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Cyclic Staggered Scheme: A Loop
Allocation Policy for DOACROSS Loops

A.R. Hurson, K. Kavi, and J.T. Lim

Abstract —Within the scope of the multithreaded dataflow, the problem
of scheduling/allocation of DOACROSS loops has been discussed and
it was shown that the so-called staggered allocation offers higher
performance and resource utilization than other schemes described in
the literature. The staggered scheme, however, produces an
unbalanced load among processors. This paper introduces an
extension to the staggered scheme—cyclic staggered scheme—that
produces a more balanced distribution of iterations among processors.
The cyclic staggered scheme is simulated and its performance
improvement is analyzed.

Index Terms —Loop allocation, DOACROSS loop, multithreaded
dataflow organization, scheduling and load balancing, control-flow
multiprocessor organization, simulation.

————————  ✦  ————————

1 INTRODUCTION

IN a traditional multiprocessor organization, the basis of control-
flow processing is extended to allow more than one execution
thread to be active at an instance. However, architects of such an
organization must address the loss in processor efficiency due to
two fundamental issues: memory latencies and synchronization
overhead. The dataflow model of computation was proposed as an
alternative to the conventional control-flow model of computation.
It explicitly addresses the issue of programmability as well as
memory latency and synchronization. Theoretically, in a dataflow
machine, maximal concurrency can be exploited, constrained only
by the availability of hardware resources.

There are basically three types of loops; sequential loops, vector
loops (DOALL), and loops of intermediate parallelism (DOACROSS)
[1]. For a DOALL loop, all N iterations can be executed concur-
rently. Sequential loops have zero percent parallelism and would
not gain any improvement if executed in a multiprocessor. Hence,
loops of intermediate parallelism are of the greatest interest, since
these can be scheduled or distributed in various ways to achieve
speedup in a multiprocessor environment. The DOACROSS loop
model proposed in [1] was aimed to model the execution of se-
quential loops, vector loops, and loops of intermediate parallelism
by considering control and data dependencies.

This paper considers DOACROSS loops which have a lexically-
backward dependence (LBD) that cannot be eliminated by reordering
the statements. A new loop scheduling that maximizes the utiliza-
tion of processors while achieving significant speedup is examined.

2 STAGGERED DISTRIBUTION SCHEME

The Staggered distribution originally developed for multithreaded
dataflow multiprocessors [4], [7] uses heuristics to distribute the
loop iterations unevenly among processors to mask the delay
caused by data dependencies as well as inter-PE communication. If
all iterations start at the same time and each processor is assigned
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the same number of iterations, then all processors would take the
same amount of time to finish executing the T(S1, Ss)-d portion of
the loop—independent portion of each loop. But each processor
PEi (1 < i ≤ P), has to wait for processor PEi-1 to finish executing
the d portion and send the partial results (synchronization mes-
sage) to allow processor PEi to continue execution. This creates
delays due to the LBD and communication.

To achieve higher performance and resource utilization, the
loop iterations are then distributed according to the following
policy: The iterations assigned to PEi succeed the iterations as-
signed to PEi-1 with PEi having m more iteration nodes assigned to
it than PEi-1. The delay caused by iterations assigned to PEi-1 will
be equal to d per iteration plus the communication cost C. This
delay will be masked out by the T(S1, Ss) - d portion of the addi-
tional iterations (m) assigned to PEi. As a result, instead of waiting
for the message to arrive, the additional number of iterations in
each chunk relative to the previous chunk keeps the processor
busy. Incremental distribution of the iterations among processors
is hence determined by:

m n d C T S S di i s= * + --1 12 7 2 74 9,  (1)

where ni-1 is the number of iterations allocated to PEi-1, T(S1, Ss) is
the execution time of one iteration, d is the delay, and C is the in-
ter-processor communication cost. The number of iterations ni
allocated to PEi would be:

n n m n T S S C T S S di i i i s s= + = * + -- -1 1 1 1, ,2 74 9 2 74 9      (2)

The distribution is performed by expanding (2) to determine the

value of n1—number of iterations assigned to the first processor.

The n1 value is used to calculate ni (1 < i ≤ P). The ni
s  are then fine

tuned for better resource utilization. This scheme automatically
controls and determines the maximum number of processors
(maxpe) required for efficient execution of the loop based on the
physical characteristics of the loop and the underlying machine
architecture—i.e., higher resource utilization. The maxpe can be

determined by expanding (1) and (2), and considering the n1 and

n. The synchronization overhead is only (P - 1) * C, which is sig-
nificantly less than the synchronization overhead incurred by cy-
clic scheduling and pre-synchronized scheduling. Staggered
scheme, however, distributes an unbalanced load among proces-
sors, with the last processor receiving the largest number of itera-
tions. To remedy this problem and to be able to handle variations
in iteration execution times, a modification of this scheme is re-
quired and is presented in the next subsection.

2.1 Cyclic Staggered Distribution
As mentioned earlier, the staggered scheme determines the maxi-
mum number of processors (maxpe) required for each loop. If the

   

(a) n = 2,000, C/T = 3.0 (b) n = 2,000, C/T = 4.0

   

(c) n = 2,000, C/T = 5.0 (d) n = 2,000, C/T = 6.0

Fig. 1. Number of PEs to attain maximum speedup.
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number of processors available P is less than maxpe, the initial
distribution for P would be the same as the first P processors of
maxpe. The remaining iterations nr are then redistributed among
the P processors starting from the first processor, utilizing the
staggered concept according to (3).

n n T S S C n T S S T S S di i s p s s= * + - * --1 1 1 1, , ,2 7 2 74 9 2 74 9

= - + -�
  

"
##-n n T S S C T S S di p s s1 1 14 9 2 74 9 2 74 9, ,                (3)

where np is the number of iterations previously allocated to proc-
essor PEi. The extended scheme results in a more balanced load
and improved speedup than the original staggered scheme on P
processors. We refer to this scheme as CS1. In case of variations in
iteration execution time, this scheme can be utilized dynamically
during run-time to account for the difference between the worst
case iteration execution time and the actual execution time in de-

termining the distribution for the second and subsequent passes.
As an alternative, one iteration is assigned to the first processor in
the first pass, and subsequent iterations are assigned to the next
processors using (2). After the first pass, (3) is applied. We call this
scheme CS2.

The number of iterations assigned to a processor at each sched-
uling step for cyclic, static chunking (SC), staggered distribution
(SD), and cyclic staggered (first version (CS1) and second version
(CS2)) has been simulated [6]. It was shown that the two cyclic
staggered versions offer more even distribution than the staggered
scheme. CS2 distributes iterations more evenly since it assigns
smaller chunks per scheduling step than CS1. CS1 and CS2 incur
more communication cost, however, they offer an overall better
execution time.

2.2 Cyclic Staggered for Control-Flow Environment
The cyclic staggered scheme can be adapted to a control-flow envi-
ronment. In order to get the same behavior for a control-flow envi-
ronment the loop would have to be separated into two loops [6].
The first loop would be the instructions that are involved in the
T(S1, Ss) - d portion of the loop and the second would be the in-
structions involved in the d portion.

3 SIMULATION RESULTS

Effectiveness of the Staggered scheme has been simulated and
compared against those of static chunking and cyclic scheduling
[4]. Dynamic scheduling schemes, such as GSS and Factoring, have
been proposed for vector loops, therefore, they cannot be used as a
means to evaluate the staggered scheme. Furthermore, our studies
have shown that static chunking performs better than the afore-
mentioned dynamic schemes. We also did not consider presyn-
chronized scheduling [5], since the best-case performance of this
scheme would be equivalent to cyclic scheduling.

Our test-bed includes a representative loop with the execution time
of T(S1, Ss) = 50 and loops 3, 5, 11, 13, and 19 of the Livermore Loops,
which have cross-iteration dependencies [3]. In our simulation:

Fig. 2. Maximum speedup (MS) using Staggered distribution.

TABLE 1
SPEEDUP OF STAGGERED DISTRIBUTION RELATIVE TO STATIC CHUNKING Su(SC)
AND CYCLIC SCHEDULING Su(CYC) FOR THE LIVERMORE LOOPS WITH C/E = 30

PE = 4 PE = 8

LOOP # k C/T Su (SC) Su (CYC) Su (SC) Su (CYC)
3 0.25 3.75 1.20 10.72 1.21 (7) 13.10 (7)

5 0.30 3.00 1.21 8.22 1.16 (6) 9.35 (6)

11 0.25 3.75 1.21 10.50 1.21 (7) 12.18 (7)

13 0.05 0.71 1.07 2.82 1.14 5.05

19(1) 0.33 3.33 1.24 7.53 1.34 (4) 7.53 (4)

19(2) 0.27 2.73 1.23 6.86 1.28 (5) 6.93 (5)

Actual number of PEs used by Staggered Distribution in parentheses.

TABLE 2
SPEEDUP OF STAGGERED DISTRIBUTION RELATIVE TO STATIC CHUNKING Su(SC)
AND CYCLIC SCHEDULING Su(CYC) FOR THE LIVERMORE LOOPS WITH C/E = 107

PE = 4 PE = 8

LOOP # k C/T Su (SC) Su (CYC) Su (SC) Su (CYC)
3 0.25 13.38 1.22 34.80 1.25 (6) 39.00 (6)

5 0.30 10.70 1.22 26.42 1.19 (5) 28.18 (5)

11 0.25 13.38 1.24 32.63 1.33 (6) 34.17 (6)

13 0.05 2.55 1.07 9.50 1.16 16.31

19(1) 0.33 11.89 1.37 (3) 19.36 (3) 1.99 (3) 19.36 (3)

19(2) 0.27 9.73 1.31 (3) 17.39 (3) 1.83 (3) 17.39 (3)

Actual number of PEs used by Staggered Distribution in parentheses.
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1) The inter-PE communication delays are varied based on the ra-
tio of communication time to iteration execution time (C/T(S1, Ss)).

2) Delays due to LBD are computed for various k values,
where k = d/T(S1, Ss).

We also computed the average parallelism (AP), which is the
ratio of the total execution time to the critical-path length:

AP n T S S T S S d ns s= * + -1 1 1, ,2 74 9 2 7 1 64 9     (4)

The number of PEs required to attain maximum speedup for
both Staggered distribution (SD) and Static chunking (SC) has
been simulated and analyzed. Fig. 1 shows the results for T(S1, Ss)
= 50, n = 2,000, and k varying from 0.1 to 0.9. In general, irrespec-
tive of the values of n, C/T(S1, Ss), and k, the staggered approach
uses fewer processors to obtain significant speedup, even though
the common effect of delays due to the lexically backward de-
pendency (LBD) and inter-processor communication tends to re-
duce resource utilization. As can be seen from Fig. 1, for k from 0.1
to 0.4, the staggered approach offers a greater speedup, and for k
from 0.5 to 0.9, it achieves almost the same speedup factor. The
static chunking scheme distributes the iterations evenly among the
processing elements without any consideration for delays. Each
processor, except the first, is idle for some period of time, which

makes static chunking an inefficient scheme. From Figs. 1a and 1d,
it can be concluded that the speedup achieved by SD at k = 0.1 de-
creases from 7.27 to 6.49, while, for SC, it decreases from 5.82 to 4.98.
Aside from the fact that SD attains a significantly higher speedup,
the speedup for SD decreased by only 10.7 percent, while, for SC,
speedup decreased by 14.4 percent when the communication cost
was doubled. On the other hand, for k = 0.2, the speedup for SD
decreased by only 2.24 percent, but, for SC, speedup decreased by
9.4 percent. Both schemes however, require fewer PEs to attain
maximum speedup as the C/T(S1, Ss) ratio increases.

As expected, Cyclic scheduling (CYC) is ineffective if the com-
munication cost is significant. For C/T(S1, Ss) greater than or equal
to 1.0, CYC did not produce any speedup. Hence, we ran simula-
tions for lower C/T(S1, Ss) ratios. Our simulation results showed
that, as the C/T(S1, Ss) ratio increases, the speedups realized by the
CYC scheme decreases faster in comparison with the SD scheme.
The speedup achieved by SD at k = 0.1 decreases from 8.14 to 8.00,
while for CYC, it decreases from 3.33 to 1.67. Aside from the fact
that CYC attains a significantly lower speedup, the speedup for SD
decreased by only 1.7 percent, while, for CYC, speedup decreased
by 50 percent when the communication cost was almost doubled.
The speedups for SD from k = 0.2 and up remained constant, as the

   

(a) C/T = 3.0 (b) C/T = 5.0

Fig. 3. Comparative analysis of the staggered schemes, k = 0.1.

   

(a) C/T = 3.0 (b) C/T = 5.0

Fig. 4. Comparative analysis of the staggered schemes, k = 0.2.
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C/T(S1, Ss) ratio increases, while for CYC the speedup falls rapidly,
dropping to less than two for C/T(S1, Ss) = 0.5 and less than one
when k = 0.6. Finally, the maximum speedups attained by CYC for
C/T(S1, Ss) = 1.0 and up are all less than one. This means that the
loops can obtain better performance if they were executed serially
in one PE. The number of PEs required to realize maximum
speedup for CYC drops to two independent of k for C/T(S1, Ss) ≥
0.5. This is due to the fact that for C/T(S1, Ss) = 0.5, after two itera-
tions, the communication delay would be equivalent to the execu-
tion time of one iteration T(S1, Ss). Therefore, the third and fourth
iterations can be executed in the same two processors without any
additional delay. The cycle will be repeated for every pair of itera-
tions—using more processors does not affect the performance.

Fig. 2 depicts the average parallelism (AP) and the maximum
speedup (MS) for n = 2,000. In general, regardless of the values of
n, C/T(S1, Ss), and k, the SD scheme in the presence of inter-PE
communication, offers a maximum speedup close to the average
parallelism.

Tables 1 and 2 show the speedup of SD over SC and CYC when
the Livermore Loops were simulated. Timing values and inter-
processor communication used in the simulation were based upon
instruction and communication times for the nCUBE 3200 and 6400
[2]. Loop 19 consists of two loops. Therefore, we tested each loop
separately (19(1) and 19(2)). The number of iterations for each loop
were based on the specification of each loop. Loops 3, 5, and 13 were
simulated for n = 1,000, Loop 11 with n = 500, and Loops 19(1 and 2)
with n = 100. Although the number of iterations for Loop 11 can
reach a maximum of 1,000, we felt that 500 would give us a differ-
ent perspective from Loop 3, since they both have the same value
of k. There was not much speedup for Loop 13, since it had a neg-
ligible delay. For Loops 3, 5, 11, and 19(1 and 2) when PE = 8, the
SD scheme utilized fewer PEs than the available number of PEs.
This agrees with the results shown earlier in Fig. 1 that SD offers
better resource utilization. Furthermore, the number of PEs re-
quired also decreases as the communication cost increases.

Effectiveness of the Cyclic Staggered scheme, first version (CS1)
and second version (CS2), was simulated and compared against
the original Staggered scheme (SD). The speed-up factor has been
used as a measure of the evaluation. Our test-bed includes the
same representative loop with an execution time of T(S1, Ss) = 50
and n = 2,000. The speedup attained was calculated by varying the
k, the interprocessor communication cost, and the number of the
processors (Figs. 3 and 4). As can be seen, both cyclic staggered
distribution schemes performed better than SD regardless of the
values of n, C/T(S1, Ss), and k, especially when the number of PEs
was halfway between two and maxpe-1. This is due to the fact that
under such circumstances, both schemes have a higher number of
remaining iterations nr for redistribution, which results in a more
balanced load. Also, since the number of PEs is greater than two,
the remaining iterations can be distributed to more PEs, again
resulting in a more balanced load, hence better speedup. As ex-
pected, the speedups start to converge as the number of PEs ap-
proaches the maxpe, since these schemes produce a distribution
similar to SD. This is more evident in the case of CS1. Finally, both
CS1 and CS2 schemes attained an almost linear speedup for
smaller number of PEs, even with delays due to LBD and commu-
nication cost. We showed that SD offers better resource utilization,
since it attains better speedup than cyclic scheduling and static
chunking, utilizing fewer number of PEs. We also showed that the
maximum speedup for SD in the presence of inter-PE communica-
tion, is very close to the average parallelism, which is the maxi-
mum speedup possible for a particular loop. Since CS1 and CS2
outperform SD, we can conclude that CS1 and CS2 come even
closer to the maximum speedup possible for a particular loop.
However, these advantages are made possible if the number of
PEs available is less than maxpe.

4 SUMMARY AND FUTURE DIRECTIONS

A distribution scheme for DOACROSS loops—Cyclic Staggered
distribution with its two variations—has been introduced. It uses
the same concepts as our previous strategy, Staggered distribu-
tion—to distribute the loop iterations, albeit unevenly, among
processors in order to mask out the delay caused by data depend-
encies as well as inter-PE communication. This approach offers a
more balanced load and better speedup. Effectiveness of this new
scheme relative to our previous Staggered scheme has been re-
ported, based on simulation and execution on an nCUBE 2 multi-
processor [6]. Cyclic Staggered scheme attains better speedup than
Staggered, when the number of PEs is less than maxpe (number of
processors needed to attain optimum speedup). It also produces
an almost linear speedup for a small number of PEs, even in the
presence of LBDs and inter-PE communication.

The success of multithreading depends on how quickly context
switching can be supported. This is only possible if threads are
resident in fast memories, such as cache. The sizes of cache are
usually small, hence the number of active threads and, thus, the
amount of latency that can be tolerated is limited. The generality
of dataflow scheduling makes it difficult to execute a logically
related set of threads through the processor pipeline, thereby re-
moving any opportunity to utilize registers across thread bounda-
ries. Relegating the responsibilities of scheduling and storage
management to the compiler alleviates this problem to some ex-
tent. Appropriate means of directing scheduling based on some
global-level understanding of program execution will be crucial to
the success of future dataflow architectures. We are currently in-
vestigating strategies based on cyclic staggered approaches to
enhance locality in dataflow architectures, for the purpose of using
cache memories.
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