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Abstract

The disparity between processing and storage speeds can

be bridged in part by reducing the traffic into and out of

the slower memory components. Some recent studies reduce

such traffic by determining dead data in cache, showing

that a significant fraction of writes can be squashed before

they make the trip toward slower memory. In this paper,

we examine a technique for eliminating traffic in the other

direction, specifically the traffic induced by dynamic storage

allocation. We consider recycling dead storage in cache to

satisfy a program’s storage-allocation requests.

We first evaluate the potential for recycling under favor-

able circumstances, where the associated logic can run at

full speed with no impact on the cache’s normal behavior.

We then consider a more practical implementation, in which

the associated logic executes independently from the cache’s

critical path. Here, the cache’s performance is unfettered by

recycling, but the operations necessary to determine dead

storage and recycle such storage execute as time is available.

Finally, we present the design and analysis of a hardware

implementation that scales well with cache size without sac-

rificing too much performance.

Categories and Subject Descriptors B.3.2 [Memory struc-

tures]: Design styles—Cache memories; C.0 [Computer

Systems Organization]: General—Hardware/software in-

terfaces; D.3.4 [Programming Languages]: Processors—

Memory management (garbage collection)
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1. Introduction

The memory wall (the gap between processing and storage

speeds) remains of concern to computer architects and ap-

plication developers. The use of larger caches, particularly

with newer sub-30nm technologies, will lead to higher en-

ergy consumption relative to energy consumed by the pro-

cessing elements. Energy consumption also increases with

higher traffic between main memory and caches. The inclu-

sion of higher-density storage components for main mem-

ory (such as flash and phase-change devices [24]) increases

the storage capabilities of a platform, but with an associ-

ated increase in access time and/or limitations on how of-

ten the storage can be written before wearing out (write en-

durance). These technologies also increase the latency and

energy consumption disparity between reads and writes, of-

fering greater reward for techniques that avoid or suppress

write operations to main memory. In terms of a storage hier-

archy, the wall becomes less of a performance problem when

computation can be shifted toward the local cache memories

and away from main memory.

There is interest therefore in reducing the traffic between

CPU and memory to save time, power, and wear. Several

approaches for silencing stores from the CPU to memory

have been proposed [18–20]. Those techniques generally try

to show that a store is unnecessary—that it can be squashed

before it makes the trip to main memory.

Recently, a technique [26] was introduced that identified

a new class of squashable stores in garbage-collected lan-

guages. That technique discovered data in cache that was

dead, in the sense that the application could never subse-

quently reference that data. Such data, even if marked dirty,

need not be written on eviction. For languages with explicit

deallocation, the death of data in cache is indicated directly

by the application, and the stores associated with such data

can also be squashed [8].

While finding and squashing dead stores in cache has ben-

efits of its own, we investigate here the further use of such

dead storage. We seek to recycle the dead storage to sat-

isfy subsequent storage-allocation requests. The usefulness

of storage mapped to cache is thus extended, as the storage



for one deceased object is bequeathed to a newly instantiated

object. While we investigate this idea for the more difficult

case of garbage-collected languages, its application for lan-

guages with explicit deallocation is straightforward.

Our paper is organized as follows. Section 2 presents

some background and related work. Section 3 presents our

main idea—recycling dead storage in cache—and evaluates

it under optimal circumstances. A more realistic and practi-

cal treatment is presented in Section 4. Section 5 establishes

metrics for storage requests and profiles the sizes of blocks

available for recycling using our technique. Those results

motivated our investigation of an extended form of our ap-

proach, which allows larger storage blocks to satisfy requests

for smaller storage. The timing of the logic needed to imple-

ment our technique is presented in Section 6. The impact of

our technique on a program’s cache hit rates is presented in

Section 7.

2. Background and Related Work

Our work builds on techniques for squashing (also called

silencing) stores. A squashed store is a write from CPU or

(L1) cache toward main memory, perhaps to to an interven-

ing (L2 or beyond) cache, that can be aborted because it is

provably unnecessary. The source of such stores could be

an actual store instruction, but it could also be a write-back

from cache caused by eviction. The seminal work in this

area squashed stores because the cached value was already

present in memory [18, 19], or because the cached value was

temporally consistent with what could have been stored in

memory [14, 20].

More recently, research has identified storage in cache

that might disagree with values in main memory, but whose

stores are squashable because the cached values can never

again be referenced by the program. We are especially in-

terested in this class of squashed stores. For languages with

explicit deallocation, the free or delete instructions can

be forwarded to the cache so that the associated cached lo-

cations can be marked non-dirty [8, 16, 21]. Subsequent

eviction would then refrain from writing those values to

main memory. For languages featuring garbage collection,

an analogous approach [25] takes advantage of generational

garbage collection. Following a nursery collection cycle, the

entire nursery is known to be dead and cache scrubbing in-

structions are issued to the cache. The cache can then squash

writes of dead data back to main memory. When the size of

the nursery is similar to that of the last level cache (8M), this

approach squashed about 60% of writes to main memory.

Also for garbage collected languages, another approach

using a form of reference-counting limited only to the cache

has been proposed and evaluated [26], (hereafter, called

CORC for cache-only reference counting). As a side effect

of using reference counting, CORC identifies dead storage

at the object level immediately upon object death. That

work showed that an average of 30% of the bytes written

back from L1 cache (32K) to main memory were squashed

by finding dead but dirty cache lines. For an L2 cache

(512K), 50% of its written bytes were squashed. While this

approach finds squashable writes from the hardware side,

cache-scrubbing [25] relies on a software garbage-collection

cycle to discover dead storage. That cycle would surely evict

all data in L1 and most data in L2 caches. On the other hand,

CORC’s hardware approach squashes writes in L1 and L2,

squashing a similar amount of traffic (50% using only a

512K cache) as compared with cache scrubbing (60% us-

ing an 8M cache). These hardware and software approaches

are complimentary, and future work could investigate their

concurrent use.

Because we are interested in finding recyclable storage as

early as L1 cache, we choose to build upon CORC, whose

approach can be summarized as follows:

• The cache maintains a descriptor for each allocated ob-

ject, which includes the object’s size and reference count.

These descriptors are created when an allocate instruc-

tion is sent to the cache, specifying the address and size

of the allocated object.

Storage allocated in this manner is obtained as usual

from the runtime heap, but the cache is informed of the

allocation by a special instruction so that it can track the

liveness of the storage, as described below.

• The cache is equipped with logic to maintain reference

counts for objects. The CORC studies showed a two-bit

reference count sufficed for almost all objects whose

death could be determined. With two bits for reference

counts, the counts must stick [1] when they reach 3.

• The cache acts on instructions that affect reference

counts, such as reference loads and stores, but caches

ordinarily respond to those instructions anyway to pro-

vide or modify data. The main difference here is that the

store of a reference (pointer) is distinguished from the

store of data. A reference store that points away from

p and toward q causes p’s reference count to decrement

and q’s reference count to increment (assuming both are

non-null).

• All reference-counting structures and activity are con-

fined to the cache. The main memory is oblivious to all

aspects of the CORC approach. Thus, the cache is able to

track references to an object’s lines only while they reside

continuously in cache since their allocation.

• Success for CORC is a race between determining objects’

death and write-backs (due to eviction or cache flush)

of the objects’ cache lines. If a line is evicted prior to

determining its associated objects’ death, then the write-

backs must be realized. Alternatively, if all objects in a

line are determined to be dead, then that line’s write-back

can be squashed.
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Figure 1. Cache lines holding objects T and U. These ob-

jects occupy 60 and 68 bytes, respectively

Figure 1 shows objects T and U, of sizes 60 and 68 bytes,

respectively, allocated in 5 cache lines. Suppose the stack

points to T and then some field in U points to T, causing its

reference count to reach 2. If the stack drops its reference

to T and the field in U points away from T, then its reference

count drops to 0 and it is found dead by CORC. A subsequent

cache flush would result in the following:

• Line 1’s write-back would certainly be squashed, because

the entire line has been determined to be dead prior to

eviction.

• The squashing of the other two lines associated with T is

less certain. If no other data has been allocated to line 0,

then its writes can be squashed. However, U partially

occupies line 2. Unless U is found to be dead prior to

line 2’s eviction, its write-back cannot be squashed.

• When an application-level garbage collection cycle be-

gins, CORC suspends its activities. At the end of the cycle,

CORC restarts cold.

Our approach builds on the following observation: while

T’s write-backs may not be completely squashed, the stor-

age associated with T, across all lines resident or evicted,

is nonetheless known to be dead. If the application sub-

sequently allocates some other 60-byte object V, then it

could be given the storage that was once associated with T.

This recycling of T’s storage will make the associated lines

live again, but the writes of all of T’s data are effectively

squashed when overwritten in cache by V. Using CORC to

identify dead space versus waiting for the garbage collector

allows for heap space to be recycled between garbage collec-

tion cycles, effectively reducing the total heap space used for

a given set of object allocations. This can lead to increased

program execution time before a collection is needed.

In summary, as we describe in Section 3, we propose to

recycle the storage from T to V, if a sufficient fraction of T’s

bytes are still resident when V is allocated.

Other related work Because CORC collects recently allo-

cated (young) objects in cache, the technique is a form of

generational collection [22], with the cache serving as an un-

usual form of nursery [2]. Because most collections would

occur in the nursery, attention has been paid to making the

collection of young objects more efficient [13]. Another as-

pect of the CORC approach is that it applies reference count-

ing only to certain storage, namely objects that reside in

cache. Selective application of reference counting has been

considered with success [5].

A thorough study [6] of the costs of various styles of

garbage collection has established the following:

• The cost of a write barrier is relatively low for most

benchmarks. Such barriers are necessary for generational

collectors, so most collectors impose a write barrier. The

CORC approach uses this same write barrier to inform

the cache of reference stores. It also requires an allocate

barrier, but the number of allocations is expected and

observed to be lower than the number of writes.

• Reference counting incurs substantial overhead when im-

plemented throughout all memory. Neither our approach

nor the CORC approach upon which we build requires any

reference counting outside of the cache’s logic, and we

show in Sections 4 and 6 that the required logic executes

sufficiently quickly to be effective.

• A hybrid generational reference-counting approach was

shown to provide good performance [6], with reference

counting applied only for certain mature objects. Our ap-

proach essentially conducts reference-counting in a form

of a nursery (the cache) for free.

A large-scale hardware-assisted garbage collector has

been investigated [17], which deploys reference counts in

hardware throughout all of memory. Objects that have been

collected are made available for recycling (to the software

allocator) using a table maintained by hardware. Their ap-

proach is complete up to the point that reference counting

can be successful, and their scheme integrates well with

software-based collectors that can determine the death of ob-

jects involved in reference cycles (reference-counting cannot

determine the death of such objects). While the cache perfor-

mance of two of their benchmarks was improved, all of the

other 8 benchmarks suffered more misses (up to 4%) in L1

cache. For L2, all benchmarks saw between 0.6% and 6.8%

more misses. With our approach, we see increased cache hit

rates across all benchmarks.

An object-caching coprocessor has also been designed [9]

and evaluated [10]. In that work, newly created objects re-

side in a special cache that is reference counted. A bit vector

in hardware keeps track of available locations for recycling

storage. The results reported in terms of squashed writes are

similar to the CORC results for L2 caches [26]. By contrast,

our approach leverages a traditional cache: the lines associ-

ated with an object are evicted as usual based on program be-

havior, but we opportunistically recycle storage that is fully

present in the cache, if it is found to be dead by CORC.

A reference-counting and recycling scheme was proposed

for the Lisp language [23]. All cells are the same size, and

the cache must wait for the reference-counting operations to

complete before any other service can be offered. We investi-

gate recycling for programs written in Java, whose requests



for storage can be diverse in size. We also examine the ex-

tent to which the operations related to recycling storage can

be performed off of a cache’s critical path while still offering

reasonable levels of storage recycling.

Confirming the benefits of reducing writes for wear-

limited devices, one study shows the dramatic extent to

which the life of phase-change memories (PCMs) can be

extended by minimizing write-backs [12].

Finally, while all of the above work, including our own,

benefits from short-lived objects, researchers have tried to

reduce the bloat of programs by static and dynamic analy-

ses [4]. To date, the tools resulting from that research have

not been made available, so experimentation and comparison

could be the subject of future work.

Contributions Based on the work described above and the

results we present in the rest of this paper, our contributions

can be summarized as follows:

• We implement storage recycling in cache for storage

blocks of diverse size. We obtain very good results under

ideal circumstances. In an L1 cache, approximately 28%

of our benchmarks’ storage allocation requests were sat-

isfied by recycling storage on average. For an L2 cache,

the rate rises to almost 50%.

• We evaluate the effectiveness of CORC and our storage re-

cycling when the associated operations are moved away

from a cache’s critical path. Here, the relative speed

of our logic compared with the cache’s logic yields

curves that show the point beyond which our approach

is no longer effective. Based on timing obtained from a

hardware implementation, we present results for an off-

critical-path implementation under realistic conditions.

• Unlike a traditional nursery as used in [25], the storage

we recycle is known to be present in cache. We present

results showing the effects of storage recycling on alloca-

tion hit-rates and overall hit-rates.

3. Recycling Dead Storage in Cache

In this section, we describe our approach for recycling stor-

age in cache that has been determined to be dead. Our goal

here is to reuse such storage so that it can satisfy subsequent

storage-allocation requests. For our purposes here, recycling

can take place only when the following conditions are met:

• The recycled storage must have been determined to be

dead. We employ the CORC approach described in Sec-

tion 1.

• The cache lines associated with the recycled storage must

be fully present. While relaxing this constraint would

yield a larger fraction of recycled objects, we obtain

good results with this constraint in effect and this has the

best promise of improving a program’s cache hit rate, as

evaluated in Section 7.

Conceptually, we deploy logic in the cache to keep track of

available storage of various sizes [9, 23]. In the example

of Figure 1, once the death of T has been observed, line 0

records a free slot of size 60 bytes, at the (virtual) address

for T. The other lines associated with T need not record the

available storage. An application essentially encounters a

memory-allocation (malloc) barrier at a storage-allocation

request. The barrier executes an instruction similar to the

PowerPC’s dcbz instruction, at which time the cache’s avail-

able storage table is consulted. A suitable virtual address is

provided and returned by the instruction if the requisite stor-

age is available in cache, and the in-cache storage can be

initialized to 0 as would be the case with dcbz. Otherwise,

null can be returned and the run-time system can then turn

to the storage heap to satisfy the request.

Deploying such logic directly in a cache could interfere

with the cache’s normal operations, which are intended to

suffer no unnecessary delays. We consider moving this logic

off the critical path in Section 4, but we first evaluate the ef-

ficacy of our approach on some Java benchmarks, assuming

the logic associated with determining storage availability is

executed in the cache, synchronously with all related cache

behavior.

3.1 Approach

To facilitate comparison, we obtained traces for the 6 Da

Capo [7] benchmarks studied in [26]. Those traces were gen-

erated by instrumenting the OpenJDK (version 1.8.0) JVM

(Java Virtual Machine). The traces captured allocation re-

quests, storage-referencing requests for the heap and stack,

method calls and returns, and onset and completion of the

JVM’s garbage-collection cycle. Each of these traces cap-

tured the first 50 million lines of JVM activity. Within each

trace, the first 10 million lines are attributed to JVM startup

and benchmark harness (Da Capo) initialization; the remain-

ing 40 million lines are reflective of the rest of each bench-

mark’s execution [26]. These traces contain only those in-

structions necessary to implement the CORC approach: arith-

metic instructions, register-only instructions, and jump in-

structions do not appear in the traces. We return to this point

in Section 4.2.

Some of our experiments were run on the full, 50 million

line traces; others were run by sampling, skipping the first

10 million lines and applying simulation to the next 5 million

lines. After 10 million lines, the benchmarks move beyond

their start-up phase and exhibit their steady-state behavior.

For a 32K-byte cache, the longer traces could take several

days to complete simulation; the shorter ones completed in

a few hours. The 512K-byte cache simulations run much

longer, with some full-trace simulations taking up to a week

to complete.

We implemented the CORC technique to determine dead

storage in cache, with one important change: we introduced

a virtual memory (VM) system in the simulation for the

following reasons:



• Real systems using our approach will most likely support

virtual memory.

• Our cache must respond to a storage request of b bytes by

furnishing the address of an available block. That address

will subsequently be used by the application, so it must be

valid in the application’s address space, which is virtual.

For the results reported here, our VM consisted of 1024-byte

pages. Virtual addresses were 64 bits, and physical addresses

were 32 bits.

Our recycling approach works as follows. We first de-

scribe how information related to available object sizes is

maintained:

• CORC creates an object descriptor for each allocated ob-

ject T that contains the virtual address and size of T.

• The recycler is initialized with a value indicating the

required fraction of an object that must be resident for

the object’s storage to be considered recyclable. For the

results presented here, that fraction is 1.0.

• When any line is evicted, the objects contained in that

line are updated to reflect the number of bytes still resi-

dent in cache for those objects. Recalling Figure 1, some

lines may be fully occupied by T, but (at most 2) other

lines may hold only the first or last portions of T.

• Any objects dropping below their required fraction that

must be present become ineligible for recycling.

It is possible that future program behavior could reload

an object’s lines, but CORC does not maintain informa-

tion outside the cache. Thus, any subsequent stores of

reloaded lines cannot be squashed, and we currently do

not consider any associated objects’ storage for recy-

cling.

• When CORC discovers the death of an object T in cache,

the storage associated with T becomes available for recy-

cling, if that storage is still eligible as described above.

While the number of available block sizes could be large,

we show in Section 5 that a small assortment of sizes

could be maintained while still satisfying most requests.

• Post-mortem, any line evictions of T’s storage cause an

update of the fraction of resident bytes, and if that drops

below the required fraction that must be present, T’s

storage becomes ineligible for recycling.

The set of available storage blocks is maintained by size. The

first element of each size’s list is referenced by a (hardware)

table. The internal list’s links for each element e are imple-

mented using e’s in-cache data, which is resident in cache

but dead. The double links facilitate removing an element

when its fraction of resident bytes drops below the required

value. Otherwise, each list is manipulated only at its head:

freshly dead objects of size b are inserted at the beginning of

b’s list, and requests for storage of size b are serviced at the

list’s head. Recycling then occurs as follows:

• When an object allocation request for b bytes is encoun-

tered, the software barrier issues a single instruction to

poll the cache for a block of storage whose size could

satisfy the request.

• If a block of size b is available, it is removed from its free

list, initialized to 0, and returned to the application for

use. Otherwise, null is returned.

• In a live implementation of our approach, the application

would use the recycled block as if it had been initialized

and returned by the heap allocator.

However, our simulation traces were produced by a JVM

without a recycler. Thus, while we may find a suitable

block of b bytes at address p, the application’s trace

continues to reference storage by the address (say, q)

returned by the heap allocator. We therefore take the

following actions:

We simulate the action of our recycler in the trace by

dynamically remapping all references in the interval

[p, p + b) to the interval [q, q + b). Our simulator’s

VM component facilitates this mapping.

If an actual garbage-collection cycle is run during

the trace, we abandon all information pertaining to

recycling dead storage at the onset of the cycle. When

the cycle completes, we restart the determination of

dead storage and blocks available for recycling.

The traces used for these experiments were generated

on large heaps to minimizes the number of garbage-

collection cycles. On average, each trace had 2 such

cycles.

3.2 Experiments for an L1 Cache

Our experiments here concern a L1-type cache with the

following characteristics: 32K bytes total, 32-byte lines, 2-

way associativity, write-backs performed at the line level.

Figure 2 shows the fraction of write-backs squashed for the

L1 cache (and the L2 cache described below). On average,

23% of the bytes that would have been written to memory

were squashed by determining dead storage in cache.

Note that the squashed bytes are those that would have

otherwise been forced from the cache and written to memory.

In CORC, a line is squashed only if the entire line is known

to be dead. Recalling Figure 1, the bytes in line 1 fall into

this category. The other portions of T, while unsquashable,

may nonetheless be available for allocation along with the

squashable bytes of T. Thus, more storage may be available

for recycling than those measured as squashed bytes, and

the pool of bytes available for recycling may exceed those

associated with Figure 2. Another point here is that a given

sequence of dirty bytes can only be squashed once before

being reallocated. On the other hand, that same sequence of

bytes could be recycled an arbitrary number of times if they

become dead prior to a subsequent request.



Figure 2. Our reproduction of the results from [26], but

with a virtual memory interposed between the program and

the storage subsystem. The minor differences between our

results and [26] are attributable to the VM’s assignment

of physical addresses, and the associated changes to their

mapping to cache sets.

We now turn to measuring the effectiveness of recycling

dead storage. The experiments reported here were conducted

as follows:

• All logic needed to find and recycle dead storage is per-

formed synchronously with cache operations. We report

on relaxing this constraint in Section 4.

• As illustrated in Figure 1, an object can (and for 32-

byte cache lines, typically will) span multiple cache lines.

While write-backs can be squashed for any of those lines

under the right conditions, we insist here that all of an

object’s bytes be fully present in cache to be eligible for

recycling.

This is managed by shooting down available-storage en-

tries when any of their cache lines are evicted.

Figure 3. Fraction of allocation requests that were satisfied

by the cache, using recycled storage.

Figure 3 shows the fraction of allocation requests that

were satisfied in the benchmarks’ executions. For the L1 cache,

an average of 27% of the allocation requests were satisfied

by the cache itself. For most of the benchmarks, the re-

ported aggregate recycling values in Figure 3 were observed

throughout their execution. The sunflow benchmark was

an exception: during a long period of its execution, every

storage request was satisfied by recycling.

3.3 L2 Cache

Figures 2 and 3 also show results for a larger, 512K-byte

cache, which could reasonably serve as an L2 cache. For our

experiments, this cache had 64-byte lines, and 4-way associa-

tivity. Because determining dead storage in cache is often a

race between detection and eviction, we see (as did [26]) im-

proved performance on the L2 cache. The lusearch bench-

mark is markedly improved in Figure 2, and the availability

of the extra dead storage translates into ∼3x improvement

for object recycling in Figure 3. On average, the L2 cache

allowed nearly 45% of the application’s storage requests to

be satisfied directly by the cache.

3.4 Recycling: Objects or Bytes

Figure 4. Results are shown for the 32K L1 cache. Objects

refers to the fraction of object requests that were satisfied by

the cache. Bytes refers to the fraction of all allocated bytes

that were satisfied by the cache.

The cost of satisfying a storage allocation request in-

volves some relatively fixed cost, regardless of size, along

with some cost related to the size of the request.

Figure 4 shows the fraction of recycling requests, by

object count and by bytes allocated. The difference between

the two can be explained by the skewed nature of allocation

size requests. As we report in Section 5, most allocation

requests are for small objects, such as 24, 32, or 40 bytes. Of

course, the benchmarks do contain some requests for much

larger storage, such as 32K bytes. Those requests are likely

unsatisfiable in L1 cache, and they contribute to the overall

storage allocation byte count.

Because most objects are small, and because each alloca-

tion request requires some constant overhead to find suitable

storage, object-allocation-count may be a more important



statistic. Moreover, for Java, the storage must be initialized

to zero. While some systems offer cache instructions (e.g.,

PowerPC’s dcbz) to facilitate this initialization, any storage

not present in cache would incur a cache fault. With our ap-

proach, if storage is found in-cache, it is already present, so

no faults are incurred. The instruction that requests the stor-

age can also trigger the initialization, which can proceed con-

currently in all cache lines associated with the storage.

4. Caches and Critical Paths

Cache systems are designed for low latency, but the results

presented thus far assume that all computations to determine

dead and recyclable storage are carried out in the cache.

Moreover, actions taken on behalf of a single cache instruc-

tion are thus far presumed to execute before the next cache

instruction. As an extreme example, consider a reference p

within an object that is be set to null by a JVM putfield

instruction. If p was not previously null, and pointed to

some object q, then q’s reference count must be decremented.

If that count reaches 0, then any objects referenced within q

must have their reference counts decremented, which could

cause further object deaths. In the worst case, this cascade of

object deaths could happen in every cache line. During this

activity, the cache would be unavailable to handle loads and

stores issued by the application.

While the results reported in Section 3 are encouraging,

it is unreasonable to insist that all of the associated opera-

tions should be performed synchronously by a cache. In this

section, we present the following:

• If the logic to support our approach is computed off the

cache’s critical path, how much slower can that logic run

while still providing good results?

• Based on the profile of loads and stores relative to non-

storage operations, how well can off-the-critical-path

logic perform when compared to the results from Sec-

tion 3?

In Section 6 we justify this section’s results by presenting

timing for a circuit to implement our approach.

4.1 Supporting Logic Off the Critical Path

Based on the above observations, we redesigned our ap-

proach so that the cache portion of the simulation handles

only the traditional cache traffic. Moreover, we assume the

cache is non-blocking [3] so that it operates at the best pos-

sible speed. All nonessential activity is relegated to a queue,

which can then be serviced at various rates to allow for ex-

perimentation. The transactions moved to this queue include

the following:

• all write-backs

• reference count increments and decrements: each incre-

ment or decrement occupies a unique queue slot

• morgue activity: when an object is found to be dead, the

processing of its contained references is sent to the queue.

The queue services one such reference per queue service

cycle.

Figure 5. Degradation of our ability to find dead storage as

the queue service rate slows relative to the cache rate.

Figure 5 shows the results of slowing the queue’s service

rate relative to the cache speed. At the right end of the graph,

the queue is serviced at the rate of one action per cache

transaction. Thus, a normal read or write would allow the

queue to execute one action off the critical path. At the left

end of the graph, the queue service rate is half of the cache

rate. Here, a queue item is serviced only after two traditional

cache transactions have been completed.

Although we ran these experiments across a wider range

of relative speeds, the performance of our approach drops

precipitously once the service rate drops below 0.6 of the

cache speed. The one exception is the sunflow benchmark,

which has a long period in which the same object sizes (32

bytes) dies and becomes recycled immediately. For the other

benchmarks, once the relative speed of our queue drops to

0.5 of the cache speed, our approach is completely ineffec-

tive. Figure 5 shows an anomaly for lusearch. Its original

fraction of squashing writes for the L1 cache was only ∼6%

(see Figure 2). When a line is found dead, it becomes invalid,

and can be chosen by a cache set for subsequent allocation

to any address that maps to that cache set.

For lusearch, introducing the queue delays this action,

which has consequences for cache misses downstream. Be-

cause the lusearch squashing fraction was already so small,

the data in Figure 5 is sensitive to the small rise in squashing

with the queue in place for this one benchmark.

We see similar results in Figure 6 in terms of how object

recycling is affected by slowing down the off-critical-path

activity. Based on these results, it appears that for the 32K

L1 cache, both storage recycling and the concomitant detec-

tion of dead storage fall of sharply at some point. Across

all of our benchmarks, the degradation begins at the relative

speed of 0.8.



Figure 6. Degradation of our ability to recycle storage.

4.2 Realistic Pacing with Standard Cache Traffic

Figure 7. Results obtained with realistic work loads.

The analysis above presumes that all instructions involve

the cache, but studies have shown that the ratio of loads

and stores to other instructions is somewhere between 20%

(for RISC architectures) and 50% (for non-RISC architec-

tures) [15]. For Pentium architectures, one study showed

loads and stores comprise 0.58% of all instructions with a

standard deviation of 0.05 [11]. We modeled an instruction

stream using those statistics, and results obtained as com-

pared with our results from Section 3 are shown in Fig-

ure 7. Most benchmarks operate near the best-case results

presented in Section 3. While pmd suffered the most in terms

of finding dead storage, its recycling rate is still robust at

96% of our best results.

5. Requested and Available Storage

Our in-cache storage allocator has thus far responded only by

finding an exact fit for the requested storage size. While the

results reported thus far are encouraging, it is possible that

a request for b bytes could be satisfied by a recycled object

whose size is greater than b. To investigate this idea, we next

study the size of storage that is requested by our benchmarks

and compare this with the list of recycled storage sizes that

are available for allocation in cache.

Figure 8. Size of allocation requests by benchmark, ac-

counting for 75% of all requests.

We instrumented our simulator to accumulate the total

number of storage-allocation requests by size, and the results

are shown in Figure 8. To avoid clutter, we display results

for requests that account for 75% of all storage-allocation

requests. For any block larger than 96 bytes, its storage-

allocation requests accounted for less than 1% of all allo-

cations. As expected, most storage allocation requests are

for relatively small blocks of storage. Each benchmark re-

quested 32 bytes more often than any other size, and over

all benchmarks, 32-byte blocks account for over 33% of all

requests. Such blocks account for over 68% of sunflow’s

allocation requests, which contributes to our success in recy-

cling storage for that benchmark (Figure 3).

However, the benchmarks also make frequent use of

slightly larger blocks. The fop benchmark uses 48-byte

blocks 22% of the time, as compared with its 29% use of

32-byte blocks. This raises the question of how much our

approach could be improved by considering the allocation

of larger blocks to satisfy a storage-allocation request.

Figure 9. In-cache storage availability for a 32K cache.



To study the availability of storage blocks, we sampled

the cache’s available sizes every 20,000 trace instructions,

with the study conducted over the benchmarks’ entire 50-

million line traces. Figure 9 shows the results of the 750 sam-

ples. For each benchmark and size, the availability of the size

among the 750 samples is shown. This experiment was con-

ducted while recycling was taking place. Thus, the available

blocks shown in Figure 9 are present because they were not

needed by exact-fit recycling. It is these blocks that could

satisfy a request at or below that block’s size.

Figure 10. Size of allocation requests and recycled storage

availability for 32K and 512K caches.

To illustrate the potential for using larger blocks, Fig-

ure 10 combines data from Figures 8 and 9 for the avrora

benchmark. For each size, its frequency of allocation and

availability for a 32K and 512K cache are shown. Requests

for 32-byte blocks occur 28% among all storage requests.

However, a 32-byte block is only available in 17% of our

samples. Looking at larger blocks, we find that 40- and 56-

byte blocks are available in 18% and 17% of our samples,

respectively.

We modified our in-cache allocation strategy to look first

for a block of the requested size, but if such a block is not

available, then we attempt a first-fit-by-size (FFBS) to satisfy

the request. For avrora, this will most likely result in a

40- or 56-byte block being allocated to a 32-byte request,

if no 32-byte block is available. Suppose a 40-byte block is

used whose virtual address is p. In terms of the effects of

this allocation on the rest of the running application and the

garbage collector, the size of the storage at p is still known

to be 40 bytes by the runtime heap manager. While we found

the storage to be dead in-cache, the collector must not have

run yet, so recycling the storage at p makes the 40-byte block

live. To the runtime heap manager, it is as if the 40 bytes of

storage are still in use. Our in-cache allocator returns the

40-byte block, even though only 32 of those bytes will be

used. Liveness is preserved because all references to the 32-

in-40 byte object are to p. For the purposes of reporting

statistics about the fraction of bytes that are satisfied by in-

cache allocation, we count the 32 bytes (not the 40) as being

allocated by the cache.

Figure 11. Improvement due to FFBS, displayed as the ratio

of allocation requests satisfied by FFBS to the allocation

requests satisfied by exact fit.

We ran our FFBS in-cache allocation policy on all bench-

marks, and the results are shown in Figure 11. Overall, a

26% improvement is seen. The least affected benchmark was

sunflow, which as stated previously already enjoyed strong

recycling using just 32-byte blocks.

Figure 12. Availability of storage blocks in cache for FFBS.

With FFBS in place, we again sampled the sizes of stor-

age blocks available in cache, and the results are shown in

Figure 12. Comparing Figures 9 and 12, we see that the

larger block samples are mostly gone, having been used to

satisfy the allocation of smaller blocks.

Using a larger block may deprive a downstream alloca-

tion request of in-cache storage. However, Figure 13 shows

that the fraction of allocated bytes satisfied in-cache actually

rises slightly when larger storage blocks are used as neces-

sary to satisfy an allocation. These results account for the re-

quested storage size, not the size of the block actually used.

Thus, if 32 bytes are requested and the request is satisfied by

a 96-byte block, this counts only toward 32 bytes of storage

satisfied in-cache.



Figure 13. Comparison of recycled bytes for exact-fit and

first-fit-by-size (FFBS). Data values for the exact-fit bars can

be found in Figure 4.

6. Analysis of Hardware Implementations

We validate timing for our storage-recycling approach by im-

plementing the needed logic in VHDL. We used the Vivado

Design Suite to synthesize and implement the design target-

ing a Xilinx Virtex-7 VC707 board. The Vivado Design Suite

was then used to estimate timing of the circuit. We compared

our timing estimates with those of a configurable cache with

no added logic. The baseline cache was also implemented in

VHDL.

Section 6.2 describes a low-latency reference implemen-

tation, in which logic is duplicated for each cache line, al-

lowing each line to perform necessary updates concurrently.

We show that such a design is unscalable. Section 6.3 then

sacrifices area for time, but shows that we can still obtain

good results for our benchmarks.

6.1 Hardware Structures

We make the following realistic assumptions to simplify the

hardware design:

• Allocations are aligned with word boundaries.

• Fields that hold a reference are aligned with word bound-

aries.

The chip space increases linearly with the number of

cache lines, based on the hardware structures described be-

low.

The number of objects each line can contain is bounded

by ⌈ s

m
+1⌉ where s is the size of the line in words and m is

the minimum object size in words. As an example, a 64 byte

cache line with 4 byte words and a minimum object size of

6 words can contain up to ⌈ 16

6
⌉+1 = 4 objects. Each object

contains storage for: an object id (virtual address, 64 bits),

a reference count (2 bits), an interval describing the overlap

with the cache line, represented as a bit mask with 1 bit per

word in the cache line (16 bits using the example above), a

thread ID (3 bits), a frame ID (8 bits), and a valid bit.
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Figure 14. Comparison of the latency of our approach com-

pared to the baseline cache latency as the number of cache

lines increases. Here, all cache lines have 32 bytes.

Each line contains a tag (20 bits) and 3 additional bit

masks with 1 bit per word in the line. These masks keep track

of the words in the line that were allocated into cache (and

therefore valid to be CORC), dead, or that contain a reference

to another object.

Based on the example cache above (32 KB, 32 bit physi-

cal addresses, 64 byte lines, 4 byte words, 2-way associative)

we require 444 bits (approximately 56 bytes) of added stor-

age as well as a copy of our circuit to maintain the stored

reference count information per cache line.

6.2 Reference Implementation

Figure 14 compares the latency of our implementation with

the baseline cache, where both have 32-byte lines. For cache

sizes up to 16K (i.e., up to 512 lines), the relative latency

remains under a factor of 3, which would provide the re-

sults presented in Section 4. However, the curve is rising

sharply and at 32K caches, the latency of our reference count

instructions is over 4 times that of standard cache instruc-

tions. The dramatic increase in latency can be attributed to

the increased fanout of input signals, increased data trans-

port time, and increased logic to aggregate and handle output

from each line appropriately.

6.3 Reasonable Implementation

Based on the results presented in Section 5, we see that most

object recycling takes place at or under 96 bytes. If we limit

the size of the largest recyclable object, then the hardware

for maintaining reference count information need not be

replicated for each line to remain responsive. For a 32K

cache with 32-byte lines, a 96-byte object can span at most

4 lines. We therefore designed a version of our approach

with 4 copies of our circuit, with each copy responsible for

a given subset of the cache’s lines. Based on the virtual

memory and associativity, we can ensure that the 3–4 lines

that respond to transactions on 96-byte objects are spread

among the 4 copies of our circuit.



The results from simulation are shown in Figure 15. We

see on average 83% of our best recycling obtained on the

cache’s critical path (the 32K cache results shown in Fig-

ure 3).

Figure 15. Results for reasonable hardware. Four copies of

our circuit are deployed to handle all cache lines of a 32K

cache. Object size is limited to 96 bytes.

7. Effects on Cache Misses

For allocation requests satisfied by the cache, all bytes of

the allocated block must already be in cache. This should

improve an application’s hit rate for the following reasons:

• No cache faults would be experienced for (Java-mandated)

initialization of the storage. Some caches offer special

zero-initialization instructions, but many do not. In either

case our in-cache allocation will experience only cache

hits.

• By using recycled storage instead of freshly allocated

heap storage, the pressure on the cache is reduced.

Figure 16. Hit rate for storage allocations and initialization.

Figure 16 shows the improved hit rates for in-cache al-

location. While the hit rate for allocations improves nicely,

allocations account only for a small fraction of the accesses

to an object’s storage. Figure 17 shows the overall improve-

ment, which ranges from 0.002 to 0.007, with an average im-

provement of 0.005. On average, the hit rate rose from 0.923

to 0.928. If off-cache accesses are 10 or 100 times slower

than L1 cache, this translates into a speedup of 1.03 or

1.06, respectively. Other speedups may be seen because of

reduced heap pressure leading to longer execution time be-

tween garbage collection cycles and reduced CPU time han-

dling allocations from the software heap; this is the subject

of future work.

Figure 17. Overall hit rate comparison.

8. Conclusion

We have shown the benefits of a cache recycling its dead

storage to satisfy storage-allocation requests of a program. If

implemented directly in cache, our studies show that ∼28%

of a program’s requests can be satisfied in cache for a 32K

cache, with almost 50% satisfied in a 512K cache. We have

studied the effects of moving our approach off of a cache’s

critical path, characterizing the decrease in ability to track

and recycle dead storage. Based on program characteristics,

we developed an implementation that scales well with cache

size while providing on average 83% of the critical-path

implementation. That implementation meets timing based

on analysis of our circuit’s model alongside a traditional

cache model, and the cache executes without any adverse

affects of our circuit. All of our benchmarks experienced

improve hit rates by satisfying their allocation requests in

cache to the extent possible.

Future work should include a study of the savings experi-

enced in the runtime system by moving allocations to cache.

Our studies insisted that all lines of a recycled storage block

be present in cache to allow such a block to be recycled. Fu-

ture work should examine the benefits of relaxing that con-

straint. The benefits of our approach are magnified in large

caches, such as the L2-sized cache we studied. Data resides

longer in L2 than L1 prior to eviction, and larger objects oc-

cuply relatively fewer lines. Future work should study a com-

plete system (e.g., deployed on an FPGA embodying our cir-

cuit) to measure the benefits throughout the application’s ex-

ecution stack. While we save power by decreasing memory

traffic, our circuit also consumes power. Future work should

examine the overall power savings of our approach.
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