
PARALLELISM IN

LANGUAGES: A SURVEY
OBJECT=ORIENTED

A look at 14
representohe languages

reveals that when
concurrency features are
added after a language
has been designed, the
resulting hybrid can be

difficult to use and may
produce inefficient

programs.

BARBARA B. WYAl l
KRISHNA KAVl

STEVE HUFNAGEL
University of Texas at Arlington

56

oncurrent object-oriented languages C try to bring the benefits of object ori-
entation (modularizing a problem into
smaller problems based on data rather
than function) to multiprocessor environ-
ments. We compared how several of these
languages deal with conununication, syn-
chronization, process management, in-
heritance, and implementation trade-offs.
We also explored how they divide respon-
sibility between the programmer, the
compiler, and the operating system. We
did not investigate issues unique to distrib-
uted process micgration, naming, load bal-
ancing, or security.

We found that current object-oriented
languages that have concurrency features
were often compromised in important

areas, including inheritance capability, ef-
ficiency, ease of use, and degree of parallel
activity. Frequently, this was because the
concurrency features were added after the
language was designed. Unless concurr-
ency, synchronization, and communica-
tion are carefully integrated, a parallel ob-
ject-oriented language can be inefficient
and difficult to use.

OBJECT-ORIENTED LANGUAGES

Object-oriented languages break a
program down into segments (objects) ac-
cessible only by sending messages through
a rigid interface. The objects interpret
each message and take an appropriate ac-
tion. Theoretically, you can't access an

N O V E M B E R 1 9 9 2

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:37 from IEEE Xplore. Restrictions apply.

object’s internal data, but the object, in
effect, shares this data through its actions.

In these languages, objects mherit fea-
tures from other objects in a herarchy.
Inheritance classifies objects that share sets
of properties. Objects may inherit features
from more than one classification struc-
ture and more than once from the same
class (multiple mheritance). In some cases,
objects inherit only a reference to the in-
herited code instead of a copy of the entire
segment.

Inheritance lets programmers reuse
code and redehe its application w i h n
the current environment. It is the key to
building maintainable, reusable systems,
and it provides a form of configuration
management. Inheritance is one of seven
properties that, according to Bertrand
Meyer, characterize pure object-oriented
languages.’ The seven properties are

+ modular structure;
+ data abstraction (objects are de-

scribed as implementations of abstract
data types);

+ automatic memory management
(the language deallocates unused objects
without programmer intervention);

+ classes (every nonsimple type is a
class);

+ mheritance (a class may be defined as
an extension or restriction of another);

+ polymorphism and dynamic bind-
ing (program entities can refer to objects
of more than one class, and operations can
have different realizations in different
classes); and

+ multiple and repeated mheritance (a
class can inherit from more than one class
and be a parent to the same class more than
once).

Meyer regards languages that meet the
first four criteria as object-based; he re-
gards as truly object-oriented only lan-
guages that meet all seven characteristics.

The hardest requirement to meet is the
last one, multiple inheritance. When a
chdd class mherits from two other classes
that share a common ancestor, references
to that ancestor’s methods are ambiguous
unless you deheate a specific path. Multi-
ple inheritance makes a language more
flexible and expandable, but it is debatable
whether or not a language must have this

quality to be considered object-oriented.
Even the classic object-oriented language,
Smalltalk, does not support multiple in-

rency, but require a reply. In the future-
variable approach, as long as the sender
doesn’t need the results, both sender and

heritance.

PARALLELISM

Concurrent languages use constructs

receiver may execute concurrently. Some
languages let processing continue before a
message has been answered; thus both the
sending and the receiving object may be
active simultaneously.

for creating processes Oike fbrk) and de- 1 Another approach is to allow early cre-
stroying them (kejoin).
The operatingsystemop-
timizes the mechanisms

ation of the successor (as
in Actors-based lan-
guages). In the Actors ap- - -

for communication, syn- - preach, the successor may
chronization, and mutual begin responding to the
exclusion according to Inheritance lets next message while the
whether the physycal programmers reuse parent is s a l processing
memory is shared or dis- its message.‘ Within a
tributed. Memory maybe code and rdefine its sinrleobject,itisalsopos-

I .

shared by all prockssok or
distributed throughout application within the sible to create multiple

threads of activity either
the system SO that each current environment. by allowing multiple
processor has access to
only a portion of the
memory. Regardless of
the physical organization, the logical orga-
nization of memory may be either shared
or distributed.

In physically shared memory systems,
processes communicate by sharing vari-
ables, forcing the memory to ensure mu-
tual exclusion by different processes.
These system often use semaphores and
spin locks for data synchronization and
mutual exclusion.

In physically distributed memories,
processes communicate by message pass-
ing or remote procedure calls. Bloclung
and nonbloclung message calls can be used
for synchronization, but the programmer
is responsible for maintaining data consis-
tency when using nonblocking mecha-
nisms.

Concurrent languages in an object en-
vironment can allow objects to be created
either dynamically as a program runs or
only when the program starts. Program-
mers can synchronize active objects with
asynchronous method calls, future vari-
ables, and early or late creation of succes-
sors. Asynchronous message calls let ob-
jects process messages simultaneously
without blocking the sending object until
no reply is returned to the sender.

Future variables allow similar concur-

method invocations in re-
sponse to a single message
or by allowing multiple

messages to process concurrently.
In tlus article, we assume that a pro-

grammer is interested in specifying the
parallelism; some believe parallelism
should be transparent to the programmer.

PROCESS MANAGEMENT

Just as a parallel-processing environ-
ment implies multiple processes, a parallel
object-oriented system spawns multiple
objects, each of which can start a thread of
execution. Objects and processes, how-
ever, are independent of each other. Pro-
cesses invoke methods contained in ob-
jects. Table 1 shows how some languages
compare in their support of process man-
agement.

Process creation Most concurrent ob-
ject-oriented languages use one of two ap-
proaches to start multiple processes. In the
explicit approach, the language provides a
mechanism for spawning multiple pro-
cesses, external to the object structure. In
th~s approach, parallelism sits on top of the
object structure rather than being inte-
grated into it. Explicit mechanisms like
locks, monitors, and semaphores ensure
object intepity. T h s approach can be im-

I E E E S O F T W A R E 5 7

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:37 from IEEE Xplore. Restrictions apply.

language Creation Termination Activation Granularity

AbcVl Implicit Continue after reply

demented with a set of predefined threads
)r root object types for initiating parallel
Ictivity.

For example, in P r e s t ~ , ~ a thread object
whch contains a program counter and a
tack of method invocations) is the basic
n i t of execution. Two functions, create
md start, control thread execution. This
ipproach makes it easier to add parallel
:apabilities to an existing language -
ivailable compilers and support software
ieed not be modified. The thread and
'oot objects can be included in the pro-
p m , and inheritance can create different
ypes of thread and root objects.

In the implicit approach, an object in-
rocation can spawn multiple execution
heads. In this approach, processes are
mcapsulated within objects, creating
:omPosite objects. When an object gets a
nessage, it can activate one or more inter-
la1 objects.

Languages that adopt this approach
:an increase parallelism by creating ob-
ects dynamically. The runtime system
jchedules and controls parallel activity by
Ceeping a list of objects on each available
x-ocessor that can be run. Rather than
3eing limited by the user's view of the

n message receipt

amount of lnherent parallelism, the run-
time system could face the opposite prob-
lem by creating more objects than avail-
able resources (although it can combine
small objects to increase efficiency). An
advantage of this approach is that re-
sources can be allocated more easily in re-
sponse to changing conditions.

More languages have adopted the im-
plicit approach because it abstracts the de-
tails of setting up multiple processes, eas-
ing the programmer's task. The explicit
approach requires two abstraction levels,
objects and threads, blurring the unit of
concurrency, and makes i t the
programmer's responsibility to specify the
parallel activity. This is especially hard to
do in a distributed system, in which the
exact runtime configurationvaries. On the
other hand, the implicit approach requires
that the language's semantics define com-
posite objects, synchronization, and com-
munication boundaries. These bound-
aries are already clear in the explicit
approach.

Process tenn'mtion. Processes may be
terminated explicitly or implicitly after a
message has been processed. The differ-

ence in terms of implementation difficul-
ties is minimal, but, in terms of runtime
efficiency, the difference is significant.

Implicitly terminating processes after
replying to a message is similar to a remote
procedure call.' However, h s approach
results in execution inefficiencies because
it means processes must be created and
deleted in response to messages. The Ac-
tors model (and many Actors-based lan-
guages) is the best-known example of t l s
approach: A process (actor) responds to a
single message and then terminates. The
Actors approach allows maximum con-
currency but involves excessive process-
creation overhead.

The alternative is to terminate pro-
cesses explicitly. T h s approach lets pro-
cesses continue after replying to messages
and be available to respond to other mes-
sages. In thls approach, fewer processes
are created and deleted in response to
messages. AbcVl operates this way.'

Process activation. Processes may activate
when they are created or remain dormant
until they receive a message. The first
method causes more active parallelism be-
cause it lets processes run without mes-

5 8 N O V E M B E R 1 9 9 2

- - ___ -
~ .-

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:37 from IEEE Xplore. Restrictions apply.

sages, but it can waste resources. It’s also
difficult to implement, particularly in
terms of resource management. POOL-T
uses th~s more active approach?

Most object-oriented languages wait
for messages to prompt processes. As pro-
cesses are spawned, the programmer must
still manage synchronization and resource
sharing. Also, h s method creates more
runtime overhead. Actors’ and Concur-
rent Smalltalk7 operate h s way.

Process g m n u l a i i . Granularity refers to
the size of the schedulable unit of parallel
activity and the amount of processing
among messages. Programmers can vary
the size of the processing unit to take ad-
vantage of hardware configurations and
communication overhead. A language can
support a combination of coarse-, me-
dium-, or f i n e - F e d units. Often, a lan-
guage provides different synchronization
mechanisms at different concurrency levels.

A finer granularity requires more effi-
cient communication because dividmg an
object into smaller pieces increases com-
munication. Coarser granularity is used
when high communication overhead
forces the programmer to compensate by
increasing the size of a program’s commu-
nicating units. Coarse granularitytypically
implies only one task per object or even
per several objects; fine granularity implies
multiple tasks per object.

With a coarse granularity, a program
synchronizes only between objects be-
cause only one thread is active at a time.
Other messages must wait for it to finish
with each message. With a finer granular-
ity, multiple threads have access to an
object’s variables, so the processor must
synchronize its responses to these threads.
Sometimes the processor spends more
time synchronizing than computing.

The Actors model allows the finest
granularity and the hghest degree of con-
currency. AbcVl s~~pports medium granu-
larity (lightweight tasks). Argus8 supports
coarse granularity (heavyweight tasks).

COMMUNICATION FEATURES

In conventional multiprocessors, ob-
jects communicate either by sharing

memory or passing messages. But in ob-
ject-oriented environments, communica-
tion is always through message-passing
because sharing data among objects vio-
lates the encapsulation principle. Some
argue that it is acceptable to violate the
object paradigm at the physical level to
maximize performance if it is accom-
plished by a verified compiler or runtime
system.’ However, the programmer
should not have direct access to th~s phys-
ical level.

Table 2 summarizes the communica-
tion mechanisms of several concurrent
object-oriented languages.

Message types. Object-oriented lan-
guages use three types of communication:
synchronous, asynchronous, and eager in-
v o a tion.

Synchronous communication uses re-
mote procedure calls. It is easiest to imple-
ment, but sometimes
wastes time because of the
requirement for both the
sender and receiver to
rendezvous. Synchro-
nous systems are more
predictable and so are
easier to verify. POOL-
T’s developers chose syn-
chronous operation, be-
lieving that asynchronous
communication causes
unnecessary complica-
tions and carries the risk
that h g s could get out
of hand.

Asynchronous com-
munication eliminates

accesses the future variable. If the results
have been returned, the sender continues;
if not, it blocks and waits for the results.
Futures decrease or eliminate the wait for
a reply and increase concurrency at a
smaller risk to system consistency, but
they add runtime overhead.

Messages in object-oriented languages
specify the receiver’s address. AbcVl sup-
ports two ways to specify the receiver: Its
Parallel construct lets you send different
messages to a group of receivers simulta-
neously. Its multicasting feature allows the
asynchronous transmission of a message
to a group of receivingobjects. Both capa-
bilities increase concurrency.

Message acceptance. Objects receive mes-
sages either implicitly or explicitly. h-
plicit acceptance means the system accepts
messages automatically, and users cannot
control the receivers. In an implicit sys-

tem, a low-priority task

Some argue that it is
acceptable to violate

the object paradigm at
the physical level to

maximize
performance if it is
accomplished by a
verified compiler or

runtime system.
the wait for synchroniza-
tion and can increase concurrent activity.
But it is less predictable, hence harder to
program and test. Aprogram can use asyn-
chronous communication if objects can
keep processing without waiting for an an-
swer to their messages. If objects need a
reply, h s must be explicitly programmed.

Eager invocation, or the futures
method, is a variation of asynchronous
coinmunication. As in an asynchronous
operation, the sender continues executing,
but a future variable holds a place for the
results. The sender processes until it

can interrupt a hgh-pri-
ority task. To prevent h s ,
the programmer can as-
sign messages priorities,
but &IS makes the pro-
gram more complex.

Explicit acceptance
lets objects control when
they receive and process
messages. This is more
flexible because priority
schemes are inherently
defined in the list of mes-
sages an object can re-
spond to. However, it in-
creases runtime overhead
because the system must
prioritize the message

queue, and consequently the programmer
must assume more responsibility for con-
trolling message processing.

Message processing and pews. Objects
can process messages in the order received
or in the order of the priority assigned to
them by the system. Order-preserving
queues are easier to design and test, but
more difficult to implement. Asystem pri-
oritizes messages by providmg multiple
queues of varying priority.

Languages that can prioritize messages

I E E E S O F T W A R E 59

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:37 from IEEE Xplore. Restrictions apply.

~

Message types
1 language S A F Acceptance Arrival Queue Synchronization

I

x x x

Actor x x x Implicit Nondeterministic Single Interface

Smalltalk X
COOL

Gnu C++ x x x Impllclt Deterministic Single Central

S = ~uchomous; A = Asynchmwur; F = Futures

accorhg to performance requirements
are more flexible.2 The underlying prem-
ise is that you cannot predict message ar-
rival in a real communication network, so
the archtecture should be free to dynam-
ically reconfigure itself to meet perfor-
mance requirements. Although such pri-
oritizing requires only one queue, its
nondeterministic nature presents prob-
lems in implementing conceptually simple
operations like terminating processes. You
must also consider problems like h t e d
queue size, missing messages, and mes-
sages that arrive out of order.

Synchronization Correct synchroniza-
tion coordinates parallel activities so that
they run efficiently, consistently, and pre-
dictably. Too much coordination reduces
concurrency; too little leads to undesired
nondeterminism.

Inheritance complicates synchronim-
tion. When a subclass mherits from a base
class, programs must sometimes redefine
the synchronization constraints of the in-
herited method. T h s is the single most
difficult aspect of integrating concurrency
into object-oriented languages.

If a single centralized class explicitly
controls message reception, all subclasses
must rewrite th ls part each time a new
method is added to the class. The subclass
cannot simply inherit the synchronization
code because the hghest level class cannot

invoke the new method.
The designers of POOL-T and Paral-

lel Eiffel are faced with exactly this prob-
lem. The body of the object (called the live
method in Extended Eiffel) specifies the
concurrency constraints and must be re-
written each time a subclass with a new
method is added. Languages with con-
structs like Select and Guards have cen-
tralized synchronization definitions. The
Select construct allows the receiver to wait
on several messages. It operates like a pri-
ority queue, in which priority is given to
the first arriving message.

Critical sections are an altemative to a
centralized synchronization. Critical sec-
tions can be used in each of an object's
methods to maintain consistency; each
method becomes responsible for control-
ling entry into the critical section. Locks,
monitors, semaphores, mutual-exclusion
mechanisms, and atomic variables can be
used to control access to critical sections.
The risk is that a subclass can modify the
mutex. Inheritance makes it impossible for
the system to guarantee that all subclasses
follow the protocol for entering the criti-
cal section.

Hybrid' uses decentralized synchroni-
zation: Each method has a delay queue
and explicit code to control it. Messages
execute only if the delay queue is open.
Changes in a superclass may be necessary
if a subclass with a new delay queue is

6 0

added. If methods in the superclass must
control the new delay queue, the super-
class must also be modified.

Actors-like languages, which receive
messages implicitly, synchronize differ-
ently. Objects use a Becomes construct to
specify replacement behavior, which also
indicates what type of message to accept in
the new behavior. The mail system deliv-
ers a message only when the object is re-
ceptive to it. All other messages are
blocked. This interface approach has its
own inheritance-mechanism difficulties.
When new methods are added to a subclass,
its existing methods may need modification
to accommodate the Becomes construct.

Object managers can also control ac-
cess by selecting authorized methods and
blocking unauthorized ones. The method
associated with the authorized message is
executed and the next set of authorized
methods are enabled when the current
method executes a Becomes operation.
The Becomes operation then enables the
specified methods for execution. Act++
lets users name methods for each object
state in the new behaviors."

A similar approach in Rosette" uses
enabled sets to define messages that are
allowed in the object's next state. Objects
pass the enabled sets' specifications from
one state to the next. Enabled sets are
themselves objects, and invoking their
methods combines them. In &sway, they

N O V E M B E R 1 9 9 2

I

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:37 from IEEE Xplore. Restrictions apply.

can be built 6-om mherited parts and lo-
cally extended. (Act++ does not support
such a composition.) This eliminates
monolithic code that must be rewritten to
incorporate new synchronization con-
straints, but increases system complexity.

Guide” uses activation conditions to
specify an object’s state for executing a
method. Activation conditions are com-
plex expressions based on

+ the number of messages received,
completed, or executing;

+ the state variables of the receiver; or
+ the message contents.
Activation conditions are more expres-

sive than enabled sets, but more difficult to
use because the programmer must identify
all states for which the method is enabled.

DELEGATION AND INHERITANCE

A language can extend an object’s us-
ability through delegation or mheritance,
which strive to distribute knowledge
throughout the system but are thwarted by
atomic access and synchronization con-
cems. Table 3 compares how some con-
current object-oriented languages support
mheritance.

Type. Delegation is based on the idea of
subcontracting a job when the current ob-
ject cannot perform it. If an object cannot
answer a message, the sender sends a new
message to an object that can. Delegation
supports dynamic code sharing, which
better accommodates growth because it
lets you add messages without having to
modify other objects extensively. The Ac-
tors model and AbcYl use delegation.

Inheritance lets you form specialized
objects by inheriting methods and vari-
ables from a class hierarchy, which facili-
tates code reuse among classes. Subclasses
behave as specialized versions of their par-
ent.

Instmtiation. Inheritance approaches
vary from fully static to fully dynamic. In
static mheritance, the compiler copies the
inherited code. T h i s eases the
programmer’s job because it supports
reuse. In dynamic mheritance, which is
more flexible but slows execution. the run-

time system determines the appropriate
active method and generates the correct
execution thread. Dynamic inheritance is
especially useful when method sharing is
required! In a concurrent environment,
dynamic inheritance presents many prob-
lems.

The problems involved in implement-
ing multiple inheritance in a concurrent
object-oriented environment are like
those encountered with single inheri-
tance, but are compounded by the poten-
tial for conflicts among inherited methods
and synchronization requirements. We
know of no concurrent object-oriented
language that supports multiple mheri-
tance.

The easiest way to avoid mheritance
problems is to leave inheritance out, as
POOL-Ts developers did. However, dis-
allowing mheritance violates two of the
seven characteristics of object-oriented
languages and severely restricts the
language’s usefulness. (A new version of
POOL-T with limited inheritance is
being developed.)

Static inheritance cop-
ies the variable and
method dictionaries into
the inheriting object at
compile time. This is sim-
ple and efficient, but it
wastes memory by repli-
cating code.

Another approach is
on-demand inheritance,
in which method diction-
aries not explicitly dehed
in the class are located in

control mechanisms to ensure that the lat-
est version of the global method set is
used.

In the recipe-query method, the re-
ceiving object asks another object (a
proxy) for the method’s recipe. After the
proxy returns the recipe, the receiver can
respond to the original message. Thls so-
lution is simple, dynamic, and natural in a
message-passing environment, but it has
problems. First, the object requesting the
recipe may need to access variables in the
proxy, which can cause deadlocks if the
proxy is locked. Second, in applications
with a lot of object interaction, communi-
cations bandwidth is a concem. Third, it
delays message processing until a recipe is
received. Finally, it is difficult to update
methods: The proxy that supplies a recipe
must send messages to invalidate old reci-
pes, or a version-control mechanism must
ensure that the latest recipe is provided.
(Flavors uses an automatic-update mecha-
nism to control version^.'^)

A variation on the recipe-query ap-
proach is to regard the method as an ob-

ject and have the receiver
return the address of the - method to the sender.

We know of no The sender then sends a
second message to the

concurrent method. But this ap-
proach can also cause

obiect*riented deadlock if the method
language that needs information from

the locked sending object.
The alternative of send- supports multiple . .
ing the entire originating

inheritance. object’s environment can
the herarchy and linked
dynamically at runtime.
However, this approach, used in
~atroshka, l3 supports only static inheri-
tance of the variable dictionary, so multi-
ple copies of code still take up a lot of
memory.

Another way to reduce the amount of
memory static mheritance requires is to
globally declare a primitive set of methods
that all objects recognize. When these
methods are invoked, the standard inheri-
tance scheme is circumvented, so the de-
fault methods need not be copied into all
objects. This approach requires version-

also significantly increase
comunication traffic.“

Another method, computational re-
flection, lets a system access and manipu-
late a causally connected representation of
its state. Any changes made to the system’s
self-representation are immediately re-
flected in its actual state and behavior.
Each object has its own metaobject, whch
contains information about the imple-
mentation and interpretation of the
object’s methods, state, message queues,
and evaluation method. Reflective com-
putations modify the system’s behavior.
The system can modify itself in response

I E E E S O F T W A R E 6 1

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:37 from IEEE Xplore. Restrictions apply.

~ tanguage Type

Abcl/l Delegation

Eiffel

None
POOL-T None

to changing conditions.
An example of a reflective system is a

compiler-compiler that understands a
language’s structure. Patti Maes pion-
eered reflection in object-oriented lan-
guages by m o d i b g KRS to accommo-
date reflection.” Since then, at least two
others have used it: Rosette and AbcVR16
(a derivative ofAbcV1).

LANGUAGE SURVEY

None of the object-based languages we
surveyed met Meyers’ seven requirements
because they either restrict or disallow in-
heritance. We based the selection of the
languages for our survey on the availability
of published material and detailed manu-
als. We also wrote a techca l report that
includes programming examples, which
you can get by writing to us. Of come,
dus is not an exhaustive survey, but it hgh-
lights the issues, features, and trade-offs
faced by language designers and im-
plementers.

Some concurrent object-oriented lan-
guages are extensions to existing lan-
guages, hke Smalltalk and C++. of the
many languages that add concurrency to
Smalltalk, our survey examines Concur-
rent Smalltalk, whch is the basis for a dis-
tributed version of the language. Several
languages have extended C++. They range
in approach from those that extend the
syntax (COOL)17, to those that provide
predefined object types (Presto) or macros

Closses Instantiation ~

hT/A
Single
N/A
Single
N/A
N/A
Single
N/A
Single
Mu1 tiple
N/A
N/A
N/A
N/A

Dynamic

Static

static

(Parmacs). Many C++ extensions are de-
signed to operate in a shared-memory en-
vironment; Gnu C++I9 is designed for a
distributed environment.

Other languages have been developed
with concurrency in mind, including
AbcVl, Argus, and Parallel Eiffel. The Ac-
tors model is the basis for many of these
languages, including AbcVl. Argus and
Emerald” are supported by their own dis-
tributed object-oriented operating sys-
tem; Emerald is not only a language but an
operating system.

Wluch language you choose will de-
pend on its conformance with the language,
operating system, or hardware you use.

Actor+ Developed at the Massachusetts
Institute of Technology, Actors’ is not an
object-oriented language, but we include it
and languages based on it because they sup-
port the highest degree of concurrency.

The basic unit in the language model is
an actor, which consists of a mail address
and a behavior. Actors may be created dy-
namically, and each actor has its own set of
semantics. The language model supports
neither explicit locks nor data sharing.

Each mail address is associated with an
incoming-message queue. When a mes-
sage arrives, the actor executes a script.
The script accepts the message if it recog-
nizes it; otherwise it rejects it.

The script may send messages to ac-
quaintances (mail addresses known to the
actor), to itself (usually by creating a copy

of itself), or to an actor created specifically
to handle the message.

The script also specifies a replacement
behavior using the Becomes primitive.
The replacement behavior is a new actor
(with the same mailbox name) that accepts
and acts on the next message. The actor
enhances concurrency when it specifies
the replacement behavior before respond-
ing to the newly received message. Ekpres-
sion actors handle futures by treating the
expression (or future variable) as an actor and
sendmg a message to evaluate i t The sender
uses the mail address of the actor responsible
for evaluating the expression as a
placeholder for the actual value.

The actor delegates rejected messages
to a proxy (another actor whose mail ad-
dress is known to the sender). The proxy
usually contains additional information
(including an exception-handling mecha-
nism) to respond to the message.

Continuation actors perform synchro-
nous function calls by blocking und the
synchronization event occurs. Actor-
based languages synchronize with shared
actors known as serializers, which protect
their intemal state against timing errors.

Abd/l. AbcVl (An Object-Based Con-
current Language)’ derives from Actors.
Objects execute scripts that specify their
behavior, acceptable messages, and re-
sponses. Independent objects may execute
in parallel, but within an object, messages
process serially. Objects are dormant
when created and block until activated by
a message. The object can select messages
out of order by comparing them with a
script pattern. It places messages that don’t
match the script at the end of a queue for
processing later. After performing the ac-
tions, the object r e m s to dormancy by
executing a Select construct.

Normally, message passing is asyn-
chronous, point to point, and order pre-
serving. A message can consist of tags to
distinguish message type, parameters, and
names of the sender and the reply destina-
tion. If a message is sent to an object that
satisfies more than one message-pattem-
constraint pair, the first pair specified in
the script is executed.

Objects have two message queues: or-

__

6 2 N O V E M B E R 1 9 9 2

I

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:37 from IEEE Xplore. Restrictions apply.

dinary and express. Express messages can
preempt ordmary messages, but not other
express messages, atomic actions, or access
to local persistent memory. After process-
ing the express message, the object may
abandon the preempted task, if so indi-
cated by the express message. The object
then takes the next message from the ordi-
nary queue.

AbcVl has three types of message pass-
ing: past, now, and future. The past and
future modes operate asynchronously; the
now mode operates synchronously. Users
specify parallel activity by using the Paral-
lel construct within the object. Abcl/l can
also multicast- send the same message to
a list of objects simultaneously.

Abd/R. A reflective version of AbcVl ,
h s language represents each ob'ect by a

each metaobject may be represented by a
meta-metaobject, creating an infinite
tower of objects - although tlus is not
normally done.

The metaobject represents an object's
structural aspects and consists ofstate vari-
ables representing the methods to be exe-
cuted, the state memory, a serial evaluator,
and a message queue. Messages are sent to
metaobjects when a computation involv-
ing the object is to be performed. The
metaobject directs the object to perform
the operation. The state variables perform
the computation.

In other words, the metaobject is a ge-
neric template for an object implementa-
tion. Because the metaobject contains an
object's intemal structure, it can manipu-
late the smcture by sending messages that
cause the deletion, addition, or inheri-
tance of methods.

causally connected metaobject.' d In tum,

Argus. Argus uses a transaction model
and supports reliable computing.8 It is
both a language and an operating system.
The language is an extension of Clu.
Guardians encapsulate dynamic collec-
tions of objects and processes and provide
the notion of a physical machme. They
can be accessed by other guardians (and
their internal variables manipulated)
only through a procedure called a han-
dler. A guardian is located at a single

I E E E S O F T W A R E

I--- -

node in the network; several guardians
may reside at a single node. They are de-
signed to survive failures at that node by
changingtheirnode ofresidence. Guard-
ians can create other guardians dynami-
cally. A guardian's location is specified by
thecreatorguardian.

Computations run as atomic transac-
tions or actions. Actions are serializable
and total. Totality implies that the action
either completes successfully or is guaran-
teed to have no effect. Actions can be
nested. Subactions may run concurrently,
but a parent and a child action may not run
concurrently.

Atomic objects provide synchroniza-
tion. Each guardian in the system is as-
signed a unique identifier, as are threads
within a guardian.

COOL Developed at Stanford Univer-
sity, COOL (Concurrent Object-Ori-
ented Language)" extends C++ to enable
programming with medium- to large-
grained concurrency in a shared-memory
environment. Program-
mers can define parallel-

concurrency potential than monitors.
COOL provides fine-grained syn-

chronization with future variables, spin
locks, and blocking locks. Future variables
add concurrency among methods. Like
POOL-T and Presto, COOL does not
support inheritance, friend or virtual
functions, or method overloading.

Concurrent Smaltalk. T h e concurrent
constructs added to Smalltalk-80 let the
receiver continue executing after it re-
ceives a message (like POOL-T ' s
postprocessing section).' Method calls are
asynchronous; the sender may continue
executing after sending a message. Asyn-
chronous method calls are implemented
using synchronous calls and an intermedi-
ary object called a CBox that block on
behalf of the sender. The reply is returned
via the CBox - the sender must send a
message to the CBox to receive the reply.

In addition to asynchronous calls,
Concurrent Smalltalk allows standard
Smalltalk-80 synchronous calls. Synchro-

nization is accomplished
using atomic objects,

ism w i h an object (each
method can execute asyn-
chronously), between ob-
jects (different methods in
different objects can exe-
cute concurrently), and
within a method (different
functions w i b a method
can be invoked in parallel).

By i n v o h g methods
defined as parallel, the ex-
ecution can proceed asyn-
chronously. Methods
may also be declared as
mutex, allowing synchro-

-
None of the

o biect-oriented
languages we

surveyed met Meyers'
seven requirements
because they either
restrict or disallow

inheritance.
nization at the iunction
level on an object. De-
claring a method as mutex allows multi-
ple-reader, single-writer access to that
object's public fields. Synchronization is
against other public methods; private
methods can be invoked from w i h the
executing mutex method without locking.
A release statement allows a mutex
method to wait on an event while releasing
the event to other methods. Mutex access
to an object is more flexible and has more

whicG ensure that' mes-
sages are accepted and ex-
ecuted serially. The lan-
guage unifies objects and
processes by defining
concurrent object
classes.

Eiffel Developed by
the French Centre Na-
tional de la Recherche
Scientifique and Interac-
tive Software Engineer-
ing, Eiffel' is capable of
generic classes and asser-
hons, as is C++. Generic
classes allow for easy de-

velopment of libraries for similar classes.
C++ container classes and parameterized
types make this possible. Assertions are
simple formal specifications written as
preconditions, postconditions, and invari-
ants for method execution.

The parallel version of Eiffel has two
synchronization mechanisms. The Wait-
by-necessity mechanism is hke a future,
but does not require that you explicitly

63

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:37 from IEEE Xplore. Restrictions apply.

assign or invoke a future. This is syntacti-
cally cleaner, but does not have the flexi-
bility of aggregate futures and future pass-
ing. The Serve mechanism implements an
Ada-type rendezvous both semantically
and syntactically.

E d d Developed at the University of
Washgton, Emerald’s‘’ primary goal is
to demonstrate object mobility in a dis-
tributed system. A small set of language
primitives locate and move objects, which
the compiler implements as global, local,
or direct. Remote invocations involve lo-
cating the object’s unique global identifier
in a hashed access table. There is no kernel
intervention when objects within a single
node are accessed.

Objects in Emerald are active if they
are defined with a process. Otherwise,
they are treated as passive data structures.
Active objects invoke other objects, which
in turn may invoke other active objects. An
execution thread is initiated when active
objects are created. Emerald permits
threads to span multiple objects (either
local or remote), as well as multiple
threads contained w i h a single object.

Monitors are used for synchronization.
Identically implemented objects on a sin-
gle node can share code. Aconcrete object
stores code for other objects. The code is
dynamically h k e d and the object makes
copies for remote nodes, if necessary.

Emerald provides call-by-move and
call-by-visit method calls. In both, the ar-
gument objects are packaged along with
the invocation message. In call-by-move,
the object indicated is kept as an argument
on the invoked node. Call-by-visit mi-
grates the object to the invokmg node.

ES-Kl C t t ; Developed at the Microelec-
tronics and Computer Technology Corp.,
h s extension of Gnu C++ for a distrib-
uted environment achieves parallelism
primarily through futures.”

Aggregate futures support multiple in-
vocations: The results can be collected in
order of either arrival or invocation.
Methods simulate barriers: A process can
choose to wait for the completion of all
invoked methods or for any method to
complete.

An object represents a single thread of
execution. Objects are uniquely identified
with handles, which specify the node, ap-
plication, class, and instance identifica-
tion. A method’s functions are addressed
through pointers to the handles of the ob-
ject that contains them.

Communication in the
distributed environment

ant, object-oriented, distributed operating
system. T h s C-based language provides
stable storage and atomic operations for
transactions processing. Like Argus, it
supports network transparency for inter-
object communication.

Nexus is based on a concept of weak
atomicity; the atomicity
of an action is maranteed

U

is transparent to the user only for changes made to
(C++ message-passing is that object, not to the ac-
the only communication Even languages tions performedon exter-

nal objects as part of the
sequence. That is, d k e mer). This is achieved by

that is overloaded with the only ,.inglezlass strict serializability of
actual method call. concurrent actions.

inheritance. A function library im-

visible to the program- that pemit .
creating a remote class inheritance SUppOfl ~ r g u s , it does not enforce

Hybrid. In Hybrid,9 the
unit of concurrency is a
domain. A domain con-
tains one or more objects, but processes
them one at a time. Domains may be idle,
active, or blocked. Idle domins may re-
ceive messages. Active domains may pro-
cess requests only from the current thread
of control, called an activity. Domains are
blocked when remote procedure calls to
objects in other domains are made.

An activity may be started by sendmg a
message to a method called Reflex. Similar
to f o r h g a process, the parent and child
activities can continue independently
from h s point. A delay queue can control
access to one or more methods. An open
queue allows the method to execute; a
closed queue blocks access. Delay queues
can also allow actions to be performed
after a call has been retumed.

Asynchronous met-hod calls with a re-
turn are executed by the Delegate con-
struct. Execution resumes at the point of
the method call when the sending object
becomes idle again. Return values can be
forwarded to the original caller, rather
than to an intermediary. The atomic state-
ment ensues mutual exclusion for a se-
quence of statements instead of a single
method call. The Coloop and Coblock
constructs allow a parent domain to block
until a set of subactivities are performed.

Nexus Developed at the University of
Minnesota, Nexus” features a fault-toler-

plements atomic transac-
tions. In its model of ob-
ject management, each

object is identified with an object manager
and all object managers for a class are
grouped into a class manager. The class
manager is implemented by a set of coop-
erating processes known as class represen-
tatives. Each representative maintains a
list of the objects in that class associated
with the controlling representative. The
Nexus kernel interfaces only with the
class representatives.

P w ~ w . This language is essentially a
set of C++ macros to facilitate the de&-
tion of concurrency and synchronization
in a shared-memory environment.”

Parmacs organizes primitives in a her-
archy, with spin locks at the lowest level
and monitors and barriers at hgher levels.
It provides two specialized types of moni-
tors, getsub and askfor. Getsub is an
atomic subscript server for loop-level par-
allelism. Askfor coordinates processes in a
work queue and provides methods for de-
fining queues. Barriers include leaklast
(which allows the last process out of the
barrier) and leakone (which allows one
process out of the barrier).

POOL-T. Objects in POOL-T (Parallel
Object-Oriented Language-q6 are active
when they are created. The body of an
object specifies an autonomous activity,
and associated with each object is a speci-

I

N O V E M B E R 1 9 9 2 64

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:37 from IEEE Xplore. Restrictions apply.

fication and an implementation. The im-
plementation unit contains the object’s
class definitions. The specification unit
describes the classes and methods accessi-
ble by other objects. Arootunit, consisting
of class definitions, serves as the main pro-
gram and execution starting point.

On startup, POOL-T implicitly cre-
ates an instance of the root unit’s last class,
which then must dynamically create more
objects to execute. POOL-T follows
Smalltalk-80’s purist view of objects in that
it considers every data item to be an object.
This simplifies implementation but slows
execution.

Message passing is synchronous and
point-to-point. Messages are accepted ex-
plicitly, so objects cannot send and accept
a message simultaneously. Messages are
stored in one queue in order of arrival.
When an object executes an answer state-
ment, it answers the first message in the
queue, whose name appears w i h the an-
swer. T h s approach makes dequeueing
more difficult. The Answer statement is
similar to Ada’s Select. Once the reply is
sent, the receiver may execute a
postprocessing section.

Presto. Like several C++ extensions,
Presto,j also developed at the University
of Washington, gives programmers a set
of predefined C++ classes (such as threads
and synchronization objects) to simplify
parallel-program creation. Presto and its
system of predefined threads and c o m u -
nication objec- is designed for a global,
shared-memory environment.

Thread objects are defined as a pro-
gram counter plus a stack of invocation
records. Threads can be created and acti-
vated dynamically, and they can be joined.
Although threads can execute only one
object at a time, an object can be assigned
to mu1 tiple threads.

Presto’s developers minimized the cost
of creating threads by reusing threads
fiom a reclaim pool. A scheduler object
(created by the runtime system) schedules
the threads as they are activated or re-
sumed. Each physical processor is repre-
sented by a processor object, whch re-
quests executable threads from the
scheduler. Scheduler objects cannot be

migrated. Migration of objects can take
place only when they are blocked (and re-
sumed on a different processor).

A s e n h g object may invoke an opera-
tion synchronously or asynchronously.
T h e object’s implementer decides
whether the object executes sequentially
or concurrently. Objects cannot determine
if they are being invoked synchronously or
asynchronously, and the invoking object
cannot determine if the invocation is per-
formed sequentially or in parallel.

Presto provides spin locks and blocking
locks, as well as monitors and condition
variables. Atomic integer variables provide
fine-grained synchronization. Presto does
not support method overloading, type
checlung of the argument list, or return
values for method invocations.

nheritance is the most difficult of I Meyers’ seven properties to implement
in a parallel environment. Even the lan-
guages that permit inheritance support
only single-class inheritance. Most of
these were developed by an academic or
research organization and have yet to
reach widespread use.

Unless concurrency, synchronization,
and communication are carefully inte-
grated into a language, it can be inefficient
or difficult to use. Some of the existing
object-oriented languages can more easily
be extended for parallel environments
than others.

We need more research into issues of
granularity of concurrent activity, syn-
chronization mechanisms, and communi-
cation models. 4

Barbara B. Wyatt is an cngineering specialist at General Dpanics , where she is developing an object-oriented ap-
proach to s o h a r e development in a multiprocessor environment. Her research interests include objecturiented
design, concurrent programming, operadng systems, and networks.

ence engineering &om the University ofTexas at Arlington. She is a member of the IEEE Computer Sodety and
..\CZI.

Wyatt received a BS in elecmcal engineering from Virginia Polytechnic Institute and ‘an MS in computer-sci-

Krishna Kavi is a protesuor of computer science and engneering at the Umverqltv of
Texas at Arlmgton His research mtereus are computer arclutecmrcs, pcrformance and
reliability analysis, formal specificanon, program cerificaaon, and real-nine s~steins He
is a member of the F E E Computer Smittv Press editor~al hoard

&VI received a BS in elecuical engmeenng f“ tht Indian Inshtute of Science and
an L I S and a PhD in computer science from buthern Methodlst Un~versity H e is a s t -
nior inember of the IEEE and a meinher ofdie 4L\l

Steve Hufnagel is an dssistant professor ot computer Science and englneerlng at the
University ofTexas at Arhngton His research interests include object-oriented software
design, real-me n stems, and disuibuted-proceusing systems

Hufnagel received a BA in psvcholoo and matheinancs and a PhD in computer SCI-

cnce from the Universitv of Texas at .\uson He IS a member of the IEEE Coinputer so-
c i a and ACM

Address questions about this arhcle to Wyatt at the CS and Eng. Ocpt., PO Box 19015. University of Tens, AI-
lingon, T X 76019-001 S; Internet uyatt@csr.uta.edu.

21

I E E E S O F T W A R E 6 5

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:37 from IEEE Xplore. Restrictions apply.

mailto:uyatt@csr.uta.edu

ACKNOWLEGMENTS
This work was supported in part by grant 3656-

057 from the State ofTexas Coordinating Board on
Higher Education, Advanced Technology Program.
We thank the ES-kit group at MCC for helpinglo-
a t e some reference material for this survey.

REFERENCES
1. B. ‘Meyer, Objert-Oriented Soj&are Comuctioii,

Prentice Hall, Englewood Cliffs, NJ., 1988.
2 . G. Agha and C. Hewitt, “Actors: AConceptual

Foundation for Concurrent Object-Oriented

Progranmning,” Research Directionr m O/jen-Ori-
tnzted Programming, B.D. Shriver and P. Wegner,
edp., MlT Press, Cambridge, Mass., 1987, pp.
199-220.

3 . B. Bershad, E. Lazawska, and H. Levy, “Presto:
A System for Object-Oriented Parallel Program-
ming,” sofhare - Prumce aid Erperitnice, Aug.
1Y88.

1. J.P Bnot and A Yonezawa, “Inheritance and Syn-
chronization in Concurrent Object-Oriented
Programming,” Aoc. European Conf:ObJect-Ori-
enred Progr-umnting, Springer-Verlag, Berlin,
1987, pp. 32-40.

The Institute for Defense Analyses
(IDA) offers challenging career posi-
tions in its Computer and Software
Engineering Division to experienced
individuals with strong backgrounds
in computer science. As a Federally
Funded Research and Development
Center, IDA addresses a wide range
of complex national security issues
for the Office of the Secretary of
Defense, the Joint Chiefs of Staff,
Defense agencies, and other Federal
sponsors.
Current areas of activity in the Com-
puter and Software Engineering
Division include: software engineer-
ing, distributed systems, very large
scale information management, sys-
tem architecture, advanced decision
support, simulation, and enterprise
integration. Candidates are now par-
ticularly being sought with experi-
ence in software engineering, to
include :

Process and Risk Analyses
8 Reuse and Reengineering

Environments and Tools
Estimation and Measurement
Testing and Simulation

Doctoral-level knowledge and expe-
rience are highly desirable
IDA offers excellent opportunities
for professional development in a
superior environment. You can
expect a competitive salary, excel-
lent benefits, and the chance to con-
tribute substantively to the solution
of urgent and critical problems fac-
ing our nation, while at the same
time playing a role at the leading
edge of the state of the art in comput-
ing. If this kind of future appeals to
you, we urge you to investigate a
career with IDA. Please forward
your resume to:
Mr. Thomas J. Shirhall
Manager of Professional Staffing
Institute for Defense Analyses
1801 N. Beauregard Street
Alexandria, VA 223 1 1
An equal opportunity employer, m/f.
U.S. citizenship is required.

1-1

5 . A. Yonezawa et al., “hlodeling and Programming
in an Object-Oriented Concurrent Language
ABCLJl ,” in Object-Oriented Concurrat Progmm-
ming, A Yonezdwa and M. Tokoro, eds., MIT
Press, Cambridge, Mass., 1987, pp. 55-84.

6. P. America, “POOL-T: AParallel Object-Ori-
ented Language,” in Research Directions in Oiject-
Oriented Prograrnmmg, B.D. Shriver and P.
Wegner, eds., MT Press, Cambridge, Mass.,
1987, pp. 199-220.

7. Y. Yokote and M. Tokoro, ”Experience and Evolu-
tion ofConcurrent Smalltaw Prcf. CO@ Object-
Oriented Programming Languages, Systems, and Ap-
plzcatzmas, AGM Press, NewYork, 1987, pp.
406.415.

8. B. Liskov et al., “Implementation ofArgus,”Proc.
1 I th Symp. Operating System Prmapks, ACN
Press,NewYork, 1987,pp. 111-122.

9. 0. Nierstrasz, “Active Objects in Hybrid,” P ~ K .

plications, ACM Press, New York, 1987, pp. 2 4 3 -
253.

Based Concurrent Object-Oriented Languages,”
Tech. Report 88-53, CS Dept., Virginia Polytech-
nic Institute, Blacksburg, Va., 1988.

11. C. Tomlinson andV Singh, “Inheritance and Syn-
chronization with Enabled Sets,” Pmc. Con7 Ob-
/ea-Oriented Programming Languages, System, and
.4ppliplirationr, ACM Press, New York, 1989, pp.
103- 1 12.

Object-Oriented, Strongly Typed Language for
Dismbuted Applications”~.Object-Oi7ented Pro-
gramming, Sept./Oct. 1990, pp. 11-14.

13. L. Crowl, “A Uniform Object Model for Parallel
Programming,” SIGPlau Notzces, April 1989, pp.
25-27,

14. D. Moon, “Object-Oriented Progranimingwith
Flavors,” Prac. CO?$ Objea-Oriented Programming,
Languages, Applicatim, ACM Press, New York
1986.

tational Reflecaon,” SIGPlan Notires, Oct. 1987,
pp. 147-155.

16. T. Watanabe and A Yonezawa, “Reflection in an
Object-Oriented Concurrent Language,”
SIGPlan Notias, Sept. 1988, pp. 306-315.

17. K. Chandra, il Gupta, and J. Hennessy, “COOL:
A Language for Parallel Programming,” Prcf. 2nd
Wwkshop on Programming Lanpzges and Campilers
fo. Parallel Computing, IEEE CS Press, Los A-
anutos, Calif., 1989.

18. B. Beck, “Shared-Memory Parallel Programming
in C++,” IEEESojhare, July 1990, pp. 38-48.

19. K. Smith and k Chatteqee, A C+t Environment
for Distdmted Application Erecution, Tech. Report
.4CT-ESP-2 75-90, Microelectronics Computer
Techonology Corp., Austin, Tex., 1990.

ald System,” ACM Trans. Computer System, Feb.
1988, pp. 109.133.

Management in the Nexus Distributed Operating
System,” Proc. Compcon, IEEE CS Press, Los
Alamitos, Calif., 1987, pp. 50-53.

Olject-Oriented Pmgramming, Languages, Ap-

10. D. Kafurd and Lee, “Inheritance in Actor-

12. Krakowiak, “Design and Implementation ofan

15. P. Maes, “Concepts and Experiments in Compu-

20. E. Jul et al., “Fine-Grained Mobility in the Emer-

2 1. ATripdthi, A. Ghonami, and J. Schmitz, “Object

N O V E M B E R 1 9 9 2

I

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:37 from IEEE Xplore. Restrictions apply.

