
A Review of Specification and Verification
Methods for Parallel Programs, including the
Dataflow Approach

AKSHAY K. DESHPANDE, MEMBER, IEEE, AND KRISHNA M. KAVI, SENIOR MEMBER, lEEE

Parallel programs are usually described informally, and these
descriptions are implemented on parallel computer systems. When
a program does not run correctly, it is often very difficult to deter-
mine whether the program description or the implementation is
incorrect. This has led to the search for more formal descriptions
of parallel programs, and proof systems for the venfication of the
implementations. In this paper, we wil l introduce some such for-
mal methods for the specification and verification of parallel pro-
grams. We wil l also describe a new method that is based on data-
flow graphs.

I . INTRODUCTION

Thegrowing demand for increased computational speeds
whileapproaching the limits on uniprocessor performance
has led to the research into parallel and distributed pro-
cessing. The research efforts have been directed towards
designing architectures, techniques for representing par-
allelism, new languages, and tools. In addition, consider-
able amount of work has been devoted to the development
of theoretical models and methods of analysis under which
inherent properties of parallelism can be precisely defined
and studied.

Programs, especially parallel programs, are often
described informally. There are advantages to informal
descriptions: a problem can be studied without the bag-
gage of a formal notation and proof system. However, such
informal descriptions of complex problems can be over-
whelming. The errors and inconsistencies contained are
usually difficult to discover-”programs that seemed so
obviously correct at one time are, in retrospect, so obviously
wrong” [I]. This i s the reason for formal approaches to the
specification of parallel programs, and proof systems to ver-
ify the implementation of the specifications.

A complete theory of programming (both sequential and
parallel) includes 1) a method for specification of programs

Manuscript received September 17, 1988; revised June 5, 1989.
This work was supported in part by the State of Texas Coordinating
Board on Higher Education under the Advanced Research Pro-
gram, Grant #1770.

The authors are wi th the Department of Computer Science Engi-
neering, University of Texas at Arlington, Arlington, TX 76019-0015,
USA.

I E E E Log Number 8932752

permittingaclear statementof all requirements,2)a method
of reasoning about specifications that brings out imple-
mentation alternatives, 3) a method of developing pro-
grams along with a proof system to verify the correctness
of the programs with respect to the specifications, and 4)
a method of mapping the programs on to architectures to
achieve high efficiency [I]. In this paper we are concerned
only with the specification and verification as described
below.

A specification is a statement about what the program
should do, while a description of how it is achieved is an
implementation. A program may be designed hierarchically
such that a specification at one level becomes an imple-
mentation at other levels. The functional correctness ver-
ifies that the implementation realizes the specification.

It may be desirable to distinguish between two views on
correctness. When dealing with the proof of a program (we
will call it the Computational model), either the program
i s annotated with predicates-the proof consists of dem-
onstrating that a predicate holds whenever program con-
trol is at the corresponding point in the program text; or
refining the program by adding more detail, eventually
leading to an execution model on a target architecture.

A process can be defined as the realization of a program
on a computer system. While dealing with correctness in
a process model, only the behavior of a program, insofar
as it can be described in terms of a limited set of events,
is of interest. Typically, the behavior of a process is
described by its interaction with other processes. Apart
from functional correctness, verification of processes
requires proving safety and liveness properties. Safety
properties essentially state that nothing bad will ever hap-
pen; in other words the process never enters an unac-
ceptable state. An example of safety property is, if the pro-
cess receives an input, it will reach a state where an output
is produced. Other examples of safety properties are that
two processes are never in their critical section simulta-
neously; that a message i s received only if (and after) it has
been sent. Liveness properties state that something good
will happen in the future; that is, the processwill eventually
enter a desirable state. An example of liveness is, if a pro-
cess receivesan input,outputwill be produced in thefuture.

0018-92’9/89/1200-1816$01 00 C 1989 IEEE

1816 PROCEEDINGS OF THE IEEE. VOL. 77, NO. 12, DECEMBER 1989

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

Another example of liveness is that the process will pro-
gress unless it has reached termination. In this paper we
will present methods that are applicable to process models.

In formal models for studying the behavior of processes,
it i s common to abstract the description of a process. In one
such abstraction, a process is described by a set of possible
states, a set of inputs that cause a transition in the state of
the process, and a set of outputs produced by the process
on state transitions. A process i s specified using assertions
regarding the conditions before (pre) and after (post) a state
transition. In a different abstraction, a process i s described
by the elements through which it affects the environment.
A trace i s a sequence of recordings of the interaction
between a process and its environment. In such an abstrac-
tion, it i s common to represent a process by its input and
output components, and its behavior by the trace. A system
may comprise of many processes with interactions among
some of the processes. Some models ([I], [2], and [3]) record
events of a system based on total ordering of time, assum-
ing that only one event can occur at any given time. Some
other models ([4], [5], and [6]) impose partial order on the
events recorded (thus defining causality), allowing the
occurrence of concurrent events.

Most process models are compositional; that is, a spec-
ification of a process i s formed from specifications of the
component processes. In such systems, the rules of com-
position of processes are controlled by the algebra on the
processes. Sometimes, the concept of trace is extended to
a sequence of observations, where an observation i s defined
as the input and output streams on all ports of all processes
(in a network of processes).

The proof of correctness in a process model then
becomes equivalent to the demonstration of safeness and
liveness of the composite (or network of) processes as spec-
ified. Assertions on traces are used to verify that the spec-
ified processes do not enter undesirable states, and enter
desirable states in the future.

A. An Example

Networks of processes, representing operating systems,
often require nondeterministic operations. By nondeter-
ministic, we mean that the execution of the operation i s
time-independent. It i s important that the techniques used
to characterize the networks be able to handle nondeter-
minate operators. In order to illustrate the differences
between the various models presented here, we use the
exampleof Brockand Ackerman [4].This example isof inter-
est because it shows a subtle difference between two very
similar compositions. It shows that history relations are
insufficient for characterizing a network of processes con-
taining nondeterminate operators.

A process interacts with the environment through well
defined interfaces called the ports or links. The sequence
of values that each port receives or transmits during a com-
putation is called a history. Determinate operators have only
one possible output history tuple for each input history
tuple. The function which maps input history tuple into its
output history tuple i s called the history function. Non-
determinate operators, which have a set of possible output
history tuples for an input historytuple, can be represented
by history relations.

Consider the network of processes shown in Fig. 1. The
network consists of determinate processes D,, D,, and P,

Fig. 1 . Brock and Ackerman Examrile.

(i = 1, 2); and a nondeterminat’ process Merge. The net-
work produces at most two vali es. Both processes D , and
D, read one value on their input ports and write two copies
of it on their output ports. The process Merge nondeter-
ministicallyreadsavalueonone of its input portsandwrites
the value on its output port. Tno networks are formed by
using two different but similar p.ocesses P,’s. PI i s a process
which produces a value after reading the first input, while
P2 produces its first value after r .ading two inputs. The his-
tory functions for these proces ,es are

D , or D 2 P1(4 = E P,(E) = E

D(k.X) = k.k Pl(k.1.X) = k.1 PZ(k.1.X) = 1.
where E is empty history, k anc 1 are values, X represents
input history, ”.” represents coicatenation, and D(X) rep-
resents the output history.

The history relation for the nondeterministic process
Merge is

Merge(X, t) = { X } ; Merge(€, Y) = { Y }

Merge(k.X, 1.Y) = { k . Z (Z E Merge(X, 1.Y))

U {l.ZIZ E Merge(k.X, Y))

Two different networks NET, and NET, are formed: NET,
with D, , D,, Merge and P,; and PlET, with D , , D,, Merge and
P,. The history relations for the t”o networks NET, and NET,
are the same despite the dif fermt behavior of PI and P2. If
either network receives an inpiit, then P,’s receive at least
two inputs, and the network produces two outputs. The
history relation for NET,’s with inputs k and 1 will be

NET,(€, 6) = { E }

NET,(k.X, t) = { k k } ‘ VET,(€, 1.X) = (1.1)

N€T,(k.X, 1.Y) = { k . k , L . 1 , l .k , 1.11
The subtle difference in the Ijehaviors of NET, and NET,

can be detected when placed i r i a larger network. Let NET,
and NET, be part of two netwclrks COMP, and COMP, as
shown in Fig. 2. The input to the network i s through D1,
while the output of the netw3rks i s forked back to D,
through another processAdd.Pddisa processwhich incre-
ments the input received by or e, and writes it on the out-
put.

Let COMP, receive a single i ipu t with a value of 2. The
value2 i s passed through NET, and becomesthe first output

DESHPANDE AND KAVI: SPECIFICATION AND VERIFICATION METHODS FOR PARALLEL PROGRAMS 1817

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

t
Fig. 2. Network COMP,.

of COMP,. The process Add receives the value 2, adds 1 to
it and writes a value of 3 on i t s output. The Merge process
can now choose either the second output from D,, with a
value of 2, or the first output from D,, with a value of 3. This
i s possible because, we cannot assume the execution speed
of the individual processes, or the scheduling of the pro-
cesses i s unknown. It i s possible that the process Merge
does not proceed until it has inputs on both its input ports,
thus, the second output of COMP, can be either 2 or 3.

If COMP2 receives an input with a value of 2, the value
2 reaches process P, through D , and Merge. However, P,
cannot produceavalue until it receives two inputs. So, when
the second output from D, reaches P,, COMP, produces the
only possible sequence of output (2 . 2) .

I I. TRACE-BASED MODELS

In this section, we present three trace-based models:i h t
example described in Section I-A i s used to show the dif-
ference between the techniques. Trace-based models are
attractive because of their simplicity, and their information-
hiding property.

A. Communicating Sequential Processes (CSP)

Most early programming languages were designed tor
sequential programs. Programming constructs required for
concurrent processing were not well understood and pro-
visions for handling concurrency were "add-on" features
in the languges. Hoare [7] presented a few simple con-
structs to aid languages in dealing with concurrent pro-
cessing. Parallel command, and input and output com-
mands were introduced along with Dijkstra's guarded
command [8] as meansof structuringconcurrent programs.
A proof technique based on the concepts was presented
in [7] and an elaborate theory of processes was presented
in [2] . In this paper we will review only the features needed

to understand the principles, and to describe the example
detailed in Section I-A.

A trace provides an abstraction for a process, hiding irrel-
evant internal details. A trace i s a recording of the sequence
of events during some execution of a process. A process i s
specified by describing the properties of its traces. A crt-
terminal (process) which displays a character after a key i s
pressed, and then halts is specified as

TERMINAL = Key + Display + STOP

where Key indicates the event of pressing a key on the key-
board, Display i s the event of displaying the character
pressed, STOP indicates that the process halts, and TER-
MlNAL i s the process name. The ordering of events is indi-
cated by "+."

An elaborate set of constructs i s defined in order to facil-
itate specification of the process behavior. A process can
be represented as a composition of subprocesses using the
parallel command. Non-terminating processes and pro-
cesses involved in repetitive action are specified by means
of recursion. For example, a terminal which when turned
on, displays every character pressed on the keyboard until
power i s turned off can be specified as

P, = On --* P,

PL = Key + Display --t P, I O f f

where P, and P, are process names, Key and Display are as
described above, On indicates the event of turning the
power on, O f f indicates the event of turning the power off,
and " I " is choice operator (explained below).

A parallel operation (1 1) is used to compose processes that
execute concurrently. Input (?) and output (!) commands
are introduced as the communication primitives through
which processes interact. Communication occurs between
two parallel processes (processes composed using the par-

1818 PROCEEDINGS OF THE IEEE, VOL. 77, NO. 12, DECEMBER 1989

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

allel command) whenever an input command in one pro-
cess specifies the other process as the source, an output
command in the other process specifies the first process
as the destination, and the target variable of the input com-
mand matches the destination expression in the output
command. Input and output commands are said to cor-
respond when the above conditions are satisfied, and they
are executed simultaneously. In a variation, input and out-
put commands can name the communication channel
instead of the process name. However, both the input and
output commands must name the process (or channel) at
the other end of the communication.

Choice (I) i s an operator which allows an execution to
select between two alternatives. Nondeterminism i s intro-
duced by providing an operation (0) which arbitrarily selects
between its choices. If the first choicecannot be made, then
the second choice will be used; or if the second choice can-
not be made, the first choice i s used. However, if both can
be selected, then the choice between them i s nondeter-
ministic. While constructing a process from component
processes the internal structure i s visible. After the con-
struction, the internal details are no longer needed and can
be hidden by the conceal (\) operation.

7) Exarnp/e:The process D1 (see Section I-A) which reads
one input (with a value of v,) on its channel i and outputs
the same value twice on i ts channel j , is specified as

D, = i?vl + j!vl + j !v ,

The process D2, same as D1 except for the channel names,
i s specified as

0, = m?u, + n!ul + n!ul

The process Merge which nondeterministically reads a
value on its input channels j and n, and writes the value (v
or U , depending on the choice made) on its output channel
k, and iterates, i s specified as

Merge = (((j?v -+ k!v) 0 (n?u + k!u)) + Merge)

The process Plwhich readsonevalueon i t s inputchannel
k, writes the value on its output channel 1, and repeats this
sequence once more before stopping, i s specified as

P, = (k!wl + [!wl + k!w, -+ [!w, -+ STOP)

where STOP indicates the process termination.
The process P, which reads two values on its input chan-

nel k before writing them in the same order to its output
channel 1 and then stops is specified as

P2 = (k?wl + k?w2 + l ! ~ , + [!w, + STOP)

The composition of processes D1, D,, Merge and P1 using
the parallel command and concealingthe internal channels
(j , k and n) yields the following specification

NETl = (Dl 11 D, 11 Merge 11 Pl)\ { j , k , n }

= ((i?v I] m?u) + [!w l + [!w2 + STOP)

The composition of processes D,, D2, Merge and P2 using
the parallel command and concealing the internal channels
(j , k , and n) yields the following specification

NET, = (DIII D211 Merge 11 P2)\{ j , k , n)

= ((i?vOm?u) + l ! W 1 + l!w, + STOP)

In this model theevents in atracearetotallyordered.This
may not be true in real systems, particularly in distributed

systems where each node has its own clock (time). Also, as
can be seen from the cornposititin of processes (NET, and
NET,) in the example describec, it i s not possible to dif-
ferentiate between two similar, b Jt different processes. CSP
uses two different basic models in forming concurrent pro-
cesses. The execution of each p~ocess in a composition is
sequential, while the interactions among processes can be
parallel, nondeterministic, or SE lective.

B. Scenario Model

Historyfunctionswhich mapeich input historytuple into
an output history tuple are adequate to characterize net-
works of determinate processe!,. History relations, exten-
sion of history functions, w h i c l map each input history
tuple into a set of possible outpiit history tuple, have been
used to characterize networks of nondeterminate pro-
cesses. However, Brock and Ackerman [4] have shown,
using the dataflow model of coniputation, that history rela-
tions are inadequate to charac erize networks of nonde-
terminate processes. They presc:nted a characterization in
which networks are presented I: y scenario sets. A scenario
includes causality information a ong with input and output
history tuples. The causality information relates the ele-
ments of input and output histo’y tuples with the elements
responsible for their creation. An algebra for dataflow
graphs and scenario sets i s pre iented in [9].

Programs in the dataflow motlel of computation are rep-
resented by a graph. The nodcms of a dataflow graph are
called operators. Each operator 3f a dataflow graph is iden-
tified through a label. A firing :execution) of an operator
removes tokens (values) from the input ports and produces
tokens on the output ports. Clifferent operators can be
defined with different firing rJles based on the tokens
present. Links of the dataflow graph connect input and out-
put ports of operators (processes). During the execution,
tokens flow through these liriks from one operator to
another.The unconnected port!.within agraph becomethe
ports of the graph itself. Large. graphs can be built from
smaller ones by considering the smaller graphs as opera-
tors within the larger graphs.

7) Dataflow Graph Algebra: 4 dataflow graph algebra,
consisting of three operators, enables combining of the
dataflow graph operators. The i hree operators of the data-
flow graph algebra are graph union, portrelabeling, and port
connection. The graph union (l i s) operation associates two
disjoint graphs, retaining the p3rt labels. The result of the
union operation i s to form a n 2w graph whose input and
output ports are the union of he input and output ports
of the constituent graphs, respectively. It i s required that
the port labels of the graphs p,irticipating in the union be
disjoint. The restriction of disjc int port labels in the union
operation i s eased by providing a port relabeling (./g.) oper-
ator. The port relabeling opera ion [algb] renames the port
a to b. The operation cannoi introduce duplicate port
names, hence it i s defined onl) when b i s not a port of the
graph G. The result of this ope.ation is to remove the port
label a and add the port label b to the set of ports of the
graph G.

The port connection (.+,.I c perator is used to connect
an input port to an output poct within a graph. The con-
nected ports become internal t s the graph and cannot par-
ticipate in any future graph intt!rconnections. The result of
this operation i s to remove (hid 2) the input and output port,

DESHPANDE A N D KAVI: SPECIFICATION A N D VERIFICATION METHODS FOR PARALLEL PROGRAMS 1819

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

participating in the operation, from the input and output
ports of the graph, respectively.

To illustrate the use of these operators, Fig. 3 shows a
dataflow graph which computes the dot product of 2 two-

plus

i j
+

Fig. 3. Dot product computation using Brock's model.

element vectors. The inputs to the graph are the vectors:
(xo, yo) and (x,, y,). In this example, each operator is assumed
to have input ports labelled as In, and In2 and the output
to be labelled as Out,. The port through which the graph
produces output is to be labelled as Result. The description
using the algebraic notation is as follows

(times [/n,/,xol [In21gx,1 [Out,/, Op, Out,] / Ig

times[Wgyd[ln2/,y,l [Out,/, 0 p 2 O ~ t , l l I ~

plus[In,/,,0p31n,l[ln,l,0p~ln21[Out,l,Resultl)

[Op, Out, +, Op3 In I 1 [Op, Out, + g op, In,]

2) Scenario Set Algebra: Scenario sets, similar to graphs,
have disjoint input and output ports. A scenario is a triple
(E , V,C),whereE isthesetofevents, Visthevaluationfunc-
tion, and C i s the causality relation. Each element of the
scenario set E i s an ordered pair consisting of port label and
a nonzero positive integer. If an event (a , n) i s in E, then
it represents the event of producing (or receiving) the nth
value at the output (or input) port a . The valuation function
Vmaps theeventsof Eintotheset of tokenvalues.Thevalue
of the nth token produced (or received) on port a is given
by V((a, n)) . The causality relation provides the depen-
dencies in token production. If (a , n) C (b, m) i s a causality
relation, then the event of producing (or receiving) the nth
element at port a must precede the event of producing (or
receiving) the mth element at port b.

The scenario set algebra, like the dataflow graph algebra,
has three operators: Union (l is) , Relabeling (. I s .) , and Con-
nection (.+& Applications of the scenario set operators
must satisfy the same constraints on the input and output
port labels as the operators of dataflow graph algebra.

The scenario set union i s used to produce the compo-
sition of scenario sets. The operation i s defined only when
the two scenario sets have disjoint port labels. The resulting
scenario set isalsoatriplewith each of itscomponents being
the union of the corresponding components from the con-
stituent scenario sets. For example, let s,: (E , , VI, C,) and
S 2 : (E 2 , V2, C2) be two scenario sets, then Slll, S, = (€, U

E?, VI U V,, C, U C,). Taking the union of functions and
relations works because the event domains are disjoint.

The scenario set port relabeling i s similar to the dataflow
graph relabeling operator. The relabeling operator renames
the ports, that is, it replaces all the occurrences of its first
operand with the second operand. For example, let S: (E ,
V, C) be a scenario where

E = {(y, m)) ;

V = {V((r , rn))l(y, r n) E E } ; and

c = ((7, m) c (6, n > l (y , r n) , (6, n) E E }

Application of the scenario set port relabeling operation
S[a/ ,P) results in a scenario such that

E' = {(y, m>l(r , m> E E and y f a)

U { (P , rn) l (a, m) E € 1
V(y, m) = V((y, rn)) ,

V (P , rn) = V((a, rn)) , if (a , r n) E E

if (7, m) E E and y # a

(7, m) C' (6, n> = (7, m> C (6, n)

if y f a and 6 f a

(7, m) C' (0, n) = (7, r n) C (a , n) i f y f a

(6 , r n) C' (6, n) = (a , r n) C (6, n) i f 6 # a

(P , rn) C' (P , n) = (a , r n) c (a , n)

The scenario set port connection operation is more com-
plex than the connection operation of dataflow graph alge-
bra. The connect operation may form cycles, resulting in
inconsistent causal order. In order to avoid this inconsis-
tency, the connect operation i s done in steps. First, all sce-
nario pairs whose data values do not match on ports that
are linked to each other are discarded. Each event pair i s
merged into one scenario. For the matching events on the
linked input-output pairs, the valuation function yields the
same value, leading to value-consistent scenarios. The sec-
ond step i s to remove any cycle, that would lead to event
pairs on linked ports where the event on input port does
not precede the event on the output port. This i s done by
discarding all such cycle-causing event pairs, leading to
causality-consistent scenarios. Finally, each scenario for the
linked port i s removed, resulting in the characterization of
the network based on external ports only, while hiding the
internal ports. For more details and examples, see [9].

3) Examp/e:We will redo the example of section I-A using
the scenario set algebra.

The process D, has the following scenario set:

E = ((In, , I) , (Out,, I) , (Out,, 2))

V((In,, 1)) = V((Out,, 1)) = V((Out,, 2))

(In, , 1) C (Out,, I) ; (In,, 1) C (Out,, 2) ;

(Out,, 1) c (Out,, 2) .

The process D2 has the following scenario set:

E = ((In,, I) , (Out,, I) , (Out, , 2))

V((ln,, 1)) = V((Out,, 1)) = V((Out,, 2))

(In, , 1) c (Out, , 1) ; (In,, 1) c (Out,, 2) ;

(Out,, 1) c (Out, , 2).

1820 PROCEEDINGS OF THE IEEE, VOL. 77, NO. 12, DECEMBER 1989

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

The process Merge has the following input-output his-
tory function:

Merge(X, E) = {X}; Merge(€, Y) = { Y } ;

Merge(a.X, b.Y) = {a.ZIZ E Merge(X, b.Y)}

U { j.ZlZ E Merge(a.X, Y) } .

A sample scenario for an input history tuple of (p . q, r)

E = ((In, , I) , (In,, 2) , (In,, I) , (Out, , I) ,

is

(Out,, 2), (Out,, 3))

V((ln , , 1)) = p; V((/n , , 2)) = q; V((/n,, 1)) = r;

V((Out,, 1)) = p; V((Out,, 2)) = r; V((Out,, 3)) = q;

The causality relation consists of the following tuples:

(In, , 1) C (In, , 2); (In, , 1) C (Out, , I);

(In,, l > C (Out,, 3) ; (In,, 1) C (Out,, 2);

(out , , 1) c (out , , 2); (o u t , , 1) c (o u t , , 3) ;

(Out,, 2) c (Out,, 3) ;

This i s one sample scenario. By varying the sequence of
event occurrences, we get other scenarios, and the scenario
set i s the set of all scenarios.

The process P, has the following scenario set:

E = ((In, , I) , (In,, 2), (Out,, I) , (Out, , 2))

V((In,, 1)) = V((Out,, 1); V((In,, 2)) = V((Out,, 2))

(In,, 1) C (In,, 2); (In,, 1) C (Out,, I) ;

(In,, 2) C (Out,, 2); (Out,, 1)c (Out,, 2).

The process P, has the following scenario set:

E = ((In, , I) , (In,, 2), (Out,, I) , (Out, , 2))

V((ln,, 1)) = V((Out, , 1); V((ln, , 2)) = V((Out , , 2))

(In,, 1) C (In,, 2); (In,, l) C (Out,, 1);

(In,, 2) C (Out,, I) ; (Out, , 1) C (Out, , 2) .

The composition (NET,) of the processes D,, D,, Merge
and f, using the scenario set operators yields the following
scenario (we use the specific scenarios which bring out the
difference between the two compositions):

€1 = ((In, , I) , (In,, I) , (Out,, I) , (Out,, 2))

V l ((h 1)) = V,((Out,, 1); V,((In,, 2)) = V,((Out, , 2))

(In,, 1) c, (Out,, I) ; (In,, 1) c1 (Out,, 2);

(Out, , 1) c, (Out,, 2)

E2 = ((In,, I) , (In,, I) , (Out,, I) , (Out,, 2))

V , ((h , 1)) = VA(Out,, 2); V,((In,, 2)) = V,((Out,, 1))

(In1,I) c, (Out,, 1); (In,, 1) c, (Out,, 2);

(In,, 1) C2 (Out,, I) ; (Out,, I) C2 (Out,, 2).

The composition (NET,) of the processes D,, D2, Merge
and P2 using the scenario set operators result in the fol-

lowing scenario (again specific scenarios which bring out
the difference between two cow positions are used):

El = ((In,, I) , (In,, I) , (Out,, I) , (Out,, 2))

Vd(ln1, 1)) = V,((Out,, 1); V,(<In,, 2)) = V,((Out,, 2))

(In1,I) c, (Out,, I) ; (In,, 1) c, (Out, , I) ;

(out , , 1) C, (out , , 2)

E, = ((In, , I) , (In,, I) , (Out,, I) , (Out,, 2))

V,((In,, 1)) = V,((Out,, 2); VAC In,, 1)) = V,((Out,, 1))

(In,, 1) C, (Out,, 1); (In,, 1) C, (Out,, 1);

(Out,, 1) c, (Out,, 2) .

These are two of the possible scenarios in the resulting
scenario sets of NET, and NET,. tdote that, In, and In, refer
to the input ports of the netwo.k, and Out, refers to the
output port of the network, and hat connection and label-
ing operations are also applied.

The two compositions of NET, and NET, are clearly dif-
ferent. Looking at the causality elation, we see that NET,
does not produce output until t\vo tokens are used. While
NET, produces token even afte- reading one token. The
scenario model presents a techpique which is adequate to
characterize a network of procc sses (including nondeter-
ministic compositions), but it does not provide a proof sys-
tem. Also, this requires enumeration of all the possible
events and their ordering, makiiig it tedious to manage in
a large system.

C. Behavior Model

It i s difficult to specify liveries,, properties in trace-based
models. Sincetraceisafiniteseq Jence, it isdifficulttospec-
ify a process whose computatiori could possibly be infinite
(a process that does not terminate). In order to be able to
better specify liveness propert es, Nguyen et al. [3] pre-
sented an extension to traces leading to a behavior model.
The model i s capable of handli i g both synchronous and
asynchronous communications. They also presented a tem-
poral proof system that is compositional. Time is totally
ordered in this model.

An observation i s a recording of the events on input and
output ports in a network of processes up to some point
of execution, along with the cut rent status of the network
ports.The statusof the network Fort isviewed through three
functions: In, Out, Rd. The funct on In (Out) maps the input
(output) ports to true or false, i idicating the readiness of
the port for communication. 7 he function R d gives the
number of events that have occurred on a port during an
execution. The sequence of obs43rvations during some exe-
cution ofthe network iscalled th-communication behavior
of the network, and characteriz?~ an execution of the net-
work. A set of communications behavior characterizes the
network.

A process i s described by i t s i i iput and output ports: f(i,,
. . . , I,,,; I , , . . . , in). A network description i s obtained by
parallel composition of its constituent processes, (with dis-
joint) port labels. A specification of a network N is of the
form: (N) A, where N is the network description and A is
a temporal assertion. For examyde, a (slow) terminal which
displays the key entered, a character at a time, is specified

. .

DESHPANDE AND KAVI: SPECIFICATION AND VERIFICATION METHODS FOR PARALLEL PROGRAMS 1821

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

as

(TERM) 0 (display I= key, A (ln(key) = 1 Out(disp/ay)

= ()display(= Rd(key)))

A V m (0 (key1 = rn - 0 Rd(key) = m)

A V n (0 Rd(key) = n * 0 (display1 = n)

The specification reads as follows: It i s always (U) true
that the character displayed i s a prefix (L) of the key entered,
indicated by "display& key"; and when the key i s ready to
be pressed, In (key), the display is not ready, 7 Out(display),
and also that the number of characters displayed i s equal
to the number of keys accepted, (Idisplay1 = Rd(key)); and
for every nonnegative integer m, if eventually (0) the num-
ber of keys entered equals m, then eventually the number
of keys accepted i s also equal to m; and for every non-
negative integer n, if eventually the number of keys
accepted is equal to n, then eventually the number of char-
acters displayed is also equal to n. There i s one more tem-
poral operator, Until(U), which we will use later. Until is a
binary operator; a Ub means that a i s true until b becomes
true. Details of temporal logic can be found in [IO].

The proof system consists of the following six parts:

1) Axioms and inference rules describing the domain of
values that can appear in events.

2) Axioms and rules for temporal logic.
3) Axioms that define the properties of communication

behavior.
4) Axioms describing the liveness assumptions.
5) A set of process specifications.
6) Proof rules for deriving network specification.

We present, informally, the axioms describing the com-
munication behavior. Initially a trace i s empty and it is
extended upon the occurrence of an event. A trace can be
extended by only one element at a time; that is, only one
event recording can be done at a time. The trace extension
i s order preserving. An event can occur only when an input
port or an output port i s ready to communicate. The num-
ber of events read on an input port is nondecreasing and
cannotexceed thenumberof eventson that input port;that
is, an event cannot be read before its occurrence.

7) Proof Rules: Three proof rules are provided to derive
a network specification form component processes: Re-
naming, Network formation, and Consequence. The re-
naming rule is provided tocircumvent the restriction of dis-
joint port names in parallel composition.

(N) P

The effect of the rule is to simultaneously substitute port
narnesp,, . . . , p m with ql, . . . , q,, with the restriction that
no new link i s formed as a result of substitution.

The network formation rule i s the primary rule for com-
posing a network from smaller networks (or processes).

where Nk satisfies the unique port name requirement.
The consequence rule is

(N)P, P = Q

where P * Q can be proved from the axioms and inference
rules for temporal logic, the axioms and inference rules for
the data domain, and the axioms that characterize behav-
iors. This rule is applied to indicate port connections.

2) Example: Once again, we will describe the example of
section I-A using the behavior model. The process D, has
the following specification:

(D,) 0 j F [;(I), /(I)] A (0 l i (= U = 0 = 2 * min (U, 1))

The process D, has the following specification:

(D2) 0 n [m(l), m(l) l

A (0 Iml

= U = 0 /nl = 2 * min (U, 1))

The process Merge which reads values from j and n and
nondeterministically merges them on k i s specified as

(Merge) 0 preshuffle(j, n, k)

A (0 (\ / I = U A In(= v) - Ikl = U + V)

where preshuffle(j , n, k) 5 merge(j.X, n.Y)

(see section I-A).

The process PI has the following specification:

(P I) U l[k(l), k(2)I A (0 (k l = 1 = 0 111 = 1)

A (0 lkl 2 2 * 00 111 = 2)

The process P, has the following specification:

(P ,) U l[k(l), k(2)I A (0 lkl = 1 * 0 111 = 1)

A (0 Ikl 2 2 = 00 111 = 2)

NET,, the composition of processes D,, D,, Merge, and PI
has the following specification:

(NET,) 0 preshuffle ([;(I), i(l)l, [m(l), m(l)l, 1)
A (0 (l i l + Iml 2 1) * 00 (11 = 2)

A ((i = t U 1 # t) * 0 \(I) = rn(1))

A ((m = E 1 # E) * 0 [(I) = /(I))

NET,, the composition of processes D,, D2, Merge, and P2
has the following specification:

(NET,) 0 preshuffle ([i(l), i(l) l, [m(l), m(l)l, 1)
A (O(li1 + Im(2 1) * 00 111 = 2)

A ((i = E U 1 # E) - 0 [(I) = [rn(l), m(1)l)

A ((m = E 1 # t) * 0 1(1) = [;(I), ;(I)])

Proofs of the compositions are given in [3] .

I I I . DATAFLOW APPROACH

In the previous section we have presented three trace
based models. In the Behavior model and CSP, time i s totally
ordered. Parallelism i s not accurately represented as order-
ing i s induced, even on concurrent parallel events. In the
Scenario model time i s partially ordered. The specification
and composition of processes is cumbersome. In this sec-
tion, we present another trace-based model with partial

1822 PROCEEDINGS OF THE IEEE, VOL. 77, NO. 12, DECEMBER 1989

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

ordering of time which i s concise. The computation model
i s based on the dataflow concept and is currently being
developed at the University of Texas at Arlington. Dataflow
graph algebra along with a proof system is presented in this
section. Dataflow suits well for modeling concurrent and
distributed processes because of the asynchronous nature
of interaction among processes.

A. Review o f Dataflow Concepts

A dataflow graph is a bipartite directed graph in which
the two types of nodes are actors and links [I l l . Nodes are
connected through arcs, which denote the communication
media used for transferring information in the form of
tokens. The actors represent the operations to be per-
formed while the links receive tokens from one actor and
transmit them to another actor. The execution of a dataflow
graph advances through firing or enabling of actors. For-
mally, a dataflow graph G is

G = (A U L, €)

where A = { a , , a>, . . . , a,,} i s the set of actors

L = {I,, i2, . . . , ln,} i s the set of Links

€ E (A x L) U (L x A) i s the set of edges.

The set of inputs to the graph and the constants needed
to initiate the execution of a graph constitute the starting
set. The set of links which produce the outputs from the
graph i s called the terrninatingset. These represent the links
through which a graph can effect the environment. For-
mally, the starting and the terminating set are defined as

S = { ~ E L ~ (~ , ~) @ E , V ~ E A)

T = (1 E L 1 (1, a) $ E, Va E A} .

The state of a dataflow graph can be defined using the
location of data or the enabled actors. Markings serve this
function in our mode1.A marking M i s a mapping from links
to an element of the set of natural numbers, (indicating the
number of tokens on the link, for each link in the graph G).

M: L + ti, where ti is the set of natural numbers.

A link i s said to contain a token in a marking M if M(1) 2

1. An initial marking M, is a marking in which a subset of
the starting set of links contains tokens. A terminal marking
M, is a marking in which a subset of the terminating set of
links contains tokens.

Input (output) firing semantic set refers to the subset of
the input (output) links which must contain tokens in order
to fire an actor. These firing semantic sets enable the rep-
resentation of choice on input and output links. An actor
is firable in a marking M if the links belonging to the input
firing semantic set contain tokens and the links belonging
to the output firing semantic set contain at most k - 1
tokens, where k i s a bound on the number of tokens that
can be held at a link. When an actor i s fired, tokens from
the input firing semantic set are removed (or consumed)
and new tokens are added to each of the links in the output
firing semantic set. This firing action results in a new mark-
ing M', indicated by M -1: M'.

A firing sequence a is a sequence of actors in the order
in which they are enabled. If actors can be enabled con-
currently, the order i s arbitrary. An actor a is said to belong

to a if a is fired at least once in the firing sequence a. If a
new marking M' is derived from the marking M, M i s said
to lead to M' via U. This is denot :d by M + M'. The set of
markings generated by a firing sequence U i s denoted by
M".

M" = {M'IM M' for Zny subsequence

E that is a prefix of U } .

For more detailed descriptio1 of the dataflow graph
models see [I l l , [5].

B. Marking Model

A process i s represented by thi! elements through which
it affects the environment. A dataflow graph represents the
computation performed by the process. In the subsequent
discussion the terms graph and process are used inter-
changeably. The starting set and he terminating set are the
elements through which a procc ss can affect the environ-
ment. Traces augmented with t l e markings characterize
the network behavior.

A trace i s a sequence of tuples representing the values
occurring on the links during ai1 execution of the graph.
Our augmented traces have the p ,operty that they are totally
ordered on a link and partially ordered over a set of links.
Firing of a graph extends the tr;ce on the output links of
the graph.

I) Dataflow Algebra: Three o 3erators, graph composi-
tion, link connection, and link :elabeling, are defined to
compose a dataflow graph. The!e operators are similar to
those defined by Brock [9], and are sufficient to describe
and construct any dataflow grapli using the actors defined.
The graph composition operator (1 1) associates two graphs,
each with disjoint starting and tc rminating sets. This oper-
ator i s used to construct a grap i from smaller graphs (or
actors).

The link connection (+) operator is applied to a graph to
connect two links. This operatioil takes two links, one from
the terminating set and the othe ' f rom the starting set, and
establishes an edgewhile hiding theconnection. This oper-
ation i s used to route the results from one graph (process)
to another. Since the graph coriposition requires graphs
with disjoint starting and term nating sets, a conflict in
labeling may exist. To avoid this problem, we use the link
relabeling operation (\) . This o ieration requires that the
new label be distinct from the c ther links in the graph.

Figure 4 shows a dataflow i;raph for computing the
Euclidean distance between twc points. We construct the
graph first by defining each actcr itself as a graph by itself.
Then we use the dataflow grapi algebra to compose the
complete graph shown. The foll3wing illustrates the steps
involved:

DESHPANDE AND KAVI: SPECIFICATION AND VERIFICATION METHODS FOR PARALLEL PROGRAM! 1823

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

1 1
Add

’ ‘23

Fig. 4. A graph to compute the distance between two points.

C. Proof System

The elements of our model are graphs (or processes), links
and markings. We use the first-order logic as our assertion
language. The only free variables in any assertion are the
variables representing the sequence of token values on a
link. A marking restricted to a link l i s indicated byM(U. We
allow functions which represent the computation by the
graph. The cardinality symbol 1 1 gives the length of the
sequence on a link.

A graph specification i s of the form [C(S, T)]P, where S
i s the starting set, Tis the terminating set and Pis the asser-
tion for the graph C. The links belonging to the starting set
and the terminating set are the only links occurring in the
assertion.Avalid specification isone in which all sequences
of valueson links satisfytheassertion.Aspecification i s said
to be precise if it is valid and if all sequences of values on
the links satisfying the assertion are possible sequences.

Examples of simple specifications:
Single Slot Buffer

The components of the proof system in our model are

1) Axioms and inference rules of first-order logic
2) Axioms that describe properties of traces
3) Axioms about the domain of values contained in the

tokens.
4) A set of precise specifications
5) A set of proof rules.

I) Proof Rules: The proof rules correspond to the oper-
ators of the dataflow graph algebra and are as follows (asser-
tions are indicated by P’s):

1824 PROCEEDINGS OF THE IEEE, VOL. 77, NO. 12, DECEMBER 1989

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

Composition Rule (11): This rule allows us tocomposeagraph
from smaller graphs.

II [Gl(Sl, TJIPI

[G’(;S, ; T)I;P

where G’ i s the new graph obtained by taking the union of
starting and terminating sets respectively.

Relabeling Rule (\): This rule enables us to rename a link
in the graph.

where A’ i s obtained by replacing all occurrences of 1, by

Connection Rule (+):This rule i s used to establish a con-
nection in thegraph while hidingthe links involved. Bycon-
necting a link from the terminating set to a link in the start-
ing set, we are transferring the assertions on the link from
the terminating set to the link in the starting set.

1,.

11 + li[G(S, T)IP/[p(\k) * P(11)l

The process P, has the followi i g specification:

[P7({[5}, {16})1 V M 3M’(M(15) 5 I (M’&) = M((I.5) - 1)

A (M’(16) = M(16) 4 1))

A 16 !G 1 5 A 1161 5 :!

The process P2 has the following specification:

[P2({15}, {16})] V M , M’ 3M”((h.&) 2 1) A (M’(15) 5 1)

=. (M”(15) = M (15) - 2)

A (M’(/6) = M(l6) + 2))

A l6 1st is A IIA 5 2

NET,, composition of D,, D,, Flerge, and P,, has the fol-
lowing specification:

[NET,({l,, L3), {16})1 vM 3M‘(cM(1,) 2 1 v 5 1)

a (M’(lb: = M(l6) + 1))

A V M ’ 3!d”((M’([3, 16) = O

A M”(l6) = 1)

a 1 6 = 11)

A V M ’ 3!A”((M’(11, 16) = O

A M“(1,) = 1)

a 16 = 13)

A (16 C nlerge([ll, 111, [13, 131))

A i i 6 i 5 2

[NET,({I.,, 131, {i61)1 VM MY ~(1,) 2 1 v ~(1,) 2 1)

NET,, composition of D1, D,, ivferge, and P,, has the fol-
lowing specification:

a (M’(16’ = M(/6) + 2))

A V M ’ 3ld“((bf’(13, 16) = 0

A M”(l6) = 1)

a 16, 16 = 11, 11)

A VM’ 31vf”((M‘(I,, 16) = O

A M”(1,) = 1)

* 16, 16 = 13, 13)

A (16 L r7erge([ll, hl, [I3, 131))

A 11~1 5 2

Like the Scenario model and llehavior model, our Mark-
ing model distinguishes NET, film NET,. The proof for the
composition is given in Appendix I I .

Partially ordered time provid-s a more natural abstrac-
tion for parallel or distributed processing. For example, if
the processes D1 and 0, are executed on different proces-
sors, then theevents in D1 and D,can occur independently.
When time i s totally ordered, as in CSP and Behavior
models, sequencing between parallel or independent
events i s artificially induced. Tliis is evident in the speci-
fication of NET, and NET, wherc! only one input event can

DESHPANDE A N D KAVI: SPECIFICATION A N D VERIFICATION METHODS FOR PARALLEL PROGRAMS 1825

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

take place between the processes D, and D,. Also total
ordering of time implies that the underlying execution
model i s sequential. In the Scenario and Marking models,
the underlying model of execution is dataflow, which allows
for parallel execution. The Scenario model requires that the
causality relation between the events be specified. In large
systems, the number of events could be very large, making
it difficult to specify and track each relation. In the Marking
model, markings provide a concise way of defining caus-
ality relations. Also, synchronization of events can be rep-
resented by specifyingtheconditions underwhich an actor
(or graph) can fire. In the complete work [5], we present a
technique for decomposing large dataflow graphs into
smaller graphs, where the proof of the large graph can be
obtained from the proof of the smaller graphs. This is par-
ticularlyimportantwhiledealingwith proofofcomplexpar-
allel (and distributed) processing software.

IV. CONCLUSION

Testing of parallel programs i s inherently limited by the
number of test cases required. Formal specification and
verification present an alternative that can be used to rea-
son about programs and, prove properties of the programs

even before they are written. In this paper, we have pre-
sented trace-based models to characterize the behavior of
parallel programs. In CSP, time i s totally ordered and the
model of computation at the lowest level i s sequential. In
the Scenario model, time i s partially ordered but requires
enumeration of all the possible events, making it tedious
to handle in large systems. Also, no compositional proof
system is available. In the Behavior model, time i s totally
ordered but contains a compositional proof system. In the
Marking model, time i s partially ordered and provides a
compositional proof system. Currently work i s being done
to detect deadlocks and handle process termination, using
the Marking model.

Although the examples used here are simple, and
describe interactions between concurrent processes exe-
cuting on parallel processors, the formal methods pre-
sented here are applicable to functional verification of com-
putational description of the programs constituting the
concurrent processes.

APPENDIX I

Proof for thecomposition of NET, and NET, based on CSP.
The process Merge, when expanded for two inputs, has the
following behavior:

-+ k!v2 [I j ? v , -+ k!v, -+ n?u, -+ k!ul 0

n?u, -+ k!u, -+ n?u, + k!u, [I n?u, -+ k!u, -+ j?vl + k!v,)

D1 I / D? 1 1 Merge 1 1 Pl\{j , k , n)

= (i?vl -+ j!vl + j!vl) 11 (m?ul + n?ul + n!u,) / I
(j ? v l + k ! v , -+ j?v2 -+ k!v, [I j?vl -+ k!v, -+ n?u, + k!u, 0
n?u, -+ Mu, -+ n?u, + Mu, [I n?u, + Mu, + j?vl + k!v,) 1 1
(k?w, + l!wl -+ k?w2 + [!wz + Stop)\{ j , k , n }

(Matching the two outputs following events in channels i and rn, and concealing j , n)

= (i?vl -+ k!v, + k!v2 0 i?vl -+ k!vl -+ m?ul -+ k!ul [I

m?u, -+ k!u, -+ k!u, [I m?u, + k!u , -+ i?v, -+ k!v,) /I
(k?w, -+ [!wl -+ k?w, + 1!w2 + Stop)\{k}

(Matching the two outputs on channel k , and hiding the internal events)

= (;?VI -+ l!w, + 1!w2 + Stop 0 i?v, -+ [!Wl -+ [!w, -+ S top 0

m?ul -+ [!wl + [!w2 -+ Stop [I m?u, -+ l!w, -+ l!w2 -+ Stop)
-
- ((i?v, [I rn?u,) -+ l!wl -+ 1!w2 -+ Stop)

D, / I D, 1 1 Merge I / p2\{ j , k , n l

= (i?vl + j!vl + j!vl) / / (m?u, -+ n!u, -+ n!u,) II
(j?v l -+ k!v, + j?v, -+ k!v, 0 j ? v l + k!vl-+ n?u, -+ k!ul [I

n?u, -+ k!ul -+ n?u2 -+ k!u2 [I n?u, -+ k!ul + j?vl+ k!vl) I /
(k?w, -+ k?w, -+ l!w, -+ 1!w2 + Stop)\{ j , k , n }

(Matching the two outputs following events in channels i and m, and concealing j , n)

= (i?vl + k!v, + k!v, 0 i?v, + k!v, -+ m?ul -+ k!u, [I

m?u, + k!u, + k!u, 0 m?u, + k!u, + i?v, -+ k!v,) 1 1
(k?w, -+ k?w2 -+ [!wl -+ 1!w2 + Stop)\{k}

1826 PROCEEDINGS OF THE IEEE, VOL. 77, NO. 12, DECEMBER 1989

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

(Matching the two outputs on channel k , and hiding the internal events)

= (i?v, + l!wl + 1!w2 + Stop o i ? ~ , + [!w, (I 1!w2 + Stop 0

m?u1 + l!w, + 1!w2 --t Stop0 m?u, --$ l !w, --t l!w2 + Stop)

= ((i?v, 0 rn?u,) --t l!w, + l!w, + Stop)

APPENDIX II

Proof for composition of NET, and N€T, based on Mark-
ing model. Composition of DI, 0 2 , Merge and PI.

1st line of specification:
(i) If M(1,) z 1 and
1) M’(12) = M(12) + 2
2) M’(14) = 0
3) M”(15) = M’(15) -k 1
4) M”’(16) = M”(16) + 1
(ii) If M(13) 2 1 and M(1,) = 0
Similar to (i), with 12 and 14 interchanged.
(iii) If M(1,) z 1 and M(13) 2 1
5) M’(12) = M(l2) + 2
6) M’(14) = M(14) + 2
7) M”(15) = M’(15) + 1
8) M”’(1,) = M”(16) + 1
2nd line of specification:
9) M’&) = M(15) + 1
10) 15 = 12

11) 1 5 = 17
12) 16 = 11
3rd line of specification:
Similar to proof for 2nd line.
4th line of specification:
13) 1 2 c 17, 1,
14) 1 4 c 13, 13

15) t5 C merge(I.2, 14)
16) L5 C merge([L,, Ill, [I3,
17) l6 C merge& [,I, [13, 131)
18) 11~1 I 2
Composition of D,, D2, Merge and P 2 .
1st line of specification:
(i) If M(1,) 2 1 and M(1,) = 0
1) M I ,) = M(12) + 2

3) M”(15) = MY151 + 1
4) M”’(1,) = M”(\,) + 1

5) M”’(16) = M”(l6) + 2
(ii) If M(1,) 2 1 and M(1,) = 0
Similar to (i), with 1, and I4 interchanged.
(iii) If M(1,) z 1 and 2 1
6) M‘(12) = M(l2) + 2
7) M’(14) = M(14) + 2
8) M”(15) = M’(15) + 1
9) M”‘(1,) = M”(15) + 1
10) M”’(16) = M”(l6) + 1
2nd line of specification:
11) M’(l5) M(15) + 1 (8)
12) M”(1,) = M‘(15) + 1 (9)
13) 1 5 = 12, 1 2 From (I), (2) & Merge,

14) 1 5 = 1,t 1 2 From (IO) and D,, line 2
15) 16 = 11, 1, From (11) and P,, line 2

= 0
From DI, line 1
M(13) = 0
From Merge, line 1 & (1)
From PI & (3)

From D,, line 1
From D2, line 1
From Merge, line 3; (5) & (6)
From PI & (7)

From (1) & (2) or (5) & (6)
From (I), (2) and Merge,

From (I O) and D,, line 2
From (11) and PI, line 2

line 1

From D,, line 2
From D,, line 2
From Merge, line 4
From (1% (14) & (15)
From (16) & P,, line 2
From PI, line 2.

From D,, line 1

From Merge, line 1 & (1)
From Merge, line 1 & (1)

(M’(12) = 2)
From P, & (4)

2) M’(l4) = 0 M(13) = 0

From D,, line 1
From D,, line 1
From Merge, line 3; (6) & (7)
From Merge, line 3; (6), (7)
From P,, (8) & (9)

line 3

3rd line of specification:
Similar to proof for 2nd line.
4th line of specification:
16) 1 2 E 17, 1, Irom D,, line 2
17) 14 11, 1 3 -ram D2, line 2
18) 1, C mergdl,, 14) I rom Merge, line 4
19) l5 C merge([l,, 1,1, [I3, 131) +om (19, (16) & (17)
20) l6 5 merge([[,, [,I, [I3, I.,]) From (18) & P,, line 2
21) 5 2 From P,, line 2.

ACKNOWLEDGMENT

We would like to thank Arun P. Gupta, Francis J . Bush,
and Yojak Vasa for their help in Ixeparing this manuscript,
and the referees for their help in reviewing this article, and
for their suggestions.

REFERENCES

K. M. Chandy and J. Misra, Par illel Program Design: A Foun-
dation.
C. A. R. Hoare, Communicatin,; Sequential Processes. Lon-
don: Preptice-Hall Internation; I, 1985.
V. Nguyen, A. Demers, D. Cries. and S. Owicki, “A model and
temporal proof system for net Norks of processes,” Distrib.
Comput., vol. 1, no. 1, pp. 7-2!;, 1986.
J. D. Brock and W. B. Ackermar, “Scenarios: A model of non-
determinate computation,” in Int. Colloq. on Formalization
of Programming Concepts, pp. 252-259, 1981.
A. K. Deshpande, “A Dataflovi Approach to Program Cor-
rectness,” Ph.D. thesis, Dept. of Computer Science and Engi-
neering, UTA, Arlington, Texa!, in progress.
V. Pratt, ”On the compositioii of processes,” in Proc. 9th
Symp. Principles of Programming Languages, pp. 213-223, Jan.
1982.
C. A. R. Hoare, “Communic.1ting sequential processes,“
CACM, vol. 21, no. 8, pp. 666-1167, Aug. 1978.
E. W. Dijkstra, “Guarded corn nands, nondeterminacy, and
formal derivation of programs, ‘ CACM,vol. 18, no. 8, pp. 453-
457, Aug. 1975.
J. D. Brock, “A Formal Model I)f Non-Determinate Dataflow
Computation,” Ph.D. thesis, Cjept. of Electrical Engineering
and Computer Science, MIT, (Iambridge, Mass., Aug. 1983.
2. Manna and A. Pnueli, “Verification of concurrent pro-
grams: Temporal proof principles,” in Logics of Programs,
Lecture Notes in ComputerScit,nce, vol. 131. New York, NY:
Springer-Verlag, 1984.
K. M. Kavi, B. P. Buckles, and U. N. Bhat, ”A formal definition
of data flow graph models,” I !E€ Trans. Comput., vol. C-35,
no. 11, pp. 940-948, Nov. 1986

New York, NY: AddisinWesley Pub. Co., 1988.

Further Reading

The following are not referencc?d in the paper but provide
valuable sources for many of the concepts presented in the
paper.
- S. D. Brookes, ”A semantics a7d proof system for commu-

nicating processes,” in Lecturcb Notes in Computer Science,
vol. 164. New York, NY: Springer-Verlag, 1984.

- C. Hewitt and H. G . Baker, “Latgs for communicating parallel
processes,” in 1977lFlPCongress Proc., pp. 987-992, Aug. 1977.

- C. Kahn, “The semantics of a siinple language for parallel pro-
gramming,” in 1974 lf lP Congr2ss Proc., pp. 471-475, 1974.

- C. Kahn and D. B. MacQueen, “Coroutines and networks of
parallel processes,” in 1977 / F 1 3 Congress Proc., pp. 993-998,
Aug. 1977.

DESHPANDE A N D KAVI: SPECIFICATION A N D VERIFICATION METHODS FOK PARALLEL PROGRAMS 1827

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

- G. M. Levin and D. Cries, “A proof technique for commu-
nicating sequential processes,” Acta Informatica, pp. 281-302,
1981.

- Z. Manna and A. Pnueli, ”Verification of concurrent pro-
grams, Part I: The temporal framework,” in The Correctness
Problem in Cornputerscience, R. S. Boyer and J. S. Moore, Eds.
Int. Lecture Series in Computer Science. London: Academic
Press, 1981.

- J. Misraand K. M. Chandy, ”Proofs of networks of processes,”
IEEE Trans. Software Engineering, vol. SE-7, no. 4, pp. 417-426,
July 1981.

Akshay K. Deshpande (Member, IEEE) is cur-
rently a doctoral student at the University
of Texas at Arlington. He was assigned to
the IBM Thomas J. Watson Research Center
as a member of the co-operative student
program during the summers of 1985 and
1986. His research interests are in seman-
tics of programs, programming languages,
distributed systems, and computer archi-
tecture.

Mr. Deshaande is a student member of
the I E E E Computer Society and of ACM.

Krishna M. Kavi (Senior Member, IEEE)
received the B.E. degree in electrical engi-
neering from the Indian Institute of Sci-
ence, Bangalore, India, and the M.S. and
Ph.D. degrees in computer science from
Southern Methodist University, Dallas, TX.
He i s currently an Associate Professor in
Computer Science Engineering at the Uni-
versity of Texas at Arlington. Previously, he
was at the University of Southwestern Lou-
isiana, Lafayette. Hisareas of research inter-

est include computer systems arch’itecture (dataflow, object-based,
capability-based, and high-level language systems), performance
and reliability modeling of computer systems (using stochastic
dataflow and Petri nets), and distributed processing systems
(object-based operating systems, languages for distributed pro-
cessing, fault-tolerance).

Dr. Kavi serves as a member of the IEEE Computer Society Press
editorial board, and in the Society’s distinguished visitor and
Chapter tutorials programs. He is a member of ACM, Sigma Xi, and
Upsilon Phi Epsilon.

1828 PROCEEDINGS OF THE IEEE, VOL. 77, NO. 12, DECEMBER 1989

Authorized licensed use limited to: University of North Texas. Downloaded on July 27, 2009 at 15:00 from IEEE Xplore. Restrictions apply.

