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Abstract—Dataflow graphs are a generalized model of computation.
Uninterpreted dataflow graphs with nondeterminism resolved via
probabilities are shown to be isomorphic to a class of Petri nets known
as free choice nets. Petri net analysis methods are readily available in
the literature and this result makes those methods accessible to data-
flow research. Nevertheless, combinatorial explosion can render Petri
net analysis inoperative. Using a previously known technique for de-
composing free choice nets into smaller components, it is demonstrated
that, in principle, it is possible to determine aspects of the overall be-
havior from the particular behavior of components.

Index Terms—Dataflow graphs, free choice nets, isomorphism, per-
formance analysis, timed Petri nets.

I. INTRODUCTION

NCREASING interest in dataflow architectures derives

in part from the quest for large improvements in per-
formance through parallelism. This interest has given im-
petus to the development of new representation methods
and languages for parallel algorithms. Our interest is in

“the dataflow graph and its potential to represent any com-

putational structure including computer architectures. The
inherent ability of these graphs to represent the natural
parallelism in high performance architectures has been
noted by others [4], [9], [19].

The chief advantages of dataflow graphs as a compu-
tational schema are their compactness and amenability to
direct interpretation. That is, the translation from the con-
ceived system to a dataflow graph is straightforward and,
once accomplished, it is equally straightforward to deter-
mine by inspection which aspects of the system are rep-
resented [7], [8]. Unfortunately, the analysis techniques
for dataflow graphs are not yet well developed.

It may be possible to develop analytical methods for
dataflow graph models independent of Petri nets. How-
ever, the homomorphism presented in this paper imme-
diately makes available the vast amount of theory devel-
oped with Petri nets to the analysis of dataflow models.
Certain abstract properties of Petri nets such as liveness
and boundedness have immediate relevance in any gen-
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eral computational schema including dataflow graphs.
Other properties such as comparative firing frequencies
assume relevance with respect to the semantics of the sys-
tem being modeled. Thus it is clearly of benefit to estab-
lish the correspondence between dataflow graphs and Petri
nets in order to combine the representational ease of one
with the analysis power of the second.

Dataflow graphs can be used to model parallel proces-
sors [4], [71, [8], [19]. Performance analysis of computer
architectures represented as dataflow graphs via Petri nets
(more precisely, timed Petri nets) is a goal of this work.
The dataflow graphs considered are known as uninter-
preted, i.e., the semantics of the data tokens are removed.
The nondeterminism introduced is represented by the as-
signment of probability mass functions to decision points.
For those graphs representable in Petri net form, proper-
ties such as those mentioned above can be analyzed. In
addition, properties dealing with time can be evaluated.

II. DaTaAFLOW GRAPHS AND PETRI NETS
Formalized treatment of Petri nets is common in the
literature [2], [10], [14], [15], [17] and will be dealt with
briefly.
Definition 1: A Petri net is a quintuple
PN = <P, T, D, MPy,, MP, >

where
P={p,ps " ,pPs}, asetof places.
T={t,1t, - ,t,}, asetof transitions.

Dc {Px T} U{T X P}, aset of directed arcs.
MP, is a given initial marking.
MP, is a set of terminal markings.

Here we are chiefly interested in extensions to the basic
model that incorporate concepts of time.

Timing information has been incorporated in three
ways. Sifakis and others [3], [18] associated a nonnega-
tive constant b, with each place having the semantics that
an arriving token was ‘‘unavailable’’ until it had been in
the place for a time interval of length &. The two other
methods attach timing information directly to transitions.
One may associate with a transition a nonnegative con-
stant (timed Petri nets [10], [17], [20]) or a probability
distribution (stochastic Petri nets [1], [5], [11], [12]). The
first case is equivalent to assigning time values to places
[18]. In either case, the principal problem to be resolved
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is when to begin the firing epoch—upon arrival of the first
token or the instant a transition is enabled. One need also
consider whether a second or subsequent epoch can begin
while one is in progress.

A second problem to resolve is firing conflicts. Those
models that depend on fixed firing time generally assign
a probability over the marking space from the current to
next marking [20]. Stochastic Petri net models generally
use the firing rate (based on random firing times) to de-
termine the next marking from the current one [1], [11],
[12]. A difficulty arises if one allows some transitions to
have zero firing time. The probability that such transitions
will fire once enabled approaches one. The solution is to
augment the firing rates with transition probabilities as is
done in timed Petri nets. Several investigators have noted
the direct correspondence between Petri nets with timing
information and Markov processes [11], [12], [20]. In this
work, timed Petri nets are employed.

Definition 2: A timed Petri net is the pair

TPN = <, f >
where

¢ is a PN.
f: T— {R* U {0}}, a firing time function.

In addition to analyzing the time properties of nets, a
goal of this research is the determination of the overall
behavior of a system by the inspection of properties of
components. Hack [6] first demonstrated necessary and
sufficient conditions for liveness and safeness of a sub-
class of Petri nets important to this work. Ramchandani
[16] achieved related results for general nets in the more
formal context of solutions to Diophantine equations de-
rived from the connectivity of the net. Solutions to the
equations results in subnets (more precisely, T-subnets or
P-subnets) whose structure is that of a marked graph or
state machine under some circumstances. Ramamoorthy
and Ho [17] developed techniques for cycle time com-
putations for such subnets and Magott {10] transformed
the method to a solution of a linear program. We have
extended this work by showing how the mean time be-
tween events of a net composed of marked graph com-
ponents can be obtained. Coolahan and Roussopoulos [3]
have also developed statistical measures of transition fir-
ing frequencies and these are adaptable to our model.
Datta and Ghosh [2] developed a labeling method that
guarantees liveness for nets with transitions of in-degree
(and out-degree) at most two (2).

A formal treatment of dataflow graphs has been lacking
in the literature due to the purpose that other investiga-
tors have used them. Due to the nature of our study and
the need to demonstrate homomorphic structures between
the dataflow and Petri net models, a formal definition has
been developed [8]. The following reviews those results.

Definition 3: A dataflow graph is a labeled bipartite
graph where the two types of nodes are called actors and
links.

DFG = <AUL,ES, T, g>
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where
A= {01, Ay, a,,}, a set of actors.
L={lL,bL,---,1,}, aset of links.

Ec (A xL)U(L X A),aset of edges such that (a;,
L)YeEAN(a, ) e E=>a; =a;and (I, q) €
EAN(,q)e E=> 1 =1.

S={leL|(a,l)¢Eforany ae A}, a nonempty set
of links called the starting set.

T={leL|(l,a)¢Eforanyae A}, a nonempty set
of links called the terminating set.

g=A4— {R" U {0}}, a firing time function.

Fig. 1 illustrates an uninterpreted dataflow graph. (By
‘“uninterpreted’’ it is meant that specific semantics are not
given to data tokens or actors.) While links are implicitly
present in traditional DFG’s, they are not always explic-
itly displayed as is done here. Note that each link has at
most one input and at most one output. Meeting this re-
striction may require the introduction of dummy actors
(e.g., to duplicate an input token on several output links).

LetI(a),ae A(I(l),leL)and O(a),ae€ A(O(!),
[ € L) denote the sets of input and output links (actors)
of actor a (link /), respectively. | I(a)| and | O(a)| must
be nonzero for each actor while | I(!)| and | O(7)| are at
most one. The notation is directly extended to the places
and transitions of Petri nets. However, there are no car-
dinality constraints on the sets denoted.

A marking of a dataflow graph denotes the presence of
absence of tokens in links. A marking is a function M: L
- {0, 1, - -, k}. When M (or MP for Petri nets) is
used it means the vector

<M(ll)’ M(IZ)’ T M(lm) >

A marking is distinguished as an initial marking (terminal

marking) if M(I) # 0> 1leS(M({)+*0—->1eT).
Associated with each actor are an input and output fir-

ing set denoting which links enable the actor and which

receive tokens when the actor fires. These sets are de-

noted F, and F,, respectively.

Fi(a, M) € I(a)
Fy(a, M) € O(a)

Dataflow graphs exhibit special arcs called control arcs
whose purpose is to affect the flow of data at decision
points. These do not exist in uninterpreted dataflow graphs
used here but a probability mass function over the pow-
erset of O(a) serves the same purpose.

An actor a is enabled in marking M if M(l) # O for
each /e Fi(a, M ). The firing of an enabled actor a results
in a new marking indicated by M SM.

M =M- <I(a)> + <O(a)>

This can be generalized to a firing sequence ¢ denoted M
— M, where

al a2 a3 ap
— — — e
1 2 P
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Fig. 1. An uninterpreted dataflow graph.

The forward marking class Mofa marking M is the set of
markings which can be derived (or reached) from M via
some firing sequence M = {M' | M S M }.

It is simple to extend the semantics given above by as-
signing a nonnegative real value to each actor represent-
ing the time it takes to fire. In the diagrams that follow,
the conventions below have beén adopted.

¢ L — & an actor for which F](B,H) = I(a) and Fz(a,ﬂ) = 0(a);
a such an actor is said to have conjunctive inmput and
& L .o L distributive output
s an actor for which Fl(a,M) c I(a) and Fz(a,H) = 0(a);

such an actor is said to have disjunctive inmput; if it
is always the case that lFl(a,m)I = 1, the actor is said
to be unit disjunctive

an actor for which Fl(a,M) = I(a) and Fz(a,ﬂ) c D(a);
such an actor is said to have selective output; if it

is always the case that IFz(a,m)l = 1, the actor is

said to be unit selective

Links are represented by solid circles: For the second
type of actor (the disjunctive actor) the enabling input link
is chosen nondeterministically.

While it is not permitted for an actor to be simulta-
neously disjunctive and selective, the restriction is not se-
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vere. The uninterpreted nature of the data tokens allows
such actors to be separated into two actors.

becomes

It is not necessary to enumerate teach analogous term
for Petri nets such as MP and MP — MP’. Yet it should
be noted that the standard firing set semantics are

I(1)
o(1).

FP\(1, MP)

Il

FPy(t, MP)

I

The effect of firing an enabled transition ¢ is

MP = MP — <I(t)> + <0(1)>.

III. GraPH TO NET TRANSFORMATIONS

Transformation of graphs representing asynchronous
processes to Petri nets occurs frequently in the literature.
(See [15] for examples.) Therefore, we will treat the topic
informally. Let DFG be an arbitrary uninterpreted data-
flow graph.

Algorithm Al

1) Let MPy, <« M, and MP, < M,.

2) For each /; € L in DFG, create p; € P in the TPN

3) For each conjunctive actor a; € A in DFG, create a
transition #; € T in TPN such that if /; € O(a;) then p; €
O(1), if [; € I(a) then p; € 1(¢)

4) for each disjunctive actor a; € A, perform the trans-
formation shown in Fig. 2(a). Create a unique transition
for each [, € I(qa;). If [; € O(aq;) then p; € O(t,(»h)) for
each t,( ),

5) For each selective actor a; € A, perform the trans-
formation shown in Fig. 2(b). Create a unique transition
f?hr)each [ie O(q ). If l;el(a;)thenp; e I(t,(h) ) for each »
l 6) If g(a;) = a, then let f(¢;) = «. If more than one
transition was derived from a;, the time associated with
each is «.

Let the symbol ~ mean ‘‘derived from.’’ It may be
used with individual components (¢ ~ a) or entire graphs
(TPN ~ DFG). Algorithm Al is reversible. Thus it is
possible to reconstruct the dataflow graph from the Petri
net. In this context, we canuset ~ aanda ~ t (p ~ [
and | ~ p) interchangeably. Fig. 3 shows a Petri net de-
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Fig. 2. Graph to net transformations. (a) Disjunctive actors. (b) Selective
actors.

Fig. 3. Illustration of Algorithm Al.

rived from the DFG of Fig. 1 using the transformation
above. Let an arbitrary M be represented by the vector
<my, my, *** , m,> where each m; is an integer. An
arbitrary MP can be represented similarly. Then when we
.say M = MP we mean simple vector equality.

Definition 4: A unit disjunctive DFG is one for which
Fi(a, m) € I(a) for all disjunctive actors. A unit selective
DFG is one for which F,(a, m) € O(a) for all selective
actors.

Theorem 1 (Isomorphism): Given a unit disjunctive and
unit selective DFG (i.e., | Fi(a, m)| =1 and | Fo(a, m)|
= 1), if TPN ~ DFG, M = MP, and M 5 M’ then there
exists ¢’ such that MP % MP' and M’ = MP’. Con-
versely if MP > MP’ there exists ¢ such that M > M’,
M= MP, and M' = MP'.
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Proof: We prove the first part by demonstrating how
to select #1, #,, *+ * + , # in ¢’ that correspond to a;, a,,
, @ in 0. Let g, be the first actor in the sequence M

a a2 ak

- M, - - M. M =M - <Ia)> +
< O(ay) >. If a, is a conjunctive actor, select t; ~ a,.
If a, is disjunctive select t{7 ~ ay such that [, € Fy(a,
M) is the link that enabled q,. If g, is selective select

{7 ~ a, such that I, € Fy(a;, m) is the link upon which

. the token is produced. If MP 5 MP, then clearly

<I(al) > = <I(t1) > and < 0(01) > =< O(tl) >.

Thus M = MP,. Choosing t,, t;, * * - , t; in the same
manner produces MP' = M’. The converse is proved
similarly. Q.E.D.

The above theorem demonstrates that properties of a
particular dataflow graph can be discovered by examining
the derived Petri net. Before describing these methods,
however, we introduce an additional term and its relation
to the transformation described.

Definition 5: A free choice net is a Petri net for which
each arc from a place to a transition is a unique output of
the place or the unique input of the transition. More for-
mally,

(v(p, 1) e D)(O(p) = {1} or1(x) = {p}).
Theorem 2: If [I(a)| = 1 for each selective actor of
DFG and TPN ~ DFG then TPN is a timed free choice
net.

Proof: Recall that by definition a DFG link has a sin-
gle input and a single output actor. Thus, |O(/)| = 1 for
allle L. If (I, a) € E, a € A is conjunctive, p ~ [, then
|O(p)| = 1 since for conjunctive actors there is a one-
to-one correspondence between (I, a) € E and (p, ?) €
D. If (I, a) € E, a € A is disjunctive, p; ~ [;, then ¢}
~ a is created by step 4 of Algorithm A1 such that O( p;)
= {t¥V}. If (l;, a) € E, a € A is selective then t /) ~ q
is created by step 5 of Algorithm A1l such that J(¢'/)) =
{pi|pi ~ I liel(a)}. Clearly |1 | = 1if [1(a)]
= 1. Q.E.D.

The unit disjunctive/selective criterion assures a DFG
can be converted to a Petri net without combinatorial ex-
plosion, |T| < |E |. If selective actors have a single in-
put, then the DFG is isomorphic to a timed free choice
net. This is significant primarily because a considerable
body of theory exists for the analysis of free choice nets.

Corollary 1: If TPN ~ DFG then

;€ T)(I(#)
NIy) # @ =>I(5) = I(3)).

Proof: Note that in DFG, I(q;) iff a; = a; because
each link has but one output. (It is impossible for distinct
actors to share a link.) Therefore, if two transitions share
a place they must be derived from the same actor. If g, is
an actor with conjunctive input, there is only one ¢; such
that #; ~ a; and it shares no input. If g; is an actor with
disjunctive input then a unique transition is created for
each element of I(a;). Again I(¢;) N I(4) # & implies
t; = t;. For a selective actor, a;, for every [; € I(a; ) then

(ve,, 4;
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p; € I(t,(h)) for every A such that t,(-h) ~ @;. Thus, I(tﬁh))
=1(t{"). Q.E.D.

The corollary is well known for free choice nets. Here,
however, its proof is based directly on the relationship
with dataflow graphs. Its importance is the partitioning of
the transitions into blocks B,, B,, * -+ , B, such that if
any transition in block B; is enabled, all are. Further, the
firing of a transition in block B; cannot disable a transition
in block By, if i # h. This will make it possible to resolve
conflicts with probability mass functions over transitions
rather than (the ordinary practice) over markings.

O O O 0 O O O O O O OO0 O O O = Qo = O

S OO O O 0O = O O 0 O O O - O O =~ O

O O O © O O O O O O O = 0O o o = O ©

O O O O O O O O O O = O © O O = <o ©

O O O O O O O O o = O O = 0O © O o <

[T = BN = i« N S o BN« BN o = T =T = U e B o S o S e S ]
|
O ©C O 0O O O = O O O O = O O © O O O

O O O O O = = O O © O O O o o o ©

O O O 0 Q0 O O O 0 Qo O O = o O = O =

IV. PrOBABILISTIC TIMING ANALYSIS

An objective of Petri net analysis is to determine over-
all behavior by decomposing it into components which
can be analyzed individually.

Definition 6: A subnet of a Petri net TPN = <P, T,
D, MPy, MP,, f > is another Petri net TPN' = < P', T,
D', MPj, MP/, f"> suchthat P’ € P, T 7,D' =D
N (P XT)YU (T XP)), MPy(p) e MPifpe P',
MP,(p)e MP/ ifpe P’,and f'(¢) = f(¢)ift € T and
undefined otherwise.

Let 7(-)' and O( )’ be the input/output sets of TPN'.
TPN’ is said to be a T-subnet if for every t € T", I(t) =
I(t) and O(t) = O(¢)'. It is said to be a P-subnet if for
everype P', I(p) = I(p) and O(p) = O(p)’. A net
or subnet is said to be strongly connected if for every p;,
p;j € P there is a directed path from p; to p;.
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A state machine is a net or subnet for which |I(¢)| =<
1and |O(t)| < 1 for every t € T. A marked graph is a
net or subnet for which |I(p)| < land |O(p)| = 1 for
every p € P. The incidence matrix C = [c;] of a Petri
net is an n X m matrix where

-1 if(pyt)eD
e 1 if(p)eD
v 0  if neither (p;, ;) € D nor

(4, p;) € D or both are in D.

For example, the jncidence matrix for the free choice net
of Fig. 3 is as follows:

0o 0 0 0 0 00 O 0 1 0O
0o 0 0 0 0 00 0 0 0 1
0O 0 0 0 0 00 0O O 0 O
0 0 0 0 0 00 -1 0 0 O
1 0 0 0 0 00 O O 0 O
0O 0 0 0 0 00 0 0 0 O
O 0 0 0 0 00 0O 0 0 O
O 0 0 0-1 00 0 0 0 O
0 0 0 0 0 -10 0 0 0 O
1 0 0 0 0 00 O O 0 O
o 1 0 0 0 00 0 0 0 O
0O -1 -1 0 0 00 0 0 0 O
0 0 1L -1 0 00 0 0O 0 0
1 0 0 0 0 -10 0 0 0 O
1 0 0 0 0 00 0 -1 0 0
o 0 0 1 1 00 0 0 -1 0
o 0 0 0 0 11 0 0 -1 0
0o 0 0 0 0 00 1 1 0 —1

A Petri net is said to be live if for every marking in MP,
there are firing sequences that enable each transition. A
Petri net is bounded if there is a finite number of tokens
in each place given any (perhaps infinite) firing sequence.
A Petri net is safe if the number of tokens in any place
never exceeds one.

Hack [6] gave necessary and sufficient conditions for
the liveness and safeness of a marked free choice net. If
MP, = <11 0 0 0>, Fig. 3 satisfies the
conditions. It can be shown [16] that such nets can be
decomposed into strongly connected components by find-
ing the ‘simple nonnegative solutions to the system of
equations

C-Y=0.

A solution is simple if it cannot be additively obtained -
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from other solutions. For Fig. 3,

Yy,=<1 01010100
=<0 10000000
Yy, =<1 00011000
Yy=<101100101
Ys=<10010100 1
Y=<0 00000010

Each Y-vector designates a set of transitions. For in-
stance, Y, designates {1, 152, 17, 12, 16, t$2, t&, {7,
t11, 112 } and Y, designates {5, {0, £;, }. Each transition
set together with all directly connected places constitutes
a strongly connected a T-subnet. For free choice nets, each
component is a marked graph.

For components that are timed marked graphs, Rama-
moorthy and Ho [17] first showed how to determine the
overall cycle time by enumerating the circuits. The time
required for each circuit is the sum of the transition times
divided by the number of tokens in the circuit. Let K;; be
the set of places and transitions in the jth elementary cir-
cuit of the ith component.

TU=Z

e Kij

f(tk)/pg;(,-j MP(py)

Assuming r circuits and a firing epoch begins as soon as
it is enabled, the overall cycle time for the component is
7, = max (7, Tig, * 0, Tip).

For example, let MP(p,) = MP(p,) = 1 and MP(p,)
= 0 if i > 2 for the component, Y;, of Fig. 3. The ele-
mentary circuits are

— 2 2
Ky = {plt1p3t5 )Pstg )P16111}
- 2 2
Ky = {Plflpéh(t 'protspiath )P17f11}

- 2 2
K3 = {Pzt(z )Pstéplst(lo)Plsfu}-

For concreteness, let f(¢\”)) = f(1;) = [i/37]. The
overall cycle time 7, = max (7, 713, 713) = 12. For
components, Yy, ¥,, + + -, and Y, the cycle times are 9,
10, 14, 14, and 5 (if MP(12) = 1), respectively. Magott
[10] generalized the technique by showing that the solu-
tion could be expressed as a linear program. These meth-
ods-assume a firing epoch begins as soon as a transition
is enabled. When modeling real systems, this is not an
unreasonble assumption.

As shown in Corollary 1, free choice net transitions that
potentially conflict have the same input place. Because
the T-subset components produced as above are strongly
connected marked graphs, a place has but one output arc.
It follows that a given component is reached from the ini-
tial marking by a single transition whose firing is ran-
domly chosen from a conflict set.

With this in mind, we are prepared to deal with the
probability mass functions over the output links of selec-
tive actors. If the actors are unit selective then Pr(Fy(a,
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1000101011 1>
0 0000O0O01O0CO01>
60001100O0T1O0>
1011001011 1>
00110106001 0>
01000O0O0O0OO0©O0O0>.

M)) > 0 for each [ € Fy(a, M) and is zero for nonsin-
gleton elements of the powerset of O(a). If r ~ aand p
~ 1 € Q(a) then let Pr(¢) = Pr(F,(a, M)) for /. This
contrasts to the normal method of assigning probabilities
to markings in the reachability graph but is equivalent due
to the partitioning of the transitions described above.

As an illustration of the employment of the foregoing,
define MTTE(¢; ) to be the mean time to the event of the
beginning of the firing epoch for ¢, Assume #; has s input
places with s independent loop-free paths oy, 65, * * * , 0
from MP,. The time to traverse o; will also be denoted by
0;. (Dependent paths can be dealt with but serve no pur-
pose at present.) #; cannot fire until the last token appears
at an input. That is, MTTE (¢;) = max (o1, 03, * * * , 05)
and each o; a constant. Now assume that adjacent to path
o; there are loops that may be traversed an indeterminate
number of times. The path time, also denoted by g;, is a
random variable and

MTTE(y;) = E[max (0s, 00, -+, as)]
for which the lower bound is
IMTTE(t;) = max (E[¢,], E[a;], - - - , E[a,]).
(It is well known that E[max (X, X3, - - -, X,)] = max
(E[X], E[X;], - - -, E[X,]) [13])

For clarity, ¢ will be defined with superscripts and sub-
scripts. Let t{™ adj o, mean that {™ ¢ ¢; while an equiv-
alently subscripted transition is (z{” € o;, h # m). By

extension, Y; adj o; means t{™ € Y; and t{™ adj o;. Let

)\i = H Pr (t;m)

t:‘m) ey,

if Y; adj o; and is undefined otherwise.

E[g] = tkei}vf(tk) +Z [F(7) + A(E™)].

The latter term, A( * ), represents the expected amount of
time within components adjacent to g; at transition #{™.
Let Ay, Ay, * * <, A, be the probabilities of the r compo-
nents adjacent at ¢{™. Let \,,; = Pr(¢+{™). (Note that
/XN = 1.) 7/ stands for the expected cycle time for
component Y;. That is, 7; differs from 7; in that it takes
into account components adjacent to circuits in Y;.

7} = E[Kij]/ 2. MP(py)
PrEK; )
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TABLE I
CIRCUITS
I(ij Sequence
(1) (1)
K31 try t " py t Pyg ty,l
(2) (2)
K31 p1 F1P3 b3 Pgty Pygtyg)
(1) (1)
Ky3p oy £y pg ty " Py g pyy tyy)
(1) (2) (2) (1)
Ksq oy ty Pgt3 7 Py 57 Ppy &5 Py by Pyg )
(D D
K2 )ty Pg by Py tg Py tyyd
(1) ey
Ke1 tpyy t7 7 pyy 5
TABLE 11
INTERMEDIATE MTTE CALCULATIONS
Path T, [ T A,
ij i i
K 5 5 £S5 1/7
Ks, 10 10 - -
Kq; 14.97 14.97 T=14.97 1/12
Ky, 10 10 -- -
Ky, 9 9 i 1/6
Ky 9 9 i, 1/2
o, -- 5.88 - --
o, - 19 -- --
If, to simplify the subscript scheme, Y,, ¥, - - -, ¥, are
adjacent to 1{™,
mo=—m)—" " —my-2
m —
A(ti’)—mz E--- 2
mo=0 m = my—1
mo!
mlmyl < v m,_(Mmg —my — - —m,_y)!
- _ _
{7 +mm+ - +m_ 7+ (mg—my— -

—m_)TINA
which can be simplified to:

)\l"_n:—ll )\ﬁmo—m - “mr—l)}

Z} NT
r+t1i=1

Each path o; defines a hierarchy over the set of com-
ponents. For example, in Fig. 3, the path { p,,pst$p1o}
has ¥; and Y; immediately adjacent (at ¢{*’) while ¥ is
adjacent to one of the circuits in ¥Y5. Thus, one must solve
Ys before Y5 can be solved.

To illustrate, or Fig. 3 let Pr(¢{") = 1/k and Pr(¢{*)
=1 — 1/k. For IMTTE(),

0 = {Pl 1 Ds tf) PlO}

oy = {Pz 159 Ps}-

Table I contains the cycles for Y,, Y5, Y5, and Y4 which
are the only components needed. Table II contains the
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relevant intermediate calculations.
IMTTE(#;) = max [5.88, 19] =

Given the isomorphism theorem and the equivalence of
timing between actors and transitions, it can be concluded
that IMTTE(a;) = IMTTEC(y ). If the transition 1s su-
perscripted then {MTTE(a;) = min { lMTTE(t .

. . k
The mean time to event is but one measure possible. From
it, other measures such as mean time between events can
be derived and correlated to components in the real sys-
tem.

V. SuMMARY AND CONCLUSIONS

Dataflow graphs are useful representations for abstract
computations, generally rendering models that are easily
related to the real system being modeled. Petri nets, while
less powerful computationally, have been studied inten-
sively, giving rise to a large body of analytic methods.
Here, we have shown that a significant class of dataflow
graphs can be effectively transformed to Petri nets. The
applications of this class have been primarily in modeling
concurrency in computer systems. Thus, the isomorphism
between the two computational models allows consider-
able analytic capability to be employed.

Within the applications context, timed transitions and
probabilistic resolution of nondeterminism are intro-
duced. Using these extensions, a measure (a bound for
Mean Time To Event) was illustrated. The principle be-
hind the derivation was the determination of overall be-
havior by examination of the contained components. This
principle is currently being exploited to determine other
properties of the net.
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