 
Total  
Miss 

 
Total  
Ref. 

 
Total 
Miss 

A 
E 
 

8K 133713457 987382 77848529 16 55831952 1805293 
4K 133717655 2696452 77389542 29 56261928 4729790 
2K 133728044 14677571 77560782 3217 56089551 10957994 

d 
i 
k 

8K 81722379 2884265 1524280 16 80209668 301108 
4K 81721479 3940987 1498052 27 80235733 849784 
2K 81708055 6501822 1466076 87 80262740 2166106 

b 
f 
 

8K 109717681 35830 42516551 13 67197858 25267 
4K 109717724 1370778 41047216 24 68663526 1260416 
2K 109707348 3945244 40516095 3212 69189954 12661708 

b 
c 
 

8K 5043878 1957 607494 10 4435784 538 
4K 5043539 1976 607592 16 4435896 417 
2K 5043737 2030 607796 25 4436160 429 

C 
R 
 

8K 186803516 2400 133058219 11 53745335 437 
4K 186803520 2428 133058210 20 53745358 302 
2K 186803530 2022743 133006234 26016 53797345 221 

S 
S 

8K 1117744 9980 633596 18 483288 7012 
4K 1118454 15056 634794 34 483338 13545 
2K 1119473 30948 634895 69 483530 15663 

q
s 

8K 137288564 4782955 47864653 2468 89433832 4275591 
4K 137291461 5490387 47819079 6372 89480927 4854223 
2K 137295563 6467058 47764804 23609 89548311 5441755 
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B. Statistical Analysis 
In this section, we are going to perform statistical analysis to 
more carefully analyze the benchmarks. 
 

1) Selection of Cache size 
TABLE 5 shows the skewness and kurtosis values with 
increasing cache sizes for unified cache and for split cache 
(each direct mapped and with 8 bytes block size). From the 
values presented in TABLE 5 for smaller caches, scalar  
 
TABLE 5: Skewness and Kurtosis values with different cache sizes (Direct 

Mapped)  

 
cache portion of split data caches show better uniformity 
(smaller kurtosis and skewness), except rAES. For most of 
the benchmarks, array cache portion of the split cache also 
show better uniformity when using smaller caches. For 
several applications, array caches do not appear to be very 
useful. The advantage of split caches, in terms of 
uniformity, disappears with larger caches. 

2) Selection of Block size 
TABLE 6 shows the skewness and kurtosis values with 

increasing block sizes using 8k unified cache and 8k split 
cache (4k-array and 4k Scalar caches). For most 
benchmarks and block sizes (except all block sizes for 
“AES” and block 8 size for benchmarks “blowfish” and  
“bitcount”) the scalar data shows more uniformity resulted 
in lower kurtosis values.  In some benchmarks (“dijkstra”, 
“CRC”, “stringsearch” and “qsort”) we have huge 
reductions in kurtosis values for scalar caches. For array 
cache, again for most benchmarks (except all block sizes for 

“AES” and “bitcount”, block 32 for “dijkstra”, block 8 for 
benchmarks “blowfish” and “qsort”) we have considerable 
decrease in kurtosis values. 
 

TABLE 6: Skewness and Kurtosis values with different block sizes 

 
3) Selection of associativity 

TABLE 7 shows the the skewness and kurtosis values with 
increasing cache sizes in unified cache and split cache, each 
with 2-way set associativity and 8 bytes block size. If 

 
TABLE 7: Skewness and Kurtosis values with different cache sizes (2-

way) 

we compare last column of TABLE 5 and last column of 
TABLE 7, we can say that for scalar caches higher 
associativity improves uniformitity.  On the other hand, for 
Array caches, if we compare the kurtosis values for direct 
mapped and 2-way (sixth column of TABLE 5 and sixth 
column of TABLE 7) we can see that direct mapping is 
definitely the better option with more uniformity. 

V. CONCLUSION 
The goal of a computer architect is to maximize 

performance while staying within the cost and power 

Name Cache 
size 

Unified Array Scalar 
Skew 
ness 

Kurtosis Skew 
ness 

Kurtosis Skew 
ness 

Kurtosis 

A 
E 
 

8K 4.14 34.04 16.34 316.07 18.95 396.03 
4K 3.41 19.82 13.08 191.42 7.27 83.99 
2K 1.66 5.24 9.40 96.09 2.14 10.35 
1K 0.74 2.65 5.56 35.23 1.24 4.84 
512 0.97 4.04 2.61 9.67 0.69 2.55 

d 
i 
 

8K 16.96 324.10 12.28 175.58 6.17 62.0 
4K 4.24 29.99 12.81 186.86 3.61 23.49 
2K 0.94 4.18 9.34 94.15 2.75 11.54 
1K 0.34 2.19 5.60 33.21 1.53 5.55 
512 0.08 1.91 1.65 4.52 3.12 11.18 

 
b 
f 
 

8K 0.33 1.78 17.83 360.09 6.35 47.62 
4K 18.67 390.47 14.51 223.21 2.79 9.08 
2K 12.08 172.50 11.18 126.00 2.20 6.79 
1K 7.41 70.94 7.702 60.83 1.42 3.50 
512 4.38 28.58 4.69 24.74 0.56 1.64 

 
b 
c 
 

8K 0.33 1.78 17.83 357.29 6.57 67.97 
4K 4.36 27.79 13.54 201.89 3.87 19.11 
2K 5.44 38.18 10.37 113.80 2.26 8.21 
1K 11.17 125.96 7.49 58.73 2.12 8.62 
512 5.38 30.04 4.60 24.08 1.21 4.27 

C 
R 
 

8K 6.91 106.39 19.71 416.44 5.37 44.26 
4K 6.30 62.65 14.84 230.42 5.02 34.80 
2K 7.60 66.33 11.18 126.00 3.98 22.21 
1K 6.29 40.62 7.81 62.01 3.46 16.25 
512 4.28 19.37 2.78 8.77 5.38 30.03 

S 
S 

8K 25.18 736.84 20.19 436.30 3.00 16.14 
4K 6.28 42.83 15.44 243.96 10.02 112.64 
2K 5.25 36.06 10.96 122.78 6.84 53.94 
1K 2.32 8.76 7.54 59.12 2.75 9.99 
512 1.53 4.61 1.17 2.95 3.56 17.57 

qs 8K 2.02 11.96 16.46 291.93 2.02 8.22 
4K 1.66 6.98 12.47 168.57 10.30 114.38 
2K 9.43 97.18 9.54 98.11 4.31 20.45 
1K 3.79 16.38 6.54 46.97 1.63 4.06 
512 1.45 3.68 0.89 3.02 1.29 4.36 

Name Block
Size 

Unified Array Scalar 
Skew 
ness 

Kurtosis Skew 
ness 

Kurtosis Skew 
ness 

Kurtosis 

A 
E 
 

32 4.77 30.87 10.48 115.3 7.69 69.44 
16 7.55 74.92 12.68 182.1 13.17 191.82 
8 4.14 34.04 16.34 316.0 18.95 396.03 

d 
i 
k 

32 9.04 94.03 10.56 116.5 3.2 18.2 
16 11.83 156.03 11.26 144.6 5.44 47.36 
8 16.96 324.10 12.28 175.5 6.17 62.06 

b 
f 

32 15.75 250.70 9.97 107.4 7.03 59.71 
16 22.26 500.84 14.18 215.9 6.52 54.26 
8 0.33 1.78 17.83 360.1 6.35 47.62 

b 
c 
 

32 5.25 36.63 9.21 94.42 3.44 16.33 
16 4.98 38.43 13.11 190.1 5.34 39.93 
8 0.33 1.78 17.83 357.2 6.57 67.97 

C 
R 
 

32 13.63 205.98 10.90 121.7 6.57 49.07 
16 14.44 275.19 15.51 245.2 5.56 40.40 
8 20.04 414.42 19.71 416.4 5.37 44.26 

 
ss 

32 12.48 179.70 10.53 116.1 1.94 6.05 
16 18.17 376.43 14.96 233.4 2.54 9.86 
8 25.18 736.84 20.19 436.3 3.00 16.14 

qs 32 13.56 197.36 11.14  6.70 49.87 
16 19.71 423.02 15.20 237.5 13.97 212.71 
8 2.02 11.96 16.46 291.9 2.02 8.22 

Name size Unified Array Scalar 
 

Skew 
ness 

 
Kurtosis 

 
Skew 
ness 

 
Kurtosis 

 
Skew 
ness 

 
Kurtosis 

A 
E 
 

8K 6.45 64.27 16.34 316.0 14.36 270.21 
4K 17.16 350.28 14.18 216.5 3.80 30.96 
2K 2.43 13.38 11.18 126.0 3.53 22.07 

d 
i 
k 

8K 1.52 18.02 15.00 261.2 12.88 182.62 
4K 10.60 144.00 14.05 212.4 7.61 70.21 
2K 3.10 15.87 10.59 116.6 3.65 18.92 

b 
f 
 

8K 0.33 1.78 17.83 360.1 7.27 64.77 
4K 13.77 198.88 13.82 208.7 2.67 8.33 
2K 4.16 25.33 11.18 126.0 1.53 3.49 

b 
c 
 

8K 0.33 1.78 17.83 357.3 0.88 4.62 
4K 0.99 3.77 13.54 201.9 1.18 6.11 
2K 0.64 2.94 10.37 113.8 3.23 15.88 

C 
R 
 

8K 0.33 1.78 18.14 362.7 1.28 7.28 
4K 2.95 20.73 14.50 222.7 2.52 14.91 
2K -0.11 1.35 11.18 126.0 4.28 25.65 

S 
S 

8K 4.48 33.17 17.20 343.2 2.21 8.41 
4K 2.93 14.58 15.26 240.3 4.86 37.28 
2K 13.60 204.20 10.93 122.4 4.62 26.17 

qs 8K 1.56 4.02 16.76 301.3 1.57 6.387 
4K 1.36 3.78 12.12 159.6 1.42 7.64 
2K 0.53 1.72 9.60 99.33 3.00 16.34 
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constraints. It is difficult to achieve a compromised cache 
design that works with data exhibiting conflicting behaviors.  
This work shows that using separate (data) caches for array 
data and scalar data items, we can separate these concerns 
and design caches that achieve optimal performance for 
different data items. Another significant achievement of this 
work is the ability to include prefetching into embedded 
systems. While traditional prefetching techniques have been 
explored [6], (premature) prefetching can adversely affect 
performance if it leads to cache pollution by displacing 
needed data in an untimely manner. This is the primary 
reason for not using pre-fetching in embedded systems. 
However we show that a carefully designed cache system 
not only solves the deficiencies of general prefetching, it 
also solves the problems of stream buffers. Jouppi’s analysis 
[7] included a stream buffer for a unified data cache, and the 
buffer was flushed every time a scalar data is accessed 
(since stream buffers assume contiguous data items). In our 
study, because we are removing scalar data from array 
caches, stream buffers associated with array cache are 
flushed less frequently and provide a decrease in the number 
of misses in the array cache. 

As more cores (processing elements) are included in a 
single chip, it is likely that the sizes of per core L-1 caches 
will become smaller and it becomes more critical to improve 
the use of L-1 caches. In this work we have shown that 
using smaller but separate L-1 array data and L-1 scalar data 
cache, instead of a larger single L-1 data cache, can lead to 
significant performance improvements. We have not only 
achieved significant reduction in cache size, number of 
misses, we also have showed that as we reduce the cache 
sizes the uniformity in cache access pattern improves 
significantly.  However, we do not claim that split data 
caches completely solve the non-uniformity of cache 
accesses. We contend that different applications need 
different approaches to solve the non-uniform accesses. In 
some cases our split-caches are adequate. In some cases 
profiling and compile time analyses may be adequate to 
relocate data that maps to highly utilized sets. Currently we 

are exploring how profiling and compile time analyses can 
be used to uniformly distribute data among all cache sets. 
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