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Abstract-In this paper, a new model for parallel computa-
tions and parallel computer systems that is based on data flow
principles is presented. Uninterpreted data flow graphs can be used
to model computer systems including data driven and parallel
processors. A data flow graph is defined to be a bipartite graph
with actors and links as the two vertex classes. Actors can be
considered similar to transitions in Petri nets, and links similar to
places. The nondeterministic nature of uninterpreted data flow
graphs necessitates the derivation of liveness conditions.

Index Terms-Bipartite graphs, data flow graphs, deadlocks,
liveness, parallel computations, Petri nets.

I. INTRODUCTION
THE demands for increasing computation speeds have

generated considerable interest in parallel computations,
concurrent operations. within computer systems, models for
representing parallelism in algorithms, and new programming
languages for such parallel computers [11], [19]. In addition to
the design of parallel machines and programming aspects of
parallelism, there has been considerable work done in formu-
lating appropriate theoretical models and methods of analysis
under which inherent properties of parallelism can be precisely
defined and studied more from the viewpoint of the algorithm
or problem than the particular machine, implementation.
Generally, the theoretical work can be divided into two
categories: 1) the study of computational aspects of algorithms
(both arithmetic and control) devised to make use of the
parallelism existing in parallel systems; or 2) the study of the
performance and reliability aspects of parallel computers.

There are a number of different theoretical models proposed
for representing the computational aspects of parallel proc-
esses, among which Petri net models have enjoyed continued
interest over the past decade. For a comparative study of
models of parallel computation, the reader is referred to [19].

Performance and reliability evaluations of computer sys-
tems; including those with multiple processing elements and
redundancy, are generally based on probabilistic models and
their analysis. The techniques used in this approach involve
the identification of underlying stochastic processes and the
determination of their properties. General review of various
aspects of these analysis techniques can be found in [15] and
[25].
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Petri net models of parallel and asynchronous systems have
been extended to include stochastic aspects [10], [17], [21],
[22]. Molloy establishes an isomorphism between stochastic
Petri nets and homogeneous Markov processes, thus making it
possible to apply Markov techniques for the analysis of
stochastic Petri net models.

In recent years a new form of program representation
known as data flow has attracted the attention of researchers in
the United States, England, France, and Japan. The literature
is abundant with proposals for new computer systems based on
data flow principles [7], [8], [24], programming languages
[1]-[3], distributed computing based on data flow [18], as well
as simulation and modeling using data flow graphs [9], [12],
[23].
Much of the research in data flow processing has dealt with

defining the functionality, designing instruction level architec-
tures, or specifying programming methodologies. This has not
made urgent the formalization of the data flow model itself.
Formalization is necessary, however, in relating data flow to
other computation models, discovering properties of specific
instances of data flow graphs (e.g., absence of deadlocks), and
in performance evaluation. Formalization also makes possible
the utilization of data flow graphs as abstract models of
computation analogous to Turing machines and Petri nets. It is
from this motivation that the present work stems.

Data flow graphs have been used successfully in the
simulation of computer systems [9], [23]. The chief advantage
of data flow graphs over other models of parallel processors is
their compactness and general amenability to direct interpreta-
tion. That is, the translation from the conceived system to a
data flow graph is straightforward and, once accomplished, it
is equally straightforward to determine by inspection which
aspects of the system are represented.Because of the hierarchi-
cal nature and the modularity of data flow graphs, both
software tasks and hardware units can be modeled in a uniform
way using data flow graphs [12]. The formalism presented
here and elsewhere [13], [14] can be used to analyze the
performance and reliability of computer systems modeled as
data flow graphs.

In the remainder of the paper, a formal set-relationship
definition of a specific kind of data flow graph (known as an
uninterpreted data flow graph) is presented. These definitions
are based on the data flow model originally presented by
Dennis [6]. An illustration of its use in describing properties is
given in the form of a liveness theorem. Stochastic aspects are
introduced into the model so that performance and reliability
of data flow graph models of computer systems can be
analyzed.
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II. THE DATA FLOW CONCEPT

A data flow graph is a bipartite directed graph in which the
two types of nodes are called links and actors [6]. In Dennis'
model, actors describe operations while links receive data
from a single actor and transmit values to one or more actors
by way of arcs. (Arcs can be considered as channels of
communication.) In its basic form, nodes (actors and links) are
enabled for execution when all input arcs contain tokens and
no output arcs contain tokens. An enabled node consumes
tokens on input arcs and produces tokens on output arcs. Arcs
can be control or data arcs. In the case of control arcs (which
enter or leave control links), the tokens are of the type Boolean
(true or false); for data arcs (which enter or leave data links),
the tokens are of the type integer, real, or character. Control
tokens are introduced to indicate the presence of sequence
control; certain actors are enabled only when the right control
values appear on the input control arcs. For a complete
description of data flow concepts, the reader is referred to
[24].
The data flow model of computation is neither based on

memory structures that require inherent state transitions nor
does it depend on history sensitivity. Thus, it eliminates some
of the inherent von Neumann pitfalls described by Backus [4].
Several extensions to basic data flow have been proposed so
that data flow techniques can be used in a variety of
applications. In his dissertation, Landry [16] surveyed some of
these extensions. One is discussed here.

A. Firing Semantic Sets (FSS)
The basic firing rule adopted by most data flow researchers

requires that all input arcs contain tokens and that no tokens be
present on the output arcs. This provides an adequate
sequencing control mechanism when the nodes in data flow
graphs represent primitive operations. However, if the nodes
are complex procedures, or data flow subgraphs, more
generalized firing control for both input and output arcs is
required. Landry [16] discussed a comprehensive input firing
semantic specification for data flow nodes. The (input) firing
semantic set refers to a subset of input arcs that must contain
tokens to enable the node. Similarly, an output semantic set
can be defined as the subset of output arcs that must be empty.
When the node is fired, tokens are removed from arcs of the
input firing semantic set and new tokens are placed on arcs of
the output firing semantic set. For different instances of the
execution of a node, the firing sets may differ, thus introduc-
ing nondeterminacy. The formal model of data flow graphs
described in this paper incorporates this generalized firing
specification.

III. DATA FLOW FORMALISM

Definition 1: A data flow graph is a bipartite labeled
graph where the two types of nodes are called actors and
links.

G=(A UL,E) (1)

where

L={l, 12, , Im} is the set of links

E C (AxL) U (LxA) is the set of edges.

Actors represent functions and links are treated as place
holders of data values (tokens) as they flow from actors to
actors. Edges are the channels of communication (like arcs in
Dennis' model). S is a subset of links called the starting set
(input links); these links represent external inputs to a data
flow graph (or subgraph).

-(2)
T is a subset of links called the terminating set (output links);
these links represent outputs from a data flow graph (or
subgraph).

T={l E LI(l, a) e E, va E A}. (3)

The set of input links to an actor a, and the output links from
an actor a are denoted by I(a) and O(a).

(4)

(5)

Similarly, I(l) and 0(1) for links can be defined.
The transitive closure on these sets, I(a)+, I(l)+, 0(a)+,

0(1)+ are defined in the usual manner. For example, I(a)+
denotes the set of links that are inputs to actor a or the input
links that are inputs to the actors that feed the input links of a,
and so on.

I(a)+=I E LIt E I(a) or 1 E I(I(I(a))), }. (6)

If B C A is a subset of actors then I(B) and O(B) define the
sets of links that are inputs and outputs of actors belonging to
B.

(7)

(8)

A. Uninterpreted Data Flow Graphs

For the purpose of studying the performance of data flow
graph models of computer systems, the actual meaning of the
functions performed by actors and semantics of the data tokens
are not relevant. The presence of tokens in links act as

triggering signals to enable nodes. Such data flow graphs will
be known as uninterpreted data flow graphs. Throughout this
paper the term data flow graph is used to mean an uninter-
preted data flow graph.
The data flow graphs in this formal model satisfy the

following conditions.

II(a) >0 for all actors a E -A

II(1)1=0 or 1 for all links 1 E L

10(a)l>0 for all actors a E A

|0(1)|=0 or 1 for all links 1 E L. (9)

Although this appears restrictive since the links can have at

S={l E Lj(a, 1) 1: E, va E A}.

I(a)={l eLE(l, a) E}

0(a)={l E LI(a, 1) E E}.

I(B)={Il E Lll E I(b) for b E B}

O(B)={Il E Lll E O(b) for b E B}.

941
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most one input actor and one output actor, the authors have
successfully translated all data flow graphs by introducing
dummy actors (for example, to duplicate an input token onto
several output links). This restriction allows for a simpler
definition of markings [see (10)-(13)].

Definition 2: A marking is a mapping

M: L-{0, 1}.

a). Conjunctive

F1(a,fl) = I(a)

(10)

b). Disjunctive

IF1(a,M)I
A link is said to contain a token in a marking M if M(l) =

1. An initial marking Mo is a marking in which a subset of the
starting set of links contain tokens. A terminal marking M, is
a marking in which a subset of the terminating set of links
contain tokens.

B. Firing and Firing Semantic Sets

Associated with each actor are two sets of links called input
firing semantic set F1 and output firing semantic set F2

F1(a, M) c I(a)

= 1

c). Collective

F (a,M) C I(a)

F2(a, M) C 0(a). (11)

The input firing semantic set refers to the subset of input links
that must contain tokens to enable the actor; the output firing
semantic set refers to the subset of links that receive tokens
when the actor is fired.

Definition 3: A firing is a partial mapping from markings
to markings. An actor a is firable at a marking M if the
following conditions hold.

M(l) = 1 for all I E F1(a, M)

M(l) = 0 for all I E F2(a, M).

d). Selective

F2(a,M) j = 1

I | e). Distributive

, * F2(a M) = 0(a)

Fig. 1. Firing rules.
(12)

When the actor is fired, tokens from the firing set F1(a, M) of
links are consumed and new tokens are placed on each link
belonging to the output firing semantic set F2(a, M). Thus, a
new marking M' resulting from the firing of an actor a at
marking M can be derived as follows.

Selective: When a fires, only one of the output links
receives a token. That is,

IF2(a, M)I= I for all M. (17)

Distributive: When a fires, all the output links receive
tokens. That is,

if I E F1(a, M) and 1e F2(a, M)
if 1 E F2(a, M) (13)
otherwise.

A firing of an actor is indicated by

Depending on whether F1 and F2 select only one, a proper
subset or the entire set of input and output links the following
actor firing rules apply.

Conjunctive: All the input links must contain tokens for the
actor to fire. That is,

F1(a, M)=I(a) for all M. (14)

Disjunctive: Only one of the input links must contain a

token for the actor to fire. That is,

IF,(a, M)I=I for all M. (15)

Collective: One or more of the input links may contain
tokens for the actor to fire. That is,

F1(a, M) C I(a) for all M.

F2(a, M)=0(a) for all M. (18)

Graphical representation of these possibilities are shown in
Fig. 1.

C. Nondeterministic Firing Semantics

Since uninterpreted data flow graphs are used here, the
firing semantic sets F1 and F2 are nondeterministic; for
different instances of execution of an actor the firing semantic
sets can be different. This eliminates the need for control arcs

in data flow graph models. The choice arising due to control
tokens are incorporated into F, and F2 by associating
probability distributions with the firing semantic sets. For

example, the t gate [6] shown in Fig. 2(a) is replaced by the
actor in Fig. 2(b). The firing sets F1 and F2 are defined as

F1 (t, M)=I(t)={ 1}

F2(t, M) = 0(t) = {12} with probability p

=+ with probability -p. (19)

M' (l) = {
M(l)

942
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Fig. 2. Representation of a t gate using nondeterministic firing semantics.

The probability p depends on the frequency of having a TRUE
value on the control link of the t gate.

P[F1(a, M) = fi] is the probability that in marking M, fi
C I(a) is the input firing semantic set. The probability
determines which subset of tokens on input links (should a
choice be made) will be consumed when the actor a is fired in
marking M. This probability distribution function is signifi-
cant for collective actors only. Similarly, P[F2(a, M)] is the
probability distribution on the output firing semantic set; when
the actor a fires in M, the links in f2 O0(a) will receive
tokens with a probability P[F2(a, M) - f2]. Conditional
probabilities can also be defined for the firing semantic sets
when P[F,(a, M)] and P[F2(a, M)] depend on the firing sets
selected by other actors.

Definition 4: A firing sequence a is a sequence of actors,
in the order in which the actors are enabled. When actors can
be fired concurrently, the order is arbitrary. An actor a is said
to belong to a if a is fired at least once in the firing sequence a.
We sayM leads to M' via a if M' is the new marking that is
derived from the marking M when the actors in the firing
sequence a are fired. This is denoted byM M'. The set of
markings generated by a firing sequence a will be known as
marking set MU.

MU= {M' IM + M' for any subsequence E
that is a prefix of a). (20)

If M -Y-+ M for some nonempty firing sequence a, then the
firing sequence is known as a firing cycle.
A forward marking classM of a marking M is the set of

markings which can be derived (or reached) fromMvia some
firing sequence.

M ={M'1M 0 M' for some firing sequence al. (2.1)

For some actor a E A and a marking set MU,

F1(a, M)Ua={l E LJ1 E F1(a, M') where

D. An Example

Baer [5, p. 71] gives a Petri net model representing the
control flow in the execution of an instruction in a single
accumulator arithmetic and logic unit. Fig. 3 shows a data
flow equivalent of the Petri net given by Baer. The actors are
intentionally named by the events in order to facilitate
interpretation. The data flow graph consists of conjunctive,
disjunctive, selective, and distributive actors. Actors labeled
as "duplicate" are introduced to satisfy the requirement that
links have only one input and one output.

G=(A U L, E)

where

A ={a1, a2, a3, *, a22)

L=I{lo 11, 12, * ,132}

S={lo}

T= {132}1

The markings for the data flow graph are listed in Fig. 4.
Ones indicate the presence of tokens in links and blanks
(actually zeros) represent absence of tokens in links. When
multiple actors are enabled in a marking, they are assumed to
fire concurrently leading to the next marking. Mo is the initial
marking and M14 is the terminal marking. The firing semantic
sets for all actors (in the markings in which they are enabled)
are shown in Fig. 5. Probabilities associated with the output
firing semantic set of selective actors are also shown in Fig. 5.
Three firing cycles can be identified.

a'={al, a2, a3, a4, a5, a8, a2l, a1o, all,

a13, a14, a16, a22)

M' ={Ml, M2, M3, M4, M5, M8, M9, MA10,

Ml1, M12, A13, M14, Ml15, M16)

orf2={a,, a2, q3, a4, a6, a1l, a15, a14, a17,

a16, a18, al9, a2l, a22)

Mu2 {M1, M2, M3, M4, M6, MI3, MI4,

M17, M18, M1g, M20, M21, M22}

aF{a,, a2, a3, a4, a7, a9, a1l, a14, a12, a15,

a16, a17, a18, a20, a2l, a22)

M' E M and a is firable in M'} (22) M1 ={M1, M2, M3, M4, M7, M13, M14, M23, M24,

F2(a, MU)={l E LIl E F2(a, M') where

M' E M and a is firable in M'}. (23)

F1(B, MU) and F2(B, MU) when B is a subset of actors can be
defined similarly.

M25, M26, M27, M28, M29, M30}.

The forward marking class of the initial marking Mo is the
entire set of markings

MO={MO, M1, **., M30}@

943
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Fig. 3. A data flow diagram of a simple computer.

E. Deadlocks and Liveness in Data Flow Graphs

We should be able to identify situations in which an actor

cannot fire. Deadlocks can be avoided in data flow machines

by providing feedback using control tokens [20]. To illustrate

this, a part of Fig. 3 is redrawn with control arcs and links
(Fig. 6). As can be seen, the presence of the same value on

control links at actors a4, a15, al18, and a2l permits the selection
of the proper path for the flow of tokens. Since the model
presented here omits control tokens, it is necessary to derive
liveness conditions.

Definition 5: An actor is potentially firable in a marking

M(*-M,), if there exists a marking M' E M such that a is
enabled in M'.
An actor is said to be blocked in a marking M if for all

markings M' E M, a is not firable.
An actor is live in M if a is potentially firable in all

markings M' E M, except when M' is a terminal marking.
Definition 6: A firing sequence a is said to be live in a

marking M if all the actors in a are, live in the markings M0.
Firing sequences considered here are assumed reachable

from an initial marking (that is, Ma n M * 4). If there are no
initial markings in the data flow graph, then a firing sequence
is assumed to be initiated in a marking M E Mo. Firing

944
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1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 22 3 3 3
012345678901234567890123456789012

0 1 (initial)
1 1
2 1
3 1
4 1
5 1
6 1
7 1
8 11
9 1
101
11 1
12
13 1
14 (terminal)
15 1
16 1
17 111
18 1 1 1
19 1 1
20 1 1
21 1 1
22 1
23 11
24 1 125
26
27
28
29
30

Fig. 4. Markings for the data flow example.

F1(a,, Mj)

(a,, M0) = lo
(al, MI) = 11
(a2, M2) = 12
(a3, M3) = 13
(a4, M4) = 14

(a5, M5) = 15
(a6, M6) = 16
(a7, M7) = 17
(a8, M8) = 18
(a9, M23) = 114
(a1o, lMg) = 115

(a1I,AMl'I) = 11(a11 l's-,,) = 110(a,l,,MI7)= 110
(a11, M23) = 113
(a12, M24) = 116
(aI3, MlO) = 117
(a14, Ml15) = '19
(aI4, M18) = 119
(a14, M24) = 119
(a15, Ml17) = 112
(a15, M28) = 120
(al6, Ml2) = 122
(al6, Ml16) = 123
(a16, Ml19) = 123
(al6, M25) = 123
(a17, M18) = 124
(a17, M26) = 124
(a18, M19) = 126

(a18, M27) =

(a1g, M20) =
(a20, M28) =
(a21, M8) =
(a21, M22) =
(a21, M30) =
(a22, Ml13) =

126

'III 127
121, 128
19
129
130
125, 131

F2(ai, Mj)

(at, Mo) = 12
(a1, Ml) = 12
(a2, M2) = 13
(a3, M3) = 14
(a4, M4) = 15 with p1

= '6 with P2
= l7 with p3

(a5, M5) = 18, 19
(a6, l6) = 110,1/1, 112
(a7, l7) = 113, 14
(a7, M) =15
(as, M23) = 116
(a1o, Mg) = 117 with p4

= /18 with p5
(a,1, Ml,l) = l19
(a 1, Al17) = 119
(a1, M23) = /19
(a12, M24) = 120, 121
(a13, Mlo) = 122
(al4, Ml15) = 123
(al4, Ml18) = 123
(a14, M24) = 123
(a]5, MA17) = 124
(al5, M28) = 120
(a16, M12) = 125
(al6, Ml16) = 125
(a16, Ml19) = 125
(a16, M25) = 125
(a17, Ml18) = 126
(a17, M26) = 126
(a18, Ml19) = 127 with P6

= 128 with p7
(a18, M27) = 127 with Po

= 128 with pq
(alg, M20) = 129
(a20, M28) = 130
(a2l, MA ) = 131
(a2l, M22) = 131
(a2l, M30) = 131
(a22, M23) = 11 with Plo

= 132 with P11

sequences that are not reachable from an initial marking
(implying that the data flow graph is not strongly connected or
permanently disabled) do not contribute to the liveness of a
data flow graph.

Theorem 1: Let B ' A be the subset of actors that belong
to a firing cycle a. The firing cycle a is live in M if and only if

F1(B, Mc)=F2(B, MU). (24)

Proof: Necessary condition. If the firing sequence a is
live then (24) holds. This is proved by contradiction.

Suppose that a is live, but

F1(B, Ml)* F2(B, Ml).

Case 1: There exists a link 1 E F1(B, MU) but 1 e F2(B,
MU). Since only actors in B and firable in firing cycle a, only
F2(B, MU) can receive tokens in all markings M' E MU. This
implies that there exists an actor b E B and a marking M' E
MU, such that I E F1(b, M') does not contain a token. Then
actor b will be blocked which is contrary to the assumption
that actors in B are live.

Case 2: There exists a link I E F2(B, MU), but I E FI(B,
MU). Since only actors in B can fire in all the markings M' E
MU, only tokens on links F1(B, MU) are consumed. Since I e
F1(B, MU), 1 will contain an unconsumed token. This implies
that an actor b E B will be blocked in a marking M' E MU
where I E F2(b, M'). This is again contrary to the assumption
that actors in B are live. Hence, F1(B, MU) = F2(B, MU).

Sufficient Condition. If (24) holds, then the firing se-
quence a is live. This is proved by contradiction. That is,
F1(B, M) = F2(B, M), but the firing sequence a is not live.
Let b E B be an actor that is not live in MU (that is, there
exists a marking M' E MU such that b is not potentially
firable in M').

Case 3: The actor is not firable because some link I E FI(b,
M') does not contain a token. Since F2(B, MU) is the only set
of links that can receive tokens in MU, I e F2(B, MU). This is
a contradiction since we assumed that (24) holds.
Case 4: The actor b is not firable in M' because a link I E

F2(b, M') contains an unconsumed token. Since only tokens
on F1(B, MU) can be consumed, 1 e FI(B, MU). This is again
contrary to the assumption that (24) holds. Thus, if

F1(B, M) =F2(B, MU)

-then the firing sequence a is live in M. Q.E.D.
Definition 7: A data flow graph is live (deadlock free) in a

marking M if all actors a E A are live in M.
Theorem 2: A data flow graph is live in a markingM if and

only if all firing sequences a are live in M.
Proof: Necessary condition. If the data flow graph is live

in M, then all firing sequences are live in M.
Suppose that the data flow graph is live in M, but there

exists a firing sequence a that is not live in M. By Definition 6,
there exists an actor a E a that is not live in marking M' E
MU. Then by Definition 7, the data flow graph is not live in M.

Sufficient Condition. If all firing sequences a are live in M,
then the data flow graph is live in M. Suppose that all firing

945

Note: P + P2 + A3 = J4 + Ps = P6 + P7 = PA + P9 = PIo + PI = 1-

Fig. 5. Firing semantic sets for the example.
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Fig. 6. Use of control links to avoid deadlocks in data flow graphs.

sequences a are live in M, but the data flow graph is not live in
M. By Definition 7, there exists an actor a E A, that is not

live in a marking M' E M. Since all actors must belong to

one or more firing sequences, there exists a firing sequence a,
such that a E a and M' E M", which is not live in M (by
Definition 6). Q.E.D.

Corollary: If a live data flow graph contains no terminal
marking B then

F, (A, M)=F2(A, M).

U[Fl(B, Ma)] = U[F2(B, MU)]

F1(A, M)=F2(A, M). Q.E.D.

Example: The data flow graph of Fig. 3 will be used to
illustrate the deadlock theorems. For the firing cycle a1,

F,(B, MlO") _ l1, 12, 13, 1, 18, '19, 2 3 5

117, 118, 119, 122, 123, l25, 131 }

Proof: If a data flow graph is live then all firing F2(B, M' ) ={ll, 12, 13, 14, l5, l8,19, 115,
sequences are live. Since there are no terminal markings, all
firing sequences must be firing cycles. By Theorem 1, 1175 '18, 119, 122, 123, 125, 131}

946
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where B is the set of actors belonging to al. The firing
sequence a' is live in M, since

Fl(B, M,t) = F2(B, M, 1)-
For the firing cycle a2,

F,(C, M,2)= {11, 12, 13, 14, 16, '10, ill, 12,

119, 123, 124, 125, 126, 127, 129, 131}

F2C,M]){, 12, 13, 14, 16, 110, 111, 112,
'19, 123, 124, 125, 126, 127, 128, 129, 131}

where C is the set of actors belonging to a2. As can be seen

F,(C, M_2)#F2(C, M_2)

and hence the firing sequence a2 is not live in M,. Similarly,
the firing sequence a3 is not live in M,. These firing sequence
can be made live by separating the two firing cycles (by
creating two distinct execute actors for arithmetic and store

instructions).

Remarks: Theorem 1 must be applied to check if firing
cycles in a data flow graph are live, given that the cycles are

entered. Thus, in the above example, F2(a4, M4) = { 15},
{16 }, { 17 }, for the firing cycles a I, a2, a3, respectively.
The firing cycle a2 becomes live if the conditional probabil-

ity P[F2(a18, M19) = 127/F2(a4, M4) = 161 = 1. This is the

case when control links and control arcs are used to eliminate

deadlocks in data flow graphs [201.
The theorems presented here do not guarantee that the

number of tokens flowing through a data flow graph remains

constant, but that the tokens are conserved over a firing cycle.
This allows for some actors consuming more tokens than they
produce and others producing more tokens than they consume.

Thus, in a nonterminating deadlock-free data flow graph, all

firing sequences are repeatable.
Before using the deadlock theorems, a data flow graph must

be transformed to conform to the definitions presented in this

paper. The control arcs and links must be removed. Firing
cycles may be discovered by examining circuits in the graph.
Then, the liveness of the firing cycles can be verified.

IV. CONCLUSIONS

In this paper a formal definition of data flow graphs is
introduced. The definition is based on the data flow model
used originally by Dennis [6]. Necessary and sufficient
conditions for liveness in data flow graphs are derived. The

uninterpreted data flow graph can be used to model computer
systems and the performance and reliability of the modeled

system can be analyzed by introducing stochastic properties
into data flow graphs. Isomorphic mappings between Petri
nets and data flow graphs are presented in a separate paper.
Such mappings enable the mathematical formulations used for
Petri nets to be employed in analyzing data flow graph models.

REFERENCES

[1] W. B. Ackernann, "Data flow languages," in Proc. 1979 NCC, New
York, pp. 1087-1095.

[2] , "Data flow languages," IEEE Computer, pp. 15-25, Feb.
1982.

[3] Arvind, K. P. Gostelow, and W. Pflouffe, "An asynchronous

947

programming language and computing machine," Dep. Inform. Com-
put. Sci., Univ. California, Irvine, Tech. Rep. 114a, Dec. 1978.

[4] J. Backus, "Can programs be liberated from von Neumann style? A
functional style and its algebra of programs," CACM, pp. 613-641,
Aug. 1978.

[5] J. L. Baer, Computer Systems Architecture. Rockville, MD:
Computer Science, 1980.

[6] J. B. Dennis, "First version of data flow procedural language,"
Lecture Notes in Computer Science, Vol. 19. Berlin: Springer-
Verlag, 1974.

[7] J. B. Dennis and D. P. Misunas, "A preliminary architecture for a
basic data flow processor," in Proc. 2nd Symp. Comput. Architect.,
Houston, TX, 1975, pp. 126-132.

[8] J. B. Dennis, "Data flow supercomputers," IEEE Computer, pp. 48-
56, Nov. 1980..

[9] J.-L. Gaudiot and M. D. Ercegovac, "Performance analysis of data
flow computers with variable resolution actors," in Proc. 4th Int.
Conf. Distrib. Comput. Syst., San Francisco, CA, May 1984, pp. 2-
9.

[10] J. B. Dugan, K. S. Trivedi, R. Geist, and V. F. Nicola, "Extended
stochastic Petri nets: Applications and analysis," Performance 84, E.
Gelenebe, Ed. Amsterdam, The Netherlands: North Holland, 1984.

[11] R. M. Karp and R. E. Miller, "Properties of a model for parallel
computations: Determinacy, termination, and queueing," SIAM J.
Appl. Math., vol. 14, pp. 1390-1411, Nov. 1966.

[12] K. M. Kavi, "Data flow modeling techniques," in Proc. IASTED Int.
Symp. Simulation and Modeling, Orlando, FL, Nov. 1983, pp. 1-4.

[13] K. M. Kavi, B. P. Buckles, and U. N. Bhat, "Isomorphisms between
Petri nets and data flow graphs," IEEE Trans. Software Eng., to be
published.

[14] , "Reliability analysis of data flow graph models," Dep. Comput.
Sci. Eng., Univ. Texas, Arlington, Tech. Rep. CSE-85-003, 1985.

[15] L. Kleinrock, Queueing Systems, Vol. 2. Computer Applications.
New York: Wiley, 1976.

[16] S. P. Landry, "System oriented extensions to data flow," Ph.D.
dissertation, Dep. Comput. Sci., Univ. Southwestern Louisiana,
Lafayette, May 1981.

[17] M. A. Marson, G. Balbo, and G. Conte, "A class of generalized
stochastic Petri nets for the performance evaluation of multiprocessor
systems," in Proc. ACM SIGMETRICS Conf. Measurement and
Modeling, 1983.

[18] M. Measures, B. D. Shriver, and P. A. Carr, "A distributed operating
system based on data flow principles," in Proc. COMPCON, Sept.
1982, pp. 106-115.

[19] R. E. Miller, "A comparison of some theoretical models of parallel
computation," IEEE Trans. Comput., vol. C-22, pp. 710-717, Aug.
1973.

[20] D. P. Misunas, "Deadlock avoidance in data flow architecture," in
Proc. Symp. Automat. Computation and Contr., Milwaukee, WI,
Apr. 1975, pp. 337-343.

[21] M. K. Molloy, "On the integration of delayed throughput measures in
distributed processing models," Ph.D. dissertation, Univ. California,
Los Angeles, 1981.

[22] , "Performance analysis using stochastic Petri nets," IEEE
Trans. Comput, vol. C-31, pp. 913-917, Sept. 1982.

[23] V. P. Srini and J. F. Asenjo, "Analysis of Cray IS architecture," in
Proc. 10th Symp. Comput. Architect., Stockholm, Sweden, pp. 194-
206, June 1983.

[24] P. C. Treleaven, D. R. Brownbridge, and R. P. Hopkins, "Data driven
and demand driven computer architecture," ACM Comput. Surv.,
Mar. 1982, pp. 93-143.

[25] K. S. Trivedi, "Analytical modeling of computer systems," IEEE
Computer, pp. 38-56, Oct. 1978.

Krishna M. Kavi received the B.E. degree in
electrical engineering from the Indian Institute of
Science, the M.S. and Ph.D. degrees in computer
science from Southern Methodist University, Dallas,
TX, in 1975, 1977, and 1980, respectively.
He is an Associate Professor at the University of

Texas, Arlington. Prior to joining the faculty of the
University of Texas, he was with the University of
Southwestern Louisiana, Lafayette. His interests
include data flow architecture, high-level language
architecture, distributed operating systems, and

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:42 from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON COMPUTERS, VOL. C-35, NO. 11, NOVEMBER 1986

performance evaluation of computer systems. Association for Computing Machinery, and the International Fuzzy Systems

Dr. Kavi is a member of the IEEE Computer Society, Association for Association.
Computing Machinery, Sigma Xi, and Upsilon Pi Epsilon.

Bill P. Buckles (SM'82) received the M.A. degree
in operations research, the M.A. degree in com-

puter science, and the Ph.D. degree in operations
research from the University of Alabama, Hunts-

ville, AL.
lPresently, he is an Associate Professor of Com-

puter Science Engineering at the University of

l I _ Texas, Arlington. Prior to his appointment, he was

a Technical Staff Member at Computer Science
Corporation, Science Applications Inc., and Gen-

eral Research Corporation. He has served as Princi-
pal Investigator on various National Science Foundation funded projects as

well as,those supported by industrial research laboratories. He has over one

dozen journal publications. Currently, his interests are Petri net modeling as it
relates to parallel computing and uncertainty representation in databases using
fuzzy set theory.
Dr. Buckles is a senior member of the IEEE Computer Society, the

U. Narayan Bhat received the B.A. degree in
Mathematics from Madras University, India, the
M.A. degree in statistics from Karnatak University,
India, and the Ph.D. degree in statistics from the
University of Western Australia, Perth, in 1953,
1958, and 1965, respectively.
He has held faculty positions in Karnatak Univer-

sity, 1958-1961, the University of Western Austra-
lia, 1965, Mfichigan State University, East Lansing,
1965-1966, Case Western Reserve University,
Cleveland, OH 1966-1969, and Southern Method-

ist University, Dallas, TX, from 1969 to the present, where he is a Professor
of Statistics and Operations Research. He has also held various administrative
positions at SMU between 1976-1982, the last being the Vice Provost and the
Dean for Graduate Studies. His research interests are in the area of applied
probability with particular reference to stochastic modeling of queueing,
reliability, and computer systems. He is the author or coauthor of three books
and more than 50 research articles.

Dr. Bhat is a member of several professional societies including the
American Statistical Association, Operations Research Society of America,
and the Institute of Management Sciences.

948

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:42 from IEEE Xplore.  Restrictions apply. 


