
CLIPS: Customized Levels of IoT Privacy and Security

Rohith Yanambaka Venkata, Krishna Kavi

Computer Systems Research Lab
Dept. of Computer Science and Engineering

University of North Texas
Denton, Texas 76207, USA

Email: RohithYanambakaVenkata@my.unt.edu, Krishna.Kavi@unt.edu

Abstract—Internet of Things (IoT) refers to systems that can
be attached to the Internet and thus can be accessed and
controlled remotely. Such devices are essential for creating ”smart
things” like smart homes, smart grids, etc. IoT has achieved
unprecedented success. It offers an interconnected network where
devices (in the consumer space) can all communicate with each
other. However, many IoT devices only add security features as an
afterthought. This has been a contributing factor in many of the
recently reported attacks and warnings of potential attacks such
as those aimed at gaining control of autonomous cars. Many IoT
devices are compact and feature limited computing resources,
which often limits their ability to perform complex operations
such as encryption or other security and privacy checks. With
capabilities of devices in IoT varying greatly, a one-size-fits-all
approach to security can prove to be inadequate. We firmly
believe that safety and privacy should both be easy to use, present
little inconvenience for users of non-critical systems, yet be as
strong as possible to minimize breaches in critical systems. In
this paper, we propose a novel architecture that caters to device-
specific security policies in IoT environments with varying levels
of functionalities and criticality of services they offer. This would
ensure that the best possible security profiles for IoT are enforced.
We use a smart home environment to illustrate the architecture.

Keywords–Internet of Things (IoT); Software Defined Network-
ing (SDN); IoT Security.

I. INTRODUCTION

Internet of Things (IoT) refers to systems that can be
attached to the Internet and thus can be accessed and controlled
remotely. Such devices are essential for building ”smart things”
like smart homes, smart grids, etc. The proliferation of IoT has
been undeniably progressive and uninhibited.

The total investment in IoT is predicted to touch the $5
trillion mark in the next five years [1]. More specifically, a
recent market study shows that the market with the fastest
growing adoption rate is smart homes [2] with the market
predicted to generate $ 2.5 billion [2]. Consumers are choosing
to invest in IoT for convenient and comfortable lives [3].
Devices such as refrigerators, light bulbs and thermostats can
be controlled remotely, which can also result in power savings
and reduced operational costs [3].

With an industry as diverse and prevalent as smart homes,
security is paramount. Users like to be assured that the devices
they invested in are safe and cannot be attacked. Providing this
assurance, however, is not an easy task.

Securing network infrastructure often entails shutting ser-
vices down. For example, a widely accepted response to a
denial of service attack (DoS) is to shut down network services.

Ideally, securing the devices in a network should go a long way
toward ensuring the security of the network itself. Frequently,
companies enforce a uniform policy model (specific to a de-
partment or section). This compromises flexibility and control.
With a traditional networking model, control over the network
topology is limited. By leveraging Software Defined Network-
ing (SDN), fine-grained control over the network topology is
possible. A diverse network comprised of devices with varied
capabilities would be constrained by the device with the least
computational or networking abilities. For example, if one of
the security requirements is end-to-end network encryption, a
non-IP addressable device with minimal computational power
may be unable to enfforce such a requirement. We firmly
believe that security and privacy should both be easy to use,
present little inconvenience to users of non-critical systems,
yet be as robust as possible to minimize breaches.

A device-specific and user-selectable approach that caters
to the need of all devices in IoT is required. Security policies,
tailored to the network and computing capabilities of those
devices will result in a good IoT security posture. Otherwise,
users will either object to the privacy/security requirements or
undermine the security with default or weak security configu-
rations.

We propose a device-specific approach to security using
SDN that addresses the needs of individual classes/categories
of devices that are trying to access the LAN or WAN network
in a smart home. Such an approach to security provides
flexibility and control over device and network security.

The main contribution of this paper is an SDN administered
security framework that caters to device-specific protection
needs in IoT environments with varying levels of function-
alities and criticality of the services they offer.

This paper is organized as follows. We present our ar-
chitecture for enforcing device-specific security policies for
IoT devices in Section II. In Section III, we describe the
topology detailing the various threat protection and avoidance
schemes that are implemented in the architecture. We detail the
countermeasures in place against some of the most important
attacks targeting IoT in Section IV. Section V contains some
related work that is aligned with this research. Section VI
describes the configuration and set up of a prototype, followed
by conclusions.

II. ARCHITECTURE OVERVIEW

For the purpose of this paper, we use a smart home as an
example environment and illustrate how our architecture can

implement device-specific security and privacy policies. We
will describe individual components in this Section.

Comply to Connect (C2C) network access control

Access granted (Fully compliant devices)
Quarantine	VLAN

Partially	Non-compliant	
devices	will	be	subject	to	
remediationAccess Blocked:

Partially/Completely
Non-Compliant devices

Class	1 Class	2 Class	N

Figure 1. CLIPS architecture.

Figure 1 shows a high-level view of the proposed ar-
chitecture which consists of a single standalone device that
replaces a wireless router. The device hosts a secure trusted
environment to which the IoT devices connect to communicate
with each other, i.e., Machine to Machine (M2M) or to access
the Internet. The functions offered by our device are two-fold:

• Provide networking functionality using SDN.
• Provide a secure environment for device communica-

tion (M2M and access to the Internet).

A. Untrusted external networks
An untrusted network is one which provides no information

regarding data safety, the authenticity/identity of the commu-
nicating device, or the communication link itself. This is the
most common source for attacks on devices. We need to have
mechanisms in place in the smart home network to detect and
handle any attacks. The only sensible approach is to monitor
and filter traffic at the device itself. This is generally achieved
by configuring firewalls and intrusion detection systems to
monitor network traffic. Additional protection schemes are
discussed in Section III.

B. Trusted environment
A trusted environment is one where there is a good degree

of confidence in the integrity and confidentiality of the network
components (see Figure 2). The first level of defense in the
trusted environment is a set of Intrusion Detection Systems
(IDS) such as Snort and a firewall service. The final objective
is to enforce device (device class) specific security policies.
Kerberos provides all the authentication needs for network
communication. Additional policies are discussed later in this
Section.

1) Security policy manager: Device-specific security poli-
cies are stored in Linux containers which are assigned to each
category of IoT devices that may be present in a smart home
network. Once the device has been identified and grouped, the

Internet

Device Specific Security Function Containers

Security Policy Manager

Container 1 Container 2 Container N…

Kerberos
Server

Daemon
Process

IDS and Firewall
Services

SDN Controller

Open vSwitch

SiteWhere IoT Framework

Trusted
Environment Kerberos encryption

service

Figure 2. A closer look at the trusted environment.

corresponding container is invoked and the SDN controller
initiates a daemon process that runs in the background. This
daemon process is then tasked with invoking one of the
many device-class specific security function containers that are
either suspended or powered down. Powering down containers
minimizes the chances of corrupting the code of the container.
The container, once invoked, retrieves the required security
policies for the identified device. These rules are downloaded
onto the SDN controller via the northbound interfaces and the
security function container goes back to the suspended state or
powers down. The communication link between the container
and the SDN controller is encrypted.

The reason for the security policies residing in containers
and not configured into the SDN controller is to minimize
exposure of the policies to adversaries. When these policies
are configured onto the controller, the attackers may find an
exploit (in the source code) and gain access to the rules. If,
however, they were to reside in a sand-boxed environment, it
would make things much harder for them to be accessed, since
the policies are exposed to attacks only when the container
enforcing these polices is active.

2) IoT arbitrator: An IoT arbitrator resides in the trusted
environment and its responsibilities are to host the virtual
switch that the SDN controller communicates with (an SDN
controller can only communicate with switches and not the
devices themselves) and to host an IoT framework for low-
powered devices (constrained devices that are not IP accessi-
ble) to communicate with each other.

An IoT environment may be an amalgam of devices that
communicate using a variety of network protocols, each using
different MTUs (Maximum Transmission Unit). Hence, a
broker needs to mediate the communication between devices.
An example of an IoT framework is SiteWhere [4]. It provides
a framework to obtain, store, process and migrate data among
IoT devices, which happens through the MQTT (Message
Queue Telemetry Transport) protocol.

3) Open vSwitch: Once the policies for a specific class
of devices are downloaded onto the SDN controller, they
have to be conveyed to the respective switch. The SDN
controller maintains flow tables and controls the topology of
its assigned network. The controller contacts the OVS switch
(Open vSwitch) to which the devices in question are connected.

The appropriate flow table entries are made in the switch
and additional security policies are downloaded. Once this
is complete, the security policies that were downloaded onto
the SDN controller are wiped clean (to prevent attackers from
gaining access). The switch uses this newfound information to
forward the packets accordingly. Each class of devices will
have a designated IoT Arbitrator. In essence, the container
that hosts an IoT agent is only invoked when a device first
connects to the CLIPS security administrator and goes back
to the suspended state or powers off when no device of the
designated class is connected.

III. TOPOLOGY

Securing the Internet of Things is a complex process. A
one-size-fits-all approach is impractical given that IoT encom-
passes a wide variety of devices with varying capabilities.
Hence, a device (or device class) specific approach is needed.

A. Comply to Connect (C2C)

Comply to Connect (C2C) is described as a standards-based
approach to securing devices that connect to a network [5].
C2C consists of a pre-defined set of standards and security
profiles that a device must meet before its is permitted to access
the network. For example, an Android device trying to access
the network may be required to run OS version 6.0 with the
latest security patches before it can connect to the network.

Our implementation of C2C performs a series of checks on
the device trying to access the network. Some of the parameters
collected include the version of the OS, version of the kernel
currently running, security patches installed, ports currently
open, etc. Additional checks such as deep packet inspection
are performed to ensure that the device is secure and can
access the network. Each ’class’ of devices has a set of security
requirements which can be enforced by C2C. For example, all
mobile devices (such as tablets, smart phones, smart watches)
are expected to support network encryption and two-factor
authentication. Devices are first identified by the certificates
issued by an internal certification agent controlled by C2C.

If one or more checks fail, the devices are provided limited
access until security definitions are updated. If the devices are
deemed unfit to access the network until a major upgrade is
performed, they are quarantined in a VLAN.

Most of the vulnerabilities listed by OWASP for IoT
devices [6] can be prevented or addressed by C2C. At the top
of the list is Insecure Web Interface [6] which includes lack of
encryption. Use of plain text for storing passwords could lead
to issues such as cross-site scripting to inject malicious code
[6].

IoT devices are often targeted for DDoS attacks. A famous
example is the attack on Dyn’s DNS systems that brought
down popular services like Netflix and Facebook [7]. A ma-
jority of the vulnerabilities can be prevented by ensuring that
the recommended software/firmware and security patches are
installed and by ensuring that the encryption and authentication
schemes used are sufficiently strong. We intend to achieve
this through C2C. A brief description of the protection offered
against some other IoT attacks is discussed in Section IV.

B. Leveraging SDN to secure the IoT
Software defined networking is one of the most important

advances in networking in recent history. SDN has accelerated
the rate of connected devices [7]. We intend to leverage
SDN to ensure network security. Every class of devices has
a pre-defined set of security rules that are stored in Linux
containers assigned to them. When a device is first granted
access to the network by C2C, the appropriate container is
started, corresponding security rules present in the container
are downloaded onto the SDN controller via the Northbound
API and the container is placed in a suspended state to restrict
visibility to the external network.

The secondary objective of the containers is to perform ar-
bitration functions between the devices and the SDN controller,
which includes hosting an Open vSwitch with which the SDN
controller communicates. Not all security policies need to be
exposed to the devices themselves. For example, consider a
security policy requiring webcams to be placed under a NAT
for a secure (encrypted) network segment created specifically
for webcams. All the device needs to know is that the network
connection must be encrypted. Since the NAT functionality is
handled by the controller and does not rely on native support
from the device, it need not be advertised. The devices may
remain ignorant of the network topology.

With device manufacturers unwilling to offer security con-
figuration options for devices, ensuring security by enforcing
protection schemes at the devices themselves can be chal-
lenging. In fact, this is listed as number 8 in OWASP’s Top
10 Vulnerabilities in the IoT report [6]. We aim to address
this issue by employing an arbitration agent that mediates
operations between the controller and a device.

C. Integrity measurement using RADIUM

Other
Services

SDN
Controller

IoT
Arbitrator

Security
Function
Container

R.A.D.I.U.M
Integrity

Measuring
Service

[R.A.D.I.U.M] Access Control Policy Module

CPU TPM

Measure Integrity

Trusted Hypervisor

Trusted Hardware

Extended
Measurement

Ve
rif

ie
d

La
un

ch

Verified
Launch

Trusted Environment

A
synchronous R

oot of Trust
for M

easurem
ent

Figure 3. Integrity measurement using RADIUM.

RADIUM (Race-free On-demand Integrity Measurement
Architecture) is, as the name suggests, an architecture that
measures trustworthiness by providing on demand measure-
ment (of integrity and trustworthiness) of software compo-
nents. Figure 3 demonstrates this process. To ensure that
the measured components are trustworthy, they have to be
compared against some the integrity measurement in known
”good” state (such as when the component was first developed
or a trusted patch was made). This architecture was created
using research conducted at the University of North Texas [8].

RADIUM establishes a chain of trust between software
and the underlying hardware. This is achieved as follows. The
hardware is tasked with measuring the firmware, the firmware
is tasked with measuring the system software and the system
software measures the application [8]. One way to establish
the chain of trust is through Dynamic Root of Trust for
Measurement (DRTM). The idea is to create a secure, isolated
and measured environment for software to be executed (called
measured launch environment MLE) [8].

To initiate a virtualized environment, a hypervisor is the
primary component to be invoked. It is done so during the
system boot using DRTM. The bootloader is responsible for
invoking a DRTM MLE using a set of special instructions to
prepare an isolated execution environment [8]. The hypervisor
is then measured and compared to a previously known ”good”
value which is stored in the trusted platform module (TPM).
If everything checks out, the hypervisor is deemed trustworthy
and executed. The hypervisor then takes control of the platform
[8].

For the hypervisor to be mindful of the existence of a
measuring service, registration needs to take place. During
registration process, it is the responsibility of the measuring
service to provide all the ACPM rules for its own functioning
to the hypervisor. Also, the hypervisor measures the measuring
service itself and saves its ”good” value for future compar-
isons. The measuring service is encrypted and the key is stored
in the TPM.

Any virtual machine, that has to run on the hypervisor
needs to be registered with the hypervisor before executing.
During this registration, a set of policy rules are provided to
the hypervisor, which contain the ID of the measuring service
that can access the target virtual machine with the appropriate
permissions. The hypervisor registers the ID of the target
virtual machine and it will be invoked after it’s registration.

The simplest method to measure integrity is to store the
hash codes of the entire binary (for each software) in a
container. RADIUM is configured to compute hash codes at
regular intervals. The computed hash code is then compared
against the stored hash code. If everything checks out, RA-
DIUM measuring service goes back to a suspended state (or
is powered down) and is only invoked when a measurement is
again necessary. If there is a mismatch between the measured
and stored hashes, however, the application is run on an Intel
SGX enclave, which functions as a sandbox. The integrity of
the measuring service itself is ensured by the TPM that is
present along with the CPU.

All the containers that are invoked in the trusted environ-
ment run on a single hypervisor. This makes it a lot easier to
ensure their integrity and trustworthiness.

IV. IOT VULNERABILITIES AND ATTACK VECTORS

In this Section, we attempt to identify attack vectors for
IoT and describe our approach to addressing them. Nawir et.
al do a good job of tabulating and describing the taxonomy of
attacks targeting IoT [9].

1) Distributed Denial of Service (DDoS): On 21 October
2016, a large scale DDoS attack on Dyn’s DNS systems
resulted in popular services such as Netflix, Facebook and
Google becoming inaccessible [10]. The attack was perpetrated
using Mirai botnet that infected thousands of devices around

the world. Some 100,000 devices bombarded Dyn’s systems
with network traffic at 1.2 Tbps which is a new record [11].
The attackers used a simple brute force attack to infect var-
ious DVR players, smart televisions, refrigerators and CCTV
cameras using the default passwords that the products were
shipped with. The objective in this case was evident; to utilize
the popularity of IoT, the lack of sophistication or technical
literacy on the part of end users to infiltrate IoT devices to
sabotage networks.

We intend to address this issue by protecting devices
against brute force attacks by screening them through the C2C
architecture discussed in Section III-A. Assuring that they
are running the latest software with the appropriate security
patches installed will safeguard against a majority of the
vulnerabilities.

Ultimately, we intend to create a hierarchical and dis-
tributed SDN network segment that shares the network load.
This should add an additional layer of security against DDoS
attacks.

2) Ransomware attacks: The summer of 2017 saw the
emergence of the dreaded WannaCry ransomware which tar-
geted windows machines. The attack used an exploit in the
SMB transactions. When it gains access to a machine, the
worm encrypts the file system. The attackers then offer to
unlock the system in exchange for a ransom. Some 400,000
devices were affected around the world [12]. What is interest-
ing to note is that almost 98% of the devices affected by this
attack were running an outdated version of Windows 7.

An attack such as this would be catastrophic for IoT,
especially for business-critical systems or devices in the health
care domain, as evident from the ransomware attack on a
children’s hospital in Boston [13] where some personally
identifying patient records were deleted.

Our architecture has several safeguards in place to prevent
such attacks:

• C2C ensures that devices are running the latest soft-
ware and have the latest security patches installed.
Most ransomware attacks use an open port to inject
the encryption program. Oftentimes, the vulnerability
is already patched by the manufacturer of the product.
Hence, safeguarding against such attacks is a simple
matter of updating the software and security patches
on the devices.

• The RADIUM architecture ensures integrity of the
application.

• Anomaly detection ensures that suspicious activity on
the network will either invoke shutdown or contain-
ment protocols.

3) Man-in-the-Middle Attacks: Man-in-the-Middle attacks
involve an adversary impersonating a legitimate communica-
tion node in a network. A successful impersonation will result
in sensitive/confidential data being shared with the adversary
which leads to a breach or gaining access to a device. Li et. al
describe an approach using fog nodes that mediate between
servers and clients [14]. One of the countermeasures they
proposed was to modify package types in OpenFlow [14].

We intend to use RADIUM to establish a chain of trust
between software applications and the underlying hardware.
This ensures that a device is properly identified, authenticated

and monitored at all times in a network. Applications are run
in secure containers called Enclaves, which an illegitimate user
would be unable to access because each process would have
its own trusted environment with integrity being measured by
RADIUM.

4) Spoofing Attacks: An adversary may be able to mas-
querade as a legitimate user/entity in a network by spoofing
IP addresses, ARP entries or MAC addresses. Preventing such
attacks is easier than detecting them. Xiao et. al proposed a
method of identifying spoofing using reinforcement learning
in wireless networks [15]. The spoofing detection algorithm
aims to identify spoofing attacks using Q learning [15].

We intend to prevent spoofing attacks by employing a few
protection schemes:

• We aim to prevent IP spoofing by employing packet
filtering that is usually achieved by configuring a
firewall and IDPS (Intrusion Detection and Prevention
System). We use the signature matching algorithm
proposed by Meng et. al [16], but we replace the pre-
filtering of packets with access control through the
C2C architecture. The challenge is to ensure that these
systems are properly configured, so we follow Cisco’s
guide to best firewall configuration practices [17].

• We employ encryption during device authentication
and communication to overcome vulnerabilities aris-
ing as a result of the design of the TCP suite.

• We are exploring the advantages offered by IPv6 in
securing network communication.

• Preventing MAC spoofing may be somewhat challeng-
ing in a Smart home because most embedded devices
with limited capabilities are not IP addressable and
do not possess a MAC address. Consequently, the
arbitration agent has to spoof MAC addresses for
such devices. Our approach to preventing malicious
spoofing does not rely on authenticating by MAC
addresses. Rather, device certificates that are validated
by an internal certification authority are used by the
C2C architecture to control and moderate access to
the network.

We have focused on some of the most important vulnerabilities
in IoT for a Smart home setting to highlight the capabilities
of our proposed architecture. We have not considered physical
side channel attacks because we have assumed that the users
have suitable measures in place to ensure that no unauthorized
person may gain physical access to devices in such a setting.

V. RELATED WORK

Flaunzac et al. proposed a distributed SDN architecture
aimed at preventing DDoS attacks [18]. The objective is to
authenticate network devices and ensure that only services that
the authenticated user is permitted to access are allowed. A
distributed SDN architecture contains border controllers that
negotiate security policies with neighboring domains [18]. Our
proposed architecture can help counter some of the shortcom-
ings of Flaunzac’s approach.

• The definition of security policies is optimized to the
network domain in which the devices reside and not
to the devices themselves. This may not be the ideal
approach to securing a diverse set of devices with

varying capabilities. This is not an ideal approach
because this architecture can be subject to TOCTOU
(Time of Check to Time of Use) attacks. We intend
to prevent these using RADIUM.

• Integrity measurement is not implemented in the archi-
tecture which exposes it to man-in-the-middle attacks.
We have a robust integrity measurement architecture
in place to address this.

• It may be unsafe to expose security policies by
defining them at the border controller. Instead, we
package them into Linux containers that are always in
a suspended state and are only started when required.

• There is no pre-screening of devices before they
connect to the network. A major portion of the vulner-
abilities that exist are a result of outdated software and
security patches which, when updated, will mitigate
those risks.

Agarwal et. al proposed an architecture using edge comput-
ing [19] that is very similar to the one proposed by Flaunzac
et al [18]. The idea is to compartmentalize networks into
zones with each zone being controlled by a gateway controller.
Security is enforced by authenticating a device and collecting
TCP (Transmission Control Protocol) dumps to perform Deep
Packet Inspection [19]. An analysis of the packets determines
if a device is safe to be granted permission to proceed to the
next hop in the flow entry [19]. The process continues at every
hop. Our proposed architecture employs a C2C architecture
that performs pre-screening of devices and recommends fixes
which should address a majority of the vulnerabilities. Deep
packet inspection and authentication of devices is a subset
of all security policies we enforce through our proposed
architecture.

Most of the solutions we reviewed focus on enforcing
network security by controlling the flow table in SDN. The
solution proposed by Bull et al. is also a similar approach
[20]. The idea is for a controller to detect malicious activity
by constantly monitoring network flow in an SDN network.
If a suspicious activity is detected, the data is forwarded to a
quarantine zone where further processing of the packet occurs
[20]. This is somewhat similar to other anomaly detection
schemes employed by Brocade and Rackspace [20].

VI. PROTOTYPE

A proof of concept prototype of CLIPS was developed in
the Computer Systems Research Lab (CSRL) at the University
of North Texas. The test environment contains the following
components.

• A Netgear W3800 running OpenWRT functions as
a data plane. The control plane (routing brains) of
the router has been disabled by creating a virtual
bridge using Open vSwitch which renders the device
incapable of performing routing operations.

• The Open vSwitch is connected to a Floodlight SDN
controller running on a Linux machine. The controller
interfaces with the virtual switch using OpenFlow. All
networking operations are performed by the controller
and communicated to the switch.

The router, functioning as a wireless access point, helps deploy
a local network to host the CLIPS architecture. The wireless
SDN network is set up using the WiFISDN project [21].

Ideally, from a security standpoint, direct communication
between devices (bypassing the SDN controller) should not
be permitted, but the only way to achieve this is by disabling
machine to machine M2M communication. This can prove to
be counter-productive because the objective of this research
is to secure the network without placing heavy restrictions on
normal use of services.

To work around this issue, we enabled wireless isolation,
which prevents devices on the same network from communi-
cating with each other [21]. This forces additional processing
of network packets. Additional OpenFlow rules are required
to permit communication. Hence, security policies can be
designed around wireless isolation. For example, eliminate
communication between a refrigerator and a light bulb to keep
non-essential communication to a minimum. This reduces the
attack vector for DDoS attacks and enables simpler network
analysis and anomaly detection.

Before a device connects to the CLIPS network, the user
is expected to register it and install the required certificates.
In this prototype, we have designed security policies for a
microwave oven and a refrigerator using SiteWhere [4]. For a
refrigerator to first connect to a network, the user is expected
to authenticate it using a password. The bandwidth of the com-
munication channel for a refrigerator is limited using the QoS
parameters of Floodlight and no communication is permitted
with a microwave oven. On the other hand, when a microwave
oven first connects to the network, an authentication code is
sent to a registered phone number. This code, in addition to a
password, will serve as the authentication token. A microwave
is permitted to communicate with a refrigerator and it is
offered the lowest bandwidth in the network due to potential
ramifications from its exploit.

The prototype demonstrated that this approach to security
offers flexibility and control over the entire network topology.
In addition, the architecture does not place unreasonable re-
quirements on a novice user and has proved to be fairly user
friendly. We are currently working on identifying, designing
and deploying appropriate security policies in similar IoT
environments.

VII. CONCLUSION

In this paper, we have outlined the issues of a generic
approach to IoT security. As more devices with unique features
and capabilities become increasingly popular, tailored security
policies must be adopted.

We have argued for a more meticulous, fine-grained ap-
proach to securing IoT devices by leveraging SDN. We have
proposed a novel architecture where devices are evaluated to
certify that they are competent to access the network, classified
into categories based on security policy requirements, and
continuously monitored for suspicious behavior.

We have demonstrated and validated the idea using a Net-
gear W3800 running OpenWRT and OpenVSwitch connected
to an SDN network hosted by a Floodlight controller. We found
that such an approach greatly enhances the security of a home
network and ensures that such devices cannot be exploited by
DDoS attacks. The focus of our approach has been a balanced
one in regards to convenience and security. As illustrated, an
overly aggressive approach could prove to be detrimental and a
highly accommodating one could leave devices open to attacks.

The challenge is to find the right balance and we would like to
believe that we have found such an approach for IoT security.

ACKNOWLEDGMENT

The authors would like to acknowledge the editorial contri-
butions of Mr. David Struble, former Senior Software Technol-
ogist at Raytheon’s Net-Centric Systems Division. This work is
supported in part by the NSF Net-Centric and Cloud Software
and Sytems Industry/University Cooperative Research Center
and its industrial members, including Lockheed Martin Missile
and Fire Control and Ashum Corp.

REFERENCES

[1] “The Internet of Things 2017 Report: How the IoT is
Improving Lives to Transform the World,” 2017, URL:
http://www.businessinsider.com/the-internet-of-things-2017-report-
2017-1 [accessed: 2017-05-04].

[2] “The 10 Most Popular Internet of Things Applications Right Now,”
2015, URL: https://iot-analytics.com/10-internet-of-things-applications/
[accessed: 2017-06-23].

[3] “How IoT & Smart Home Automation Will Change the Way We
Live,” 2016, URL: http://www.businessinsider.com/internet-of-things-
smart-home-automation-2016-8 [accessed: 2017-05-21].

[4] “Sitewhere IoT Framework,” 2017, URL: http://www.sitewhere.org/
[accessed:2017-06-16].

[5] “Comply to Connect Solution Overview,” 2012, URL :
https://trustedcomputinggroup.org/comply-connect-solution-overview/
[accessed:2017-06-10].

[6] “The Open Web Application Security Project,” 2017, URL:
https://www.owasp.org/index.php/ [accessed: 2017-03-20].

[7] “DDoS attack that disrupted internet was largest
of its kind in history, experts say,” 2016, URL:
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-
dyn-mirai-botnet [accessed: 2017-03-26].

[8] S. Kotikela, M. Gomathisankaran, T. Shah and G. Taban, “Race free on
demand integrity measurement architecture,” International Conference
on Privacy Security Risks and Trust (PASSAT) ASE., 2014.

[9] M. Nawir and A. Amir and N. Yaakob and O. B. Lynn, “Internet
of Things (IoT): Taxonomy of security attacks,,” in 3rd International
Conference on Electronic Design (ICED), August 2016, pp. 321–326.

[10] “Dyn Analysis Summary Of Friday October 21 Attack,” 2016,
URL: https://dyn.com/blog/dyn-analysis-summary-of-friday-october-
21-attack/ [accessed: 2017-05-13].

[11] “Lessons From the Dyn DDoS Attack,” 2016, URL:
https://securityintelligence.com/lessons-from-the-dyn-ddos-attack/
[accessed: 2017-06-2].

[12] “WannaCry Ransomware Statistics: The Numbers Behind the Out-
break,” 2017, URL: https://blog.barkly.com/wannacry-ransomware-
statistics-2017 [accessed: 2017-05-06].

[13] “Children’s Clinic Hit by Ransomware,” 2016, URL:
http://www.healthcareitnews.com/news/childrens-clinic-hit-ransomware
[accessed: 2017-03-22].

[14] C. Li, Z. Qin, E. Novak and Q. Li, “Securing sdn infrastructure of
iot-fog network from mitm attacks,” IEEE Internet of Things Journal,
vol. PP, no. 99, 2017, pp. 1–1.

[15] L. Xiao and Y. Li and G. Han and G. Liu and W. Zhuang, “Phy-layer
spoofing detection with reinforcement learning in wireless networks,”
IEEE Transactions on Vehicular Technology, vol. 65, no. 12, December
2016, pp. 10 037–10 047.

[16] W. Meng, W. Li and L. F. Kwok, “Towards effective trust-based packet
filtering in collaborative network environments,” IEEE Transactions on
Network and Service Management, vol. 14, no. 1, March 2017, pp.
233–245.

[17] “Cisco Firewall Best Practices Guide,” 2017, URL:
http://www.cisco.com/c/en/us/about/security-center/firewall-best-
practices.html [accessed: 2017-06-13].

[18] O. Flauzac and C. Gonzlez and A. Hachani and F. Nolot, “SDN Based
Architecture for IoT and Improvement of the Security,” in 2015 IEEE
29th International Conference on Advanced Information Networking
and Applications Workshops, March 2015, pp. 688–693.

[19] C. Aggarwal and K. Srivastava, “Securing IOT devices using SDN and
edge computing,” in 2nd International Conference on Next Generation
Computing Technologies (NGCT), October 2016, pp. 877–882.

[20] P. Bull, R. Austin, E. Popov, M. Sharma and R. Watson, “Flow
Based Security for IoT Devices Using an SDN Gateway,” in IEEE
4th International Conference on Future Internet of Things and Cloud
(FiCloud), August 2016, pp. 157–163.

[21] “Software-Defined Wi-Fi Networks with Wireless Isolation,” 2017,
URL: https://wiki.helsinki.fi/display/WiFiSDN/Software-Defined+Wi-
Fi+Networks+with+Wireless+Isolation [accessed: 2017-04-12].

