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oncurrent object-oriented languages C try to bring the benefits of object ori- 
entation (modularizing a problem into 
smaller problems based on data rather 
than function) to multiprocessor environ- 
ments. We compared how several of these 
languages deal with conununication, syn- 
chronization, process management, in- 
heritance, and implementation trade-offs. 
We also explored how they divide respon- 
sibility between the programmer, the 
compiler, and the operating system. We 
did not investigate issues unique to distrib- 
uted process micgration, naming, load bal- 
ancing, or security. 

We found that current object-oriented 
languages that have concurrency features 
were often compromised in important 

areas, including inheritance capability, ef- 
ficiency, ease of use, and degree of parallel 
activity. Frequently, this was because the 
concurrency features were added after the 
language was designed. Unless concurr- 
ency, synchronization, and communica- 
tion are carefully integrated, a parallel ob- 
ject-oriented language can be inefficient 
and difficult to use. 

OBJECT-ORIENTED LANGUAGES 

Object-oriented languages break a 
program down into segments (objects) ac- 
cessible only by sending messages through 
a rigid interface. The  objects interpret 
each message and take an appropriate ac- 
tion. Theoretically, you can't access an 
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object’s internal data, but the object, in 
effect, shares this data through its actions. 

In these languages, objects mherit fea- 
tures from other objects in a herarchy. 
Inheritance classifies objects that share sets 
of properties. Objects may inherit features 
from more than one classification struc- 
ture and more than once from the same 
class (multiple mheritance). In some cases, 
objects inherit only a reference to the in- 
herited code instead of a copy of the entire 
segment. 

Inheritance lets programmers reuse 
code and redehe its application w i h n  
the current environment. It is the key to 
building maintainable, reusable systems, 
and it provides a form of configuration 
management. Inheritance is one of seven 
properties that, according to Bertrand 
Meyer, characterize pure object-oriented 
languages.’ The seven properties are 

+ modular structure; 
+ data abstraction (objects are de- 

scribed as implementations of abstract 
data types); 

+ automatic memory management 
(the language deallocates unused objects 
without programmer intervention); 

+ classes (every nonsimple type is a 
class); 

+ mheritance (a class may be defined as 
an extension or restriction of another); 

+ polymorphism and dynamic bind- 
ing (program entities can refer to objects 
of more than one class, and operations can 
have different realizations in different 
classes); and 

+ multiple and repeated mheritance (a 
class can inherit from more than one class 
and be a parent to the same class more than 
once). 

Meyer regards languages that meet the 
first four criteria as object-based; he re- 
gards as truly object-oriented only lan- 
guages that meet all seven characteristics. 

The hardest requirement to meet is the 
last one, multiple inheritance. When a 
chdd class mherits from two other classes 
that share a common ancestor, references 
to that ancestor’s methods are ambiguous 
unless you deheate a specific path. Multi- 
ple inheritance makes a language more 
flexible and expandable, but it is debatable 
whether or not a language must have this 

quality to be considered object-oriented. 
Even the classic object-oriented language, 
Smalltalk, does not support multiple in- 

rency, but require a reply. In the future- 
variable approach, as long as the sender 
doesn’t need the results, both sender and 

heritance. 

PARALLELISM 

Concurrent languages use constructs 

receiver may execute concurrently. Some 
languages let processing continue before a 
message has been answered; thus both the 
sending and the receiving object may be 
active simultaneously. 

for creating processes Oike fbrk) and de- 1 Another approach is to allow early cre- 
stroying them (kejoin). 
The operatingsystemop- 
timizes the mechanisms 

ation of the successor (as 
in Actors-based lan- 
guages). In the Actors ap- - -  

for communication, syn- - preach, the successor may 
chronization, and mutual begin responding to the 
exclusion according to Inheritance lets next message while the 
whether the physycal programmers reuse parent is s a l  processing 
memory is shared or dis- its message.‘ Within a 
tributed. Memory maybe code and rdefine its sinrleobject,itisalsopos- 

I .  

shared by all prockssok or 
distributed throughout application within the sible to create multiple 

threads of activity either 
the system SO that each current environment. by allowing multiple 
processor has access to 
only a portion of the 
memory. Regardless of 
the physical organization, the logical orga- 
nization of memory may be either shared 
or distributed. 

In physically shared memory systems, 
processes communicate by sharing vari- 
ables, forcing the memory to ensure mu- 
tual exclusion by different processes. 
These system often use semaphores and 
spin locks for data synchronization and 
mutual exclusion. 

In physically distributed memories, 
processes communicate by message pass- 
ing or remote procedure calls. Bloclung 
and nonbloclung message calls can be used 
for synchronization, but the programmer 
is responsible for maintaining data consis- 
tency when using nonblocking mecha- 
nisms. 

Concurrent languages in an object en- 
vironment can allow objects to be created 
either dynamically as a program runs or 
only when the program starts. Program- 
mers can synchronize active objects with 
asynchronous method calls, future vari- 
ables, and early or late creation of succes- 
sors. Asynchronous message calls let ob- 
jects process messages simultaneously 
without blocking the sending object until 
no reply is returned to the sender. 

Future variables allow similar concur- 

method invocations in re- 
sponse to a single message 
or by allowing multiple 

messages to process concurrently. 
In tlus article, we assume that a pro- 

grammer is interested in specifying the 
parallelism; some believe parallelism 
should be transparent to the programmer. 

PROCESS MANAGEMENT 

Just as a parallel-processing environ- 
ment implies multiple processes, a parallel 
object-oriented system spawns multiple 
objects, each of which can start a thread of 
execution. Objects and processes, how- 
ever, are independent of each other. Pro- 
cesses invoke methods contained in ob- 
jects. Table 1 shows how some languages 
compare in their support of process man- 
agement. 

Process creation Most concurrent ob- 
ject-oriented languages use one of two ap- 
proaches to start multiple processes. In the 
explicit approach, the language provides a 
mechanism for spawning multiple pro- 
cesses, external to the object structure. In 
th~s  approach, parallelism sits on top of the 
object structure rather than being inte- 
grated into it. Explicit mechanisms like 
locks, monitors, and semaphores ensure 
object intepity. T h s  approach can be im- 
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language Creation Termination Activation Granularity 

AbcVl Implicit Continue after reply 

demented with a set of predefined threads 
)r root object types for initiating parallel 
Ictivity. 

For example, in P r e s t ~ , ~  a thread object 
whch contains a program counter and a 
tack of method invocations) is the basic 
n i t  of execution. Two functions, create 
md start, control thread execution. This 
ipproach makes it easier to add parallel 
:apabilities to an existing language - 
ivailable compilers and support software 
ieed not be modified. The thread and 
'oot objects can be included in the pro- 
p m ,  and inheritance can create different 
ypes of thread and root objects. 

In the implicit approach, an object in- 
rocation can spawn multiple execution 
heads. In this approach, processes are 
mcapsulated within objects, creating 
:omPosite objects. When an object gets a 
nessage, it can activate one or more inter- 
la1 objects. 

Languages that adopt this approach 
:an increase parallelism by creating ob- 
ects dynamically. The runtime system 
jchedules and controls parallel activity by 
Ceeping a list of objects on each available 
x-ocessor that can be run. Rather than 
3eing limited by the user's view of the 

n message receipt 

amount of lnherent parallelism, the run- 
time system could face the opposite prob- 
lem by creating more objects than avail- 
able resources (although it can combine 
small objects to increase efficiency). An 
advantage of this approach is that re- 
sources can be allocated more easily in re- 
sponse to changing conditions. 

More languages have adopted the im- 
plicit approach because it abstracts the de- 
tails of setting up multiple processes, eas- 
ing the programmer's task. The explicit 
approach requires two abstraction levels, 
objects and threads, blurring the unit of 
concurrency, and makes i t  the 
programmer's responsibility to specify the 
parallel activity. This is especially hard to 
do in a distributed system, in which the 
exact runtime configurationvaries. On the 
other hand, the implicit approach requires 
that the language's semantics define com- 
posite objects, synchronization, and com- 
munication boundaries. These bound- 
aries are already clear in the explicit 
approach. 

Process tenn'mtion. Processes may be 
terminated explicitly or implicitly after a 
message has been processed. The differ- 

ence in terms of implementation difficul- 
ties is minimal, but, in terms of runtime 
efficiency, the difference is significant. 

Implicitly terminating processes after 
replying to a message is similar to a remote 
procedure call.' However, h s  approach 
results in execution inefficiencies because 
it means processes must be created and 
deleted in response to messages. The Ac- 
tors model (and many Actors-based lan- 
guages) is the best-known example of t l s  
approach: A process (actor) responds to a 
single message and then terminates. The 
Actors approach allows maximum con- 
currency but involves excessive process- 
creation overhead. 

The alternative is to terminate pro- 
cesses explicitly. T h s  approach lets pro- 
cesses continue after replying to messages 
and be available to respond to other mes- 
sages. In thls approach, fewer processes 
are created and deleted in response to 
messages. AbcVl operates this way.' 

Process activation. Processes may activate 
when they are created or remain dormant 
until they receive a message. The first 
method causes more active parallelism be- 
cause it lets processes run without mes- 

5 8  N O V E M B E R  1 9 9 2  

- - ___ - 
~ .- 

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 14:37 from IEEE Xplore.  Restrictions apply. 



sages, but it can waste resources. It’s also 
difficult to implement, particularly in 
terms of resource management. POOL-T 
uses th~s more active approach? 

Most object-oriented languages wait 
for messages to prompt processes. As pro- 
cesses are spawned, the programmer must 
still manage synchronization and resource 
sharing. Also, h s  method creates more 
runtime overhead. Actors’ and Concur- 
rent Smalltalk7 operate h s  way. 

Process g m n u l a i i .  Granularity refers to 
the size of the schedulable unit of parallel 
activity and the amount of processing 
among messages. Programmers can vary 
the size of the processing unit to take ad- 
vantage of hardware configurations and 
communication overhead. A language can 
support a combination of coarse-, me- 
dium-, or f i n e - F e d  units. Often, a lan- 
guage provides different synchronization 
mechanisms at different concurrency levels. 

A finer granularity requires more effi- 
cient communication because dividmg an 
object into smaller pieces increases com- 
munication. Coarser granularity is used 
when high communication overhead 
forces the programmer to compensate by 
increasing the size of a program’s commu- 
nicating units. Coarse granularitytypically 
implies only one task per object or even 
per several objects; fine granularity implies 
multiple tasks per object. 

With a coarse granularity, a program 
synchronizes only between objects be- 
cause only one thread is active at a time. 
Other messages must wait for it to finish 
with each message. With a finer granular- 
ity, multiple threads have access to an 
object’s variables, so the processor must 
synchronize its responses to these threads. 
Sometimes the processor spends more 
time synchronizing than computing. 

The  Actors model allows the finest 
granularity and the hghest degree of con- 
currency. AbcVl s~~pports medium granu- 
larity (lightweight tasks). Argus8 supports 
coarse granularity (heavyweight tasks). 

COMMUNICATION FEATURES 

In conventional multiprocessors, ob- 
jects communicate either by sharing 

memory or passing messages. But in ob- 
ject-oriented environments, communica- 
tion is always through message-passing 
because sharing data among objects vio- 
lates the encapsulation principle. Some 
argue that it is acceptable to violate the 
object paradigm at the physical level to 
maximize performance if it is accom- 
plished by a verified compiler or runtime 
system.’ However, the programmer 
should not have direct access to th~s  phys- 
ical level. 

Table 2 summarizes the communica- 
tion mechanisms of several concurrent 
object-oriented languages. 

Message types. Object-oriented lan- 
guages use three types of communication: 
synchronous, asynchronous, and eager in- 
v o a  tion. 

Synchronous communication uses re- 
mote procedure calls. It is easiest to imple- 
ment,  but sometimes 
wastes time because of the 
requirement for both the 
sender and receiver to 
rendezvous. Synchro- 
nous systems are more 
predictable and so are 
easier to verify. POOL- 
T’s developers chose syn- 
chronous operation, be- 
lieving that asynchronous 
communication causes 
unnecessary complica- 
tions and carries the risk 
that h g s  could get out 
of hand. 

Asynchronous com- 
munication eliminates 

accesses the future variable. If the results 
have been returned, the sender continues; 
if not, it blocks and waits for the results. 
Futures decrease or eliminate the wait for 
a reply and increase concurrency at a 
smaller risk to system consistency, but 
they add runtime overhead. 

Messages in object-oriented languages 
specify the receiver’s address. AbcVl sup- 
ports two ways to specify the receiver: Its 
Parallel construct lets you send different 
messages to a group of receivers simulta- 
neously. Its multicasting feature allows the 
asynchronous transmission of a message 
to a group of receivingobjects. Both capa- 
bilities increase concurrency. 

Message acceptance. Objects receive mes- 
sages either implicitly or explicitly. h- 
plicit acceptance means the system accepts 
messages automatically, and users cannot 
control the receivers. In an implicit sys- 

tem, a low-priority task 

Some argue that it is 
acceptable to violate 

the object paradigm at 
the physical level to 

maximize 
performance if it is 
accomplished by a 
verified compiler or 

runtime system. 
the wait for synchroniza- 
tion and can increase concurrent activity. 
But it is less predictable, hence harder to 
program and test. Aprogram can use asyn- 
chronous communication if objects can 
keep processing without waiting for an an- 
swer to their messages. If objects need a 
reply, h s  must be explicitly programmed. 

Eager invocation, or the futures 
method, is a variation of asynchronous 
coinmunication. As in an asynchronous 
operation, the sender continues executing, 
but a future variable holds a place for the 
results. The  sender processes until it 

can interrupt a hgh-pri- 
ority task. To prevent h s ,  
the programmer can as- 
sign messages priorities, 
but &IS makes the pro- 
gram more complex. 

Explicit acceptance 
lets objects control when 
they receive and process 
messages. This is more 
flexible because priority 
schemes are inherently 
defined in the list of mes- 
sages an object can re- 
spond to. However, it in- 
creases runtime overhead 
because the system must 
prioritize the message 

queue, and consequently the programmer 
must assume more responsibility for con- 
trolling message processing. 

Message processing and pews. Objects 
can process messages in the order received 
or in the order of the priority assigned to 
them by the system. Order-preserving 
queues are easier to design and test, but 
more difficult to implement. Asystem pri- 
oritizes messages by providmg multiple 
queues of varying priority. 

Languages that can prioritize messages 
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Message types 
1 language S A F  Acceptance Arrival Queue Synchronization 

I 

x x x  

Actor x x x  Implicit Nondeterministic Single Interface 

Smalltalk X 
COOL 

Gnu C++ x x x  Impllclt Deterministic Single Central 

S = ~uchomous; A = Asynchmwur; F = Futures 

accorhg  to performance requirements 
are more flexible.2 The underlying prem- 
ise is that you cannot predict message ar- 
rival in a real communication network, so 
the archtecture should be free to dynam- 
ically reconfigure itself to meet perfor- 
mance requirements. Although such pri- 
oritizing requires only one queue, its 
nondeterministic nature presents prob- 
lems in implementing conceptually simple 
operations like terminating processes. You 
must also consider problems like h t e d  
queue size, missing messages, and mes- 
sages that arrive out of order. 

Synchronization Correct synchroniza- 
tion coordinates parallel activities so that 
they run efficiently, consistently, and pre- 
dictably. Too much coordination reduces 
concurrency; too little leads to undesired 
nondeterminism. 

Inheritance complicates synchronim- 
tion. When a subclass mherits from a base 
class, programs must sometimes redefine 
the synchronization constraints of the in- 
herited method. T h s  is the single most 
difficult aspect of integrating concurrency 
into object-oriented languages. 

If a single centralized class explicitly 
controls message reception, all subclasses 
must rewrite th ls part each time a new 
method is added to the class. The subclass 
cannot simply inherit the synchronization 
code because the hghest level class cannot 

invoke the new method. 
The designers of POOL-T and Paral- 

lel Eiffel are faced with exactly this prob- 
lem. The body of the object (called the live 
method in Extended Eiffel) specifies the 
concurrency constraints and must be re- 
written each time a subclass with a new 
method is added. Languages with con- 
structs like Select and Guards have cen- 
tralized synchronization definitions. The 
Select construct allows the receiver to wait 
on several messages. It operates like a pri- 
ority queue, in which priority is given to 
the first arriving message. 

Critical sections are an altemative to a 
centralized synchronization. Critical sec- 
tions can be used in each of an object's 
methods to maintain consistency; each 
method becomes responsible for control- 
ling entry into the critical section. Locks, 
monitors, semaphores, mutual-exclusion 
mechanisms, and atomic variables can be 
used to control access to critical sections. 
The risk is that a subclass can modify the 
mutex. Inheritance makes it impossible for 
the system to guarantee that all subclasses 
follow the protocol for entering the criti- 
cal section. 

Hybrid' uses decentralized synchroni- 
zation: Each method has a delay queue 
and explicit code to control it. Messages 
execute only if the delay queue is open. 
Changes in a superclass may be necessary 
if a subclass with a new delay queue is 

6 0  

added. If methods in the superclass must 
control the new delay queue, the super- 
class must also be modified. 

Actors-like languages, which receive 
messages implicitly, synchronize differ- 
ently. Objects use a Becomes construct to 
specify replacement behavior, which also 
indicates what type of message to accept in 
the new behavior. The mail system deliv- 
ers a message only when the object is re- 
ceptive to it. All other messages are 
blocked. This interface approach has its 
own inheritance-mechanism difficulties. 
When new methods are added to a subclass, 
its existing methods may need modification 
to accommodate the Becomes construct. 

Object managers can also control ac- 
cess by selecting authorized methods and 
blocking unauthorized ones. The method 
associated with the authorized message is 
executed and the next set of authorized 
methods are enabled when the current 
method executes a Becomes operation. 
The Becomes operation then enables the 
specified methods for execution. Act++ 
lets users name methods for each object 
state in the new behaviors." 

A similar approach in Rosette" uses 
enabled sets to define messages that are 
allowed in the object's next state. Objects 
pass the enabled sets' specifications from 
one state to the next. Enabled sets are 
themselves objects, and invoking their 
methods combines them. In &sway, they 
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can be built 6-om mherited parts and lo- 
cally extended. (Act++ does not support 
such a composition.) This eliminates 
monolithic code that must be rewritten to 
incorporate new synchronization con- 
straints, but increases system complexity. 

Guide” uses activation conditions to 
specify an object’s state for executing a 
method. Activation conditions are com- 
plex expressions based on 

+ the number of messages received, 
completed, or executing; 

+ the state variables of the receiver; or 
+ the message contents. 
Activation conditions are more expres- 

sive than enabled sets, but more difficult to 
use because the programmer must identify 
all states for which the method is enabled. 

DELEGATION AND INHERITANCE 

A language can extend an object’s us- 
ability through delegation or mheritance, 
which strive to distribute knowledge 
throughout the system but are thwarted by 
atomic access and synchronization con- 
cems. Table 3 compares how some con- 
current object-oriented languages support 
mheritance. 

Type. Delegation is based on the idea of 
subcontracting a job when the current ob- 
ject cannot perform it. If an object cannot 
answer a message, the sender sends a new 
message to an object that can. Delegation 
supports dynamic code sharing, which 
better accommodates growth because it 
lets you add messages without having to 
modify other objects extensively. The Ac- 
tors model and AbcYl use delegation. 

Inheritance lets you form specialized 
objects by inheriting methods and vari- 
ables from a class hierarchy, which facili- 
tates code reuse among classes. Subclasses 
behave as specialized versions of their par- 
ent. 

Instmtiation. Inheritance approaches 
vary from fully static to fully dynamic. In 
static mheritance, the compiler copies the 
inherited code. T h i s  eases the 
programmer’s job because it supports 
reuse. In dynamic mheritance, which is 
more flexible but slows execution. the run- 

time system determines the appropriate 
active method and generates the correct 
execution thread. Dynamic inheritance is 
especially useful when method sharing is 
required! In a concurrent environment, 
dynamic inheritance presents many prob- 
lems. 

The problems involved in implement- 
ing multiple inheritance in a concurrent 
object-oriented environment are like 
those encountered with single inheri- 
tance, but are compounded by the poten- 
tial for conflicts among inherited methods 
and synchronization requirements. We 
know of no concurrent object-oriented 
language that supports multiple mheri- 
tance. 

The easiest way to avoid mheritance 
problems is to leave inheritance out, as 
POOL-Ts developers did. However, dis- 
allowing mheritance violates two of the 
seven characteristics of object-oriented 
languages and severely restricts the 
language’s usefulness. (A new version of 
POOL-T with limited inheritance is 
being developed.) 

Static inheritance cop- 
ies the variable and 
method dictionaries into 
the inheriting object at 
compile time. This is sim- 
ple and efficient, but it 
wastes memory by repli- 
cating code. 

Another approach is 
on-demand inheritance, 
in which method diction- 
aries not explicitly dehed 
in the class are located in 

control mechanisms to ensure that the lat- 
est version of the global method set is 
used. 

In the recipe-query method, the re- 
ceiving object asks another object (a 
proxy) for the method’s recipe. After the 
proxy returns the recipe, the receiver can 
respond to the original message. Thls so- 
lution is simple, dynamic, and natural in a 
message-passing environment, but it has 
problems. First, the object requesting the 
recipe may need to access variables in the 
proxy, which can cause deadlocks if the 
proxy is locked. Second, in applications 
with a lot of object interaction, communi- 
cations bandwidth is a concem. Third, it 
delays message processing until a recipe is 
received. Finally, it is difficult to update 
methods: The proxy that supplies a recipe 
must send messages to invalidate old reci- 
pes, or a version-control mechanism must 
ensure that the latest recipe is provided. 
(Flavors uses an automatic-update mecha- 
nism to control  version^.'^) 

A variation on the recipe-query ap- 
proach is to regard the method as an ob- 

ject and have the receiver 
return the address of the - method to the sender. 

We know of no The sender then sends a 
second message to the 

concurrent method. But this ap- 
proach can also cause 

obiect*riented deadlock if the method 
language that needs information from 

the locked sending object. 
The alternative of send- supports multiple . .  
ing the entire originating 

inheritance. object’s environment can 
the herarchy and linked 
dynamically at  runtime. 
However, this approach, used in 
~atroshka, l3 supports only static inheri- 
tance of the variable dictionary, so multi- 
ple copies of code still take up a lot of 
memory. 

Another way to reduce the amount of 
memory static mheritance requires is to 
globally declare a primitive set of methods 
that all objects recognize. When these 
methods are invoked, the standard inheri- 
tance scheme is circumvented, so the de- 
fault methods need not be copied into all 
objects. This approach requires version- 

also significantly increase 
comunication traffic.“ 

Another method, computational re- 
flection, lets a system access and manipu- 
late a causally connected representation of 
its state. Any changes made to the system’s 
self-representation are immediately re- 
flected in its actual state and behavior. 
Each object has its own metaobject, whch 
contains information about the imple- 
mentation and interpretation of the 
object’s methods, state, message queues, 
and evaluation method. Reflective com- 
putations modify the system’s behavior. 
The system can modify itself in response 
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~ tanguage Type 

Abcl/l Delegation 

Eiffel 

None 
POOL-T None 

to changing conditions. 
An example of a reflective system is a 

compiler-compiler that understands a 
language’s structure. Patti Maes pion- 
eered reflection in object-oriented lan- 
guages by m o d i b g  KRS to accommo- 
date reflection.” Since then, at least two 
others have used it: Rosette and AbcVR16 
(a derivative ofAbcV1). 

LANGUAGE SURVEY 

None of the object-based languages we 
surveyed met Meyers’ seven requirements 
because they either restrict or disallow in- 
heritance. We based the selection of the 
languages for our survey on the availability 
of published material and detailed manu- 
als. We also wrote a techca l  report that 
includes programming examples, which 
you can get by writing to us. Of come, 
dus is not an exhaustive survey, but it hgh- 
lights the issues, features, and trade-offs 
faced by language designers and im- 
plementers. 

Some concurrent object-oriented lan- 
guages are extensions to existing lan- 
guages, hke Smalltalk and C++. of the 
many languages that add concurrency to 
Smalltalk, our survey examines Concur- 
rent Smalltalk, whch is the basis for a dis- 
tributed version of the language. Several 
languages have extended C++. They range 
in approach from those that extend the 
syntax (COOL)17, to those that provide 
predefined object types (Presto) or macros 

Closses Instantiation ~ 

hT/A 
Single 
N/A 
Single 
N/A 
N/A 
Single 
N/A 
Single 
Mu1 tiple 
N/A 
N/A 
N/A 
N/A 

Dynamic 

Static 

static 

(Parmacs). Many C++ extensions are de- 
signed to operate in a shared-memory en- 
vironment; Gnu C++I9 is designed for a 
distributed environment. 

Other languages have been developed 
with concurrency in mind, including 
AbcVl, Argus, and Parallel Eiffel. The Ac- 
tors model is the basis for many of these 
languages, including AbcVl. Argus and 
Emerald” are supported by their own dis- 
tributed object-oriented operating sys- 
tem; Emerald is not only a language but an 
operating system. 

Wluch language you choose will de- 
pend on its conformance with the language, 
operating system, or hardware you use. 

Actor+ Developed at the Massachusetts 
Institute of Technology, Actors’ is not an 
object-oriented language, but we include it 
and languages based on it because they sup- 
port the highest degree of concurrency. 

The basic unit in the language model is 
an actor, which consists of a mail address 
and a behavior. Actors may be created dy- 
namically, and each actor has its own set of 
semantics. The language model supports 
neither explicit locks nor data sharing. 

Each mail address is associated with an 
incoming-message queue. When a mes- 
sage arrives, the actor executes a script. 
The script accepts the message if it recog- 
nizes it; otherwise it rejects it. 

The script may send messages to ac- 
quaintances (mail addresses known to the 
actor), to itself (usually by creating a copy 

of itself), or to an actor created specifically 
to handle the message. 

The script also specifies a replacement 
behavior using the Becomes primitive. 
The replacement behavior is a new actor 
(with the same mailbox name) that accepts 
and acts on the next message. The actor 
enhances concurrency when it specifies 
the replacement behavior before respond- 
ing to the newly received message. Ekpres- 
sion actors handle futures by treating the 
expression (or future variable) as an actor and 
sendmg a message to evaluate i t  The sender 
uses the mail address of the actor responsible 
for evaluating the expression as a 
placeholder for the actual value. 

The actor delegates rejected messages 
to a proxy (another actor whose mail ad- 
dress is known to the sender). The proxy 
usually contains additional information 
(including an exception-handling mecha- 
nism) to respond to the message. 

Continuation actors perform synchro- 
nous function calls by blocking und the 
synchronization event occurs. Actor- 
based languages synchronize with shared 
actors known as serializers, which protect 
their intemal state against timing errors. 

Abd/l. AbcVl (An Object-Based Con- 
current Language)’ derives from Actors. 
Objects execute scripts that specify their 
behavior, acceptable messages, and re- 
sponses. Independent objects may execute 
in parallel, but within an object, messages 
process serially. Objects are dormant 
when created and block until activated by 
a message. The object can select messages 
out of order by comparing them with a 
script pattern. It places messages that don’t 
match the script at the end of a queue for 
processing later. After performing the ac- 
tions, the object r e m s  to dormancy by 
executing a Select construct. 

Normally, message passing is asyn- 
chronous, point to point, and order pre- 
serving. A message can consist of tags to 
distinguish message type, parameters, and 
names of the sender and the reply destina- 
tion. If a message is sent to an object that 
satisfies more than one message-pattem- 
constraint pair, the first pair specified in 
the script is executed. 

Objects have two message queues: or- 

__ 
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dinary and express. Express messages can 
preempt ordmary messages, but not other 
express messages, atomic actions, or access 
to local persistent memory. After process- 
ing the express message, the object may 
abandon the preempted task, if so indi- 
cated by the express message. The object 
then takes the next message from the ordi- 
nary queue. 

AbcVl has three types of message pass- 
ing: past, now, and future. The past and 
future modes operate asynchronously; the 
now mode operates synchronously. Users 
specify parallel activity by using the Paral- 
lel construct within the object. Abcl/l can 
also multicast- send the same message to 
a list of objects simultaneously. 

Abd/R. A reflective version of AbcVl , 
h s  language represents each ob'ect by a 

each metaobject may be represented by a 
meta-metaobject, creating an infinite 
tower of objects - although tlus is not 
normally done. 

The metaobject represents an object's 
structural aspects and consists ofstate vari- 
ables representing the methods to be exe- 
cuted, the state memory, a serial evaluator, 
and a message queue. Messages are sent to 
metaobjects when a computation involv- 
ing the object is to be performed. The 
metaobject directs the object to perform 
the operation. The state variables perform 
the computation. 

In other words, the metaobject is a ge- 
neric template for an object implementa- 
tion. Because the metaobject contains an 
object's intemal structure, it can manipu- 
late the smcture by sending messages that 
cause the deletion, addition, or inheri- 
tance of methods. 

causally connected metaobject.' d In tum, 

Argus. Argus uses a transaction model 
and supports reliable computing.8 It  is 
both a language and an operating system. 
The  language is an extension of Clu. 
Guardians encapsulate dynamic collec- 
tions of objects and processes and provide 
the notion of a physical machme. They 
can be accessed by other guardians (and 
their internal variables manipulated) 
only through a procedure called a han- 
dler. A guardian is located at a single 
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node in the network; several guardians 
may reside at a single node. They are de- 
signed to survive failures at that node by 
changingtheirnode ofresidence. Guard- 
ians can create other guardians dynami- 
cally. A guardian's location is specified by 
thecreatorguardian. 

Computations run as atomic transac- 
tions or actions. Actions are serializable 
and total. Totality implies that the action 
either completes successfully or is guaran- 
teed to have no effect. Actions can be 
nested. Subactions may run concurrently, 
but a parent and a child action may not run 
concurrently. 

Atomic objects provide synchroniza- 
tion. Each guardian in the system is as- 
signed a unique identifier, as are threads 
within a guardian. 

COOL Developed at Stanford Univer- 
sity, COOL (Concurrent Object-Ori- 
ented Language)" extends C++ to enable 
programming with medium- to large- 
grained concurrency in a shared-memory 
environment. Program- 
mers can define parallel- 

concurrency potential than monitors. 
COOL provides fine-grained syn- 

chronization with future variables, spin 
locks, and blocking locks. Future variables 
add concurrency among methods. Like 
POOL-T and Presto, COOL does not 
support inheritance, friend or virtual 
functions, or method overloading. 

Concurrent Smaltalk. T h e  concurrent 
constructs added to Smalltalk-80 let the 
receiver continue executing after it re- 
ceives a message (like POOL-T ' s  
postprocessing section).' Method calls are 
asynchronous; the sender may continue 
executing after sending a message. Asyn- 
chronous method calls are implemented 
using synchronous calls and an intermedi- 
ary object called a CBox that block on 
behalf of the sender. The reply is returned 
via the CBox - the sender must send a 
message to the CBox to receive the reply. 

In addition to asynchronous calls, 
Concurrent Smalltalk allows standard 
Smalltalk-80 synchronous calls. Synchro- 

nization is accomplished 
using atomic objects, 

ism w i h  an object (each 
method can execute asyn- 
chronously), between ob- 
jects (different methods in 
different objects can exe- 
cute concurrently), and 
within a method (different 
functions w i b  a method 
can be invoked in parallel). 

By i n v o h g  methods 
defined as parallel, the ex- 
ecution can proceed asyn- 
chronously. Methods 
may also be declared as 
mutex, allowing synchro- 

- 
None of the 

o biect-oriented 
languages we 

surveyed met Meyers' 
seven requirements 
because they either 
restrict or disallow 

inheritance. 
nization at the iunction 
level on an object. De- 
claring a method as mutex allows multi- 
ple-reader, single-writer access to that 
object's public fields. Synchronization is 
against other public methods; private 
methods can be invoked from w i h  the 
executing mutex method without locking. 
A release statement allows a mutex 
method to wait on an event while releasing 
the event to other methods. Mutex access 
to an object is more flexible and has more 

whicG ensure that' mes- 
sages are accepted and ex- 
ecuted serially. The lan- 
guage unifies objects and 
processes by defining 
concurrent object 
classes. 

Eiffel Developed by 
the French Centre Na- 
tional de la Recherche 
Scientifique and Interac- 
tive Software Engineer- 
ing, Eiffel' is capable of 
generic classes and asser- 
hons, as is C++. Generic 
classes allow for easy de- 

velopment of libraries for similar classes. 
C++ container classes and parameterized 
types make this possible. Assertions are 
simple formal specifications written as 
preconditions, postconditions, and invari- 
ants for method execution. 

The parallel version of Eiffel has two 
synchronization mechanisms. The Wait- 
by-necessity mechanism is hke a future, 
but does not require that you explicitly 
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assign or invoke a future. This is syntacti- 
cally cleaner, but does not have the flexi- 
bility of aggregate futures and future pass- 
ing. The Serve mechanism implements an 
Ada-type rendezvous both semantically 
and syntactically. 

E d d  Developed at the University of 
Washgton,  Emerald’s‘’ primary goal is 
to demonstrate object mobility in a dis- 
tributed system. A small set of language 
primitives locate and move objects, which 
the compiler implements as global, local, 
or direct. Remote invocations involve lo- 
cating the object’s unique global identifier 
in a hashed access table. There is no kernel 
intervention when objects within a single 
node are accessed. 

Objects in Emerald are active if they 
are defined with a process. Otherwise, 
they are treated as passive data structures. 
Active objects invoke other objects, which 
in turn may invoke other active objects. An 
execution thread is initiated when active 
objects are created. Emerald permits 
threads to span multiple objects (either 
local or remote), as well as multiple 
threads contained w i h  a single object. 

Monitors are used for synchronization. 
Identically implemented objects on a sin- 
gle node can share code. Aconcrete object 
stores code for other objects. The code is 
dynamically h k e d  and the object makes 
copies for remote nodes, if necessary. 

Emerald provides call-by-move and 
call-by-visit method calls. In both, the ar- 
gument objects are packaged along with 
the invocation message. In call-by-move, 
the object indicated is kept as an argument 
on the invoked node. Call-by-visit mi- 
grates the object to the invokmg node. 

ES-Kl C t t ;  Developed at  the Microelec- 
tronics and Computer Technology Corp., 
h s  extension of Gnu C++ for a distrib- 
uted environment achieves parallelism 
primarily through futures.” 

Aggregate futures support multiple in- 
vocations: The results can be collected in 
order of either arrival or invocation. 
Methods simulate barriers: A process can 
choose to wait for the completion of all 
invoked methods or for any method to 
complete. 

An object represents a single thread of 
execution. Objects are uniquely identified 
with handles, which specify the node, ap- 
plication, class, and instance identifica- 
tion. A method’s functions are addressed 
through pointers to the handles of the ob- 
ject that contains them. 

Communication in the 
distributed environment 

ant, object-oriented, distributed operating 
system. T h s  C-based language provides 
stable storage and atomic operations for 
transactions processing. Like Argus, it 
supports network transparency for inter- 
object communication. 

Nexus is based on a concept of weak 
atomicity; the atomicity 
of an action is maranteed 

U 

is transparent to the user only for changes made to 
(C++ message-passing is that object, not to the ac- 
the only communication Even languages tions performedon exter- 

nal objects as part of the 
sequence. That is, d k e  mer). This is achieved by 

that is overloaded with the only ,.inglezlass strict serializability of 
actual method call. concurrent actions. 

inheritance. A function library im- 

visible to the program- that pemit . 
creating a remote class inheritance SUppOfl ~ r g u s ,  it does not enforce 

Hybrid. In Hybrid,9 the 
unit of concurrency is a 
domain. A domain con- 
tains one or more objects, but processes 
them one at a time. Domains may be idle, 
active, or blocked. Idle domins may re- 
ceive messages. Active domains may pro- 
cess requests only from the current thread 
of control, called an activity. Domains are 
blocked when remote procedure calls to 
objects in other domains are made. 

An activity may be started by sendmg a 
message to a method called Reflex. Similar 
to f o r h g  a process, the parent and child 
activities can continue independently 
from h s  point. A delay queue can control 
access to one or more methods. An open 
queue allows the method to execute; a 
closed queue blocks access. Delay queues 
can also allow actions to be performed 
after a call has been retumed. 

Asynchronous met-hod calls with a re- 
turn are executed by the Delegate con- 
struct. Execution resumes at the point of 
the method call when the sending object 
becomes idle again. Return values can be 
forwarded to the original caller, rather 
than to an intermediary. The atomic state- 
ment ensues mutual exclusion for a se- 
quence of statements instead of a single 
method call. The Coloop and Coblock 
constructs allow a parent domain to block 
until a set of subactivities are performed. 

Nexus Developed at the University of 
Minnesota, Nexus” features a fault-toler- 

plements atomic transac- 
tions. In its model of ob- 
ject management, each 

object is identified with an object manager 
and all object managers for a class are 
grouped into a class manager. The class 
manager is implemented by a set of coop- 
erating processes known as class represen- 
tatives. Each representative maintains a 
list of the objects in that class associated 
with the controlling representative. The 
Nexus kernel interfaces only with the 
class representatives. 

P w ~ w .  This language is essentially a 
set of C++ macros to facilitate the de&- 
tion of concurrency and synchronization 
in a shared-memory environment.” 

Parmacs organizes primitives in a her- 
archy, with spin locks at the lowest level 
and monitors and barriers at hgher levels. 
It provides two specialized types of moni- 
tors, getsub and askfor. Getsub is an 
atomic subscript server for loop-level par- 
allelism. Askfor coordinates processes in a 
work queue and provides methods for de- 
fining queues. Barriers include leaklast 
(which allows the last process out of the 
barrier) and leakone (which allows one 
process out of the barrier). 

POOL-T. Objects in POOL-T (Parallel 
Object-Oriented Language-q6 are active 
when they are created. The body of an 
object specifies an autonomous activity, 
and associated with each object is a speci- 
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fication and an implementation. The im- 
plementation unit contains the object’s 
class definitions. The specification unit 
describes the classes and methods accessi- 
ble by other objects. Arootunit, consisting 
of class definitions, serves as the main pro- 
gram and execution starting point. 

On startup, POOL-T implicitly cre- 
ates an instance of the root unit’s last class, 
which then must dynamically create more 
objects to execute. POOL-T follows 
Smalltalk-80’s purist view of objects in that 
it considers every data item to be an object. 
This simplifies implementation but slows 
execution. 

Message passing is synchronous and 
point-to-point. Messages are accepted ex- 
plicitly, so objects cannot send and accept 
a message simultaneously. Messages are 
stored in one queue in order of arrival. 
When an object executes an answer state- 
ment, it answers the first message in the 
queue, whose name appears w i h  the an- 
swer. T h s  approach makes dequeueing 
more difficult. The Answer statement is 
similar to Ada’s Select. Once the reply is 
sent,  the receiver may execute a 
postprocessing section. 

Presto. Like several C++ extensions, 
Presto,j also developed at the University 
of Washington, gives programmers a set 
of predefined C++ classes (such as threads 
and synchronization objects) to simplify 
parallel-program creation. Presto and its 
system of predefined threads and c o m u -  
nication objec- is designed for a global, 
shared-memory environment. 

Thread objects are defined as a pro- 
gram counter plus a stack of invocation 
records. Threads can be created and acti- 
vated dynamically, and they can be joined. 
Although threads can execute only one 
object at a time, an object can be assigned 
to mu1 tiple threads. 

Presto’s developers minimized the cost 
of creating threads by reusing threads 
fiom a reclaim pool. A scheduler object 
(created by the runtime system) schedules 
the threads as they are activated or re- 
sumed. Each physical processor is repre- 
sented by a processor object, whch re- 
quests executable threads from the 
scheduler. Scheduler objects cannot be 

migrated. Migration of objects can take 
place only when they are blocked (and re- 
sumed on a different processor). 

A s e n h g  object may invoke an opera- 
tion synchronously or asynchronously. 
T h e  object’s implementer decides 
whether the object executes sequentially 
or concurrently. Objects cannot determine 
if they are being invoked synchronously or 
asynchronously, and the invoking object 
cannot determine if the invocation is per- 
formed sequentially or in parallel. 

Presto provides spin locks and blocking 
locks, as well as monitors and condition 
variables. Atomic integer variables provide 
fine-grained synchronization. Presto does 
not support method overloading, type 
checlung of the argument list, or return 
values for method invocations. 

nheritance is the most difficult of I Meyers’ seven properties to implement 
in a parallel environment. Even the lan- 
guages that permit inheritance support 
only single-class inheritance. Most of 
these were developed by an academic or 
research organization and have yet to 
reach widespread use. 

Unless concurrency, synchronization, 
and communication are carefully inte- 
grated into a language, it can be inefficient 
or difficult to use. Some of the existing 
object-oriented languages can more easily 
be extended for parallel environments 
than others. 

We need more research into issues of 
granularity of concurrent activity, syn- 
chronization mechanisms, and communi- 
cation models. 4 
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