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Abstract — While higher associativities are common at L-2 or 
Last-Level cache hierarchies, direct-mapped and low 
associative caches are still used at L-1 level. Lower 
associativities result in higher miss rates, but have fast access 
times on hits. Another issue that inhibits cache performance is 
the non-uniformity of accesses exhibited by most applications: 
some sets are underutilized while others receive the majority 
of accesses. Higher associative caches mitigate access non-
uniformities, but do not eliminate them.  This implies that 
increasing the size of caches or associativities may not lead to 
proportionally improved cache hit rates.  

Several solutions have been proposed in the literature over the 
past decade to address the non-uniformity of accesses; and 
each proposal independently claims improvements. However, 
because the published results use different benchmarks and 
different experimental setups, it is not easy to compare them. 
In this paper we report a side-by-side comparison of these 
techniques. The conclusion of our work is that, each 
application may benefit from a different technique and no 
single scheme works universally well for all applications. Our 
research is investigating the use of multiple techniques within 
a processor core and across cores in multicore system to 
improve the performance of cache memory hierarchies. The 
study reported in this paper allows us to select best possible 
solutions for each running application. In this paper, we have 
included some preliminary results of using multiple solutions 
simultaneously when running multiple threads. 

Keywords-Cache Memories; Cache Indexing; Non-Uniformity of 
Cache Accesses; Performance Improvement; 

I.  INTRODUCTION  
In this paper we report a comprehensive study of techniques 
to improve uniformity of cache accesses and minimize 
cache conflicts. The approaches can be classified into two 
groups. 

• Architectural modifications to improve cache uniformity, 
which include Adaptive cache, B-cache, and Column 
associative cache. We call this group as Programmable 
Associativities. 

• Cache indexing functions to uniformly distribute accesses 
across cache sets, which include XOR, odd-multiplier, 
prime-modulo and a techniques proposed by Givargis [6].  

The purpose of this paper is to evaluate schemes that fall in 
one of these two categories. While several of these 
techniques have been reported in the literature over the past 
decade, the published results use different benchmarks and 
different experimental setups and it is not easy to compare 

them. In this paper we report a side-by-side comparison of 
these techniques.   

In conventional direct mapped caches the next data item 
whose memory address index bits map to that line evicts 
data stored in cache line. Set associative caches mitigate 
such evictions by employing several cache lines per each 
set. However set-associative caches incur higher access 
latencies when compared direct-mapped caches.  

Several researchers (for example, [6], [8], [11], [13]) have 
reported that accesses to cache memories are non-uniform: 
not all cache sets are equally accessed and the heavily 
accessed sets lead to most of the conflict misses and thus to 
poor performance. Consider for example Figure 1, which 
shows the accesses to the L-1 data cache for the FFT 
Mibench program (X-axis corresponds to cache line number 
and Y-axis corresponds to the number of cache accesses). 
The graph shows that a small number of sets are heavily 
accessed while a majority of sets are under-utilized. About 
90.43% of the cache sets get less than half of the average 
accesses while 6.641% get twice the average accesses.  
Spreading the cache accesses more uniformly across all 
cache sets may reduce the conflict misses. Higher 
associativities mitigate the non-uniformity of accesses, but 
do eliminate them. The non-uniformity is even more 
detrimental to shared caches in multicore and multi-
threaded systems.  
 
The work by [16] reduces conflict misses in direct and set-
associative caches by adjusting the placement of a program 
procedures. They propose 2 approaches: the intermediate 
block profile (IBP) algorithm, which is dependent on the 
processors' cache configuration and the neutral procedure 
placement, which is independent of the cache specifications. 
The procedure placement algorithms aim to reduce conflict 
misses caused by procedure switching. More specifically, 
the algorithm iterates through all the hot procedures and 
selects the displacement value that yields the highest 
benefit. Liang [16] also proposed a cache locking 
mechanism to improve instruction cache performance. The 
temporal reuse distance mechanism employed assesses the 
benefit of locking each block address. In order to identify 
lock-worth block addresses extra instructions are inserted at 
the end of the program however, the cost of executing these 
instructions are negligible. 
 
Ghosh [17] propose an algorithm for efficiently determining 
the cache parameters that would improve performance. This 

2011 International Conference on Parallel Processing

0190-3918/11 $26.00 © 2011 IEEE
DOI 10.1109/ICPP.2011.12

31



approach is useful in embedded applications where the 
applications being run is known.   
 
We previously observed ([1], [8]) that the degree of non-
uniformity is application dependent. In some benchmarks, 
even if most accesses fall to a small number of sets, most of 
these accesses are hits (as in Figure 1). Thus a single 
technique will not address the needs of all applications and 
different solutions are needed for different applications. 
Fortunately several different techniques are available and 
we compare these techniques in this paper. 
 
 
 

 
Figure 1 Non-Uniform Cache Accesses for Mibench 

benchmark FFT 
 
This data can be used to explore the idea of using different 
indexing schemes for each thread or application when they 
are running concurrently in multithreaded and multicore 
processors. In this paper we include preliminary results of 
multiple indexing techniques for SMT like multithreaded 
systems.  
 
1.1. Optimal Indexes.  
 
Mapping an address to a cache set relies on the use of a 
portion of the address. Consider an address space of 2N 
bytes (i.e., N address bits), and a cache with 2n lines of 2b 
bytes (for a capacity of 2n+b bytes). We will use m bits out 
of the N address bits to locate a set with k lines (k-way 
associative), where m = {n- log2(k)} ; and use b additional 
bits to locate a byte, leaving (N-m-b) bits as the tag. In 
traditional caches we use lower-end m index bits, defining 
modulo 2m hashing (Figure 2) 
 

 
 

Figure 2: Cache Address Mapping 

A more general view treats this process as finding a hash 
function that maps a given key (representing the specified 
address) to a bucket in which the data may (or may not) be 
found. Cache access uniformity can be improved by finding 
a “perfect hash function” by using different m bits of the 
address for set index (or the bucket to store data). The size 
of the bucket will determine the set-associativity: not all 
buckets need to be of the same size. 
 
It should be noted that finding a perfect hash function (i.e., 
selecting address bits representing the hash function) is NP-
complete [6]. In the Section 2 we will present several 
heuristics for computing cache indexes.  
 
1.2. Dynamic relocation of addresses (or programmable 
associativity).  
As stated previously higher associativities can lead to more 
uniform utilization of a cache and reduce its conflict misses. 
In pseudo-associative caches [10], the cache is viewed first 
as a direct mapped cache – by mapping an address to a 
specific cache line. If the desired element is not found, the 
cache is then viewed as 2-way associative and the second 
element of the set is searched. This approach provides a 
higher associativity only when needed. Consider the 
following variation to pseudo associativity (Figure 3). 
 
We add two fields to traditional caches: L and Partner Index 
(V is the traditional Valid bit). The L field indicates if the 
cache line is associated with another and the Partner index 
identifies the second cache line. We can select less 
frequently used (or cold) cache lines as partners to more 
frequently used (or hot) cache lines. We can either use 
profiling, or dynamically match cache lines as partners by 
keeping count of accesses and/or misses to each set. In 
principle we can extend the “partner index” idea to create a 
linked list of cache lines, effectively increasing the set-
associativity for selected “hot” sets. Of course, the longer 
the list, the more cycles are expended in finding the desired 
object. While this approach offers a great deal of flexibility, 
the solution can be costly because of the extra bits in cache, 
and added cycles to find desired data.  
 

 
Figure 3: Programmable Associativity 

 
Other implementations can achieve similar goals with 
restricted flexibility. We will describe two such techniques 
in Section 3. It should be noted, however, most of these 
techniques incur additional cycles on a miss in the primary 
location, to locate the item in a secondary location. 
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II. OPTIMAL CACHE INDEXING SCHEMES 
Traditional cache addressing methods use the lower order 
address bits as an index into the cache, as described in the 
previous section (see Figure 2).  In this section we describe 
several techniques for selecting optimal indexing. 
 

A. Givargis 
Givargis [6] relies on address traces resulting from a 

program execution. From the traces, the unique addresses 
accessed by the program are identified. Two measures are 
defined with address bits of the unique addresses. The 
quality of a bit as an index depends on how often the bit 
takes the value of zero and one. High quality implies that the 
bit takes zero and one values equally across all the (unique) 
addresses accessed by the program. The correlation metric 
identifies the correlation between a pair of bits -- there is a 
high correlation if the two bits either take the same value or 
complementary values in all the addresses. Bits with the 
largest quality values and low correlation are selected until 
all the m bits needed to index 2m cache sets are identified  

The first step in the algorithm is to calculate the quality 
value Qi for each address bit. The quality value is calculated 
as follows: 

                    Q i=
min (Z i ,O i )
max ( Z i ,O i)

.                              (1) 

Here Zi and Oi denote the number of times bit i takes the 
values of zero and one respectively, among all unique 
addresses in the trace. The maximum value for Qi is 1. The 
correlation between bits i and j is computed as follows: 

              C i,j=
min ( Ei,j ,D i,j)
max (E i,j ,D i . j )

.                              (2)  

Where Eij and Dij denotes the number of times bits i and j 
have identical or different, respectively. 

A correlation matrix describes all pairwise correlations. 
The bit with the highest quality value is selected and the dot 
product between the quality value vector and the correlation 
for the selected bit is computed. The next high quality bit is 
then selected and the correlation vectors are updated, and 
this process is repeated until the required number of index 
bits are selected.  

 

B. Prime Modulo 

Unlike the Givargis approach, which relies on address traces, 
the Prime Modulo technique [7] utilizes a different hashing 
function without regard to specific address traces. In Prime 
modulo hashing, the set to which a given address maps is 
computed using modulo of a prime number (instead of using 
the number of sets for computing the index as done in 
conventional caches).  

 Cache Index = Address modulo p         (3) 

The prime number p is selected such that it is less than or 
equal to the number of cache sets. There are several 
drawbacks with this hashing scheme. It is expensive to 
implement in hardware given the prime modulo arithmetic. 
The computation is likely to take several cycles. Cache 
fragmentation occurs because not all the sets in the cache 
will be utilized. However, with larger caches the 
fragmentation is not significant.  

C. Odd-Multiplier Displacement 
In odd-multiplier [7], a multiple of tag value is added to 
traditional index bits, and modulo arithmetic is applied to the 
resulting value – the modulo depends on the number of sets, 
as with traditional caches. 

     Cache Index = ( p*Ti + Ii) Mod s           (4) 

 Here p is the odd integer uses as the multiplier, Ti is tag and 
Ii is the index of the address; s is the number of cache sets. 

This function is based on hashing functions in [5] and is 
related to Raghavan and Hayes’s RANDOM-H functions 
[12].The choice of the odd-multiplier determines the 
performance of this technique. The authors recommend 
using 9, 21, 31, and 61 as multipliers. 

D. Exclusive-OR Hashing 
In exclusive-or hashing [7], the set index bits are exclusive-
OR-ed with selected bits chosen form the tag portion of the 
address.  

       Cache Index = (ti XOR Ii) Mod s       (5)  

Here ti is a portion of the tag and Ii is the index of address 
(the number of tag bits selected is equal to the number of 
index bits). 

The Exclusive-Or operation reduces conflicts as follows: 
when the set index bits are the same for two different 
addresses, at least one of the tag bits will be different for the 
addresses. When tag bits are exclusive-or-ed with index bits, 
the conflicting addresses will be mapped to different cache 
sets. However, this may cause conflicts with other addresses. 
Since caches exhibit non-uniform accesses patterns, XOR 
technique has the potential to reduce conflicts at heavily 
accessed sets. 

E. Givargis-XOR 
We propose a hybrid technique that combines Givargis’ 
approach with the XOR indexing. We select high quality and 
low correlation tag bits using Givargis’ approach and then 
Exclusive-Or these bits with index bits before finding a 
cache set.  

F. Optimal Indexes 

Patel [9] exhaustively searches for the index bit 
combinations that results in the least number of conflict 
misses for a memory trace. To obtain the cost for a given 
index combination we simply sum the conflict pattern (CP) 
for all addresses in the trace as described below. 
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Cost = CPi
i=0

L!1

"           (6) 

Here L is the length of the entire trace file, the CPi for an 
address is the Boolean condition, which includes all 
possible conflict conditions between an address and its 
successors in the trace. CPi can be computed by OR-ing all 
the direct conflict patterns (DCP’s) relative to address ai 
and its successors DCPik. 

         DCPi,k= ∧ k= 1,nγk∗ y'k                       (7) 

The direct conflict pattern between 2 addresses ai and aj can 
be represented as the Boolean condition for which ai and aj 
would map to the same cache set.  

III. PROGRAMMABLE ASSOCIATIVITY 
In principle, a fully associative cache with a perfect 
replacement policy will access all cache lines uniformly, 
because data can be placed anywhere in the cache. However, 
fully associative caches with perfect replacement policies are 
not realistic and only serve as a theoretical lower bound for 
cache miss rates. In this section we describe some techniques 
that increase the effective associativities for cache lines that 
incur higher misses, without increasing the associativity of 
the entire cache.  

A. Column-associative Cache 
In column-associative (or pseudo-associative) caches [2], the 
cache is viewed first as a direct mapped cache – by mapping 
an address to a specific cache line. If the desired element is 
not found, the cache is then viewed as 2-way associative and 
the second element of the set is searched. The alternate 
location is obtained by complementing the most significant 
bit of the index. When there is a miss in both locations, the 
data residing in the original index location is moved to the 
alternate location, instead of being evicted and the rehash bit 
of the alternate set is set to 1. When a direct miss occurs in a 
set whose rehash bit is set to one, new data is written into 
that set and the rehash bit is reset to zero, indicating that it is 
indexed conventionally. 

B. Adaptive Group Associative Cache 
In Adaptive-cache [11], conflicting data items are relocated 
to new sets by using two tables. SHT (Set-reference History 
Table) keeps only the set indexes corresponding to Most 
Recently Used (MRU) sets. The OUT (Out-of-position 
directory) maintains indexes selected from Least Recently 
Used (LRU) for items evicted from MRU sets. When an 
access to the cache occurs, the OUT directory is accessed in 
parallel with the cache. If the data is in the cache, the set 
history table SHT is updated for MRU status. If however, the 
data is not present in the cache, the OUT directory is 
accessed to see if an entry in this structure matches the tag of 
the address referenced; then the OUT table provides the 
cache index of the alternate location that contains the address 

referenced. The data may be swapped between the primary 
cache location (based on direct mapped index) and the 
alternate location stored in OUT to improve future access 
latencies.  The OUT directory is updated to reflect the new 
set holding data corresponding to the tag. To simplify cache 
management a disposable or d bit is maintained for each 
cache block to indicate whether a block should be evicted or 
kept in an alternate location. The OUT table is not consulted 
when the disposable bit is set. On a miss, the data residing in 
a block is simply replaced if the disposable bit is set. 
However, if the disposable bit is reset, then an alternate 
block has to be identified to hold the data that would 
otherwise be evicted from the cache. If the OUT directory 
has empty slots then a nearby disposable line is used to hold 
the data. The OUT directory is then updated with this new 
entry. On the other hand if the OUT directory is full then the 
least-recently used slot in the OUT directory is used. The 
disposable bit of the entry is reset and the tag of the data 
being evicted to an alternate location is stored in the OUT 
directory. The SHT is updated on every access to maintain 
the table of MRU sets. The performance of this technique 
depends on the number of entries in SHT and OUT tables. 
Based on empirical results, possible sizes for the SHT and 
OUT are 3/8 and 4/16 of the number of lines in the direct 
mapped cache. 

This technique can be viewed as selective victim caching 
[14] since not every evicted data is place in the victim cache; 
only victims belonging to MRU sets. 

C. B-Cache 
Zhang’s B-cache [13] reduces accesses to frequently missed 
sets and increases the accesses to less active sets. In this 
method, we will extend normal index bits with additional 
bits. The combined index bits are divided into 
Programmable (PI) and Non-Programmable Index Bits 
(NPI). NPI work as traditional index bits while 
programmable index bits work as associative matching. 
While the potential associativity possible is given by 2PI, B-
caches uses a subset of combinations resulting from PI bits. 
One can select different combinations possible with PI bits 
in order to increase associativity with some indexes (or NPI 
combinations) and restrict other indexes to fixed locations. 
Thus it is possible to selectively increase associativity for 
highly utilized sets. The length of the programmable and 
non-programmable index is determined by the mapping 
factor (MF) and B-cache associativity (BAS), as expressed 
below. 

            MF =
2PI + NPI

2OI .                                   (6)    

Here OI (original index) is the number of index bits in the 
direct-mapped cache, PI and NPI are the number of 
programmable and non-programmable bits. The B-cache 
associativity (BAS) determines how the cache is partitioned 
into clusters. 
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 BAS =
2OI

2NPI .                            (7)                          

In this paper, we compare the techniques presented in this 
section and the previous section. We will also explore hybrid 
techniques that combine indexing methods (Section 2) with 
programmable associativities. 

IV. EXPERIMENTAL METHODOLOGY AND RESULTS 
In this evaluation we use MiBench benchmarks (we are 
currently repeating our experiments with SPEC as well as 
HPC applications). We use SimpleScalar tool-set to simulate 
different cache configurations [4]. SimpleScalar is a cycle 
accurate processor simulator that supports out-of-order issue 
and execution. All the benchmarks used are compiled for the 
Alpha Instruction-set-architecture. We simulated an out-of-
order processor and collected the miss rates and accesses per 
set to assess the uniformity achieved with the schemes 
discussed in this paper.  

The cache configuration used in the simulations is as 
follows:  32kB direct mapped L1 data and instruction caches 
with 32 byte blocks. We used a unified L2 cache with 256kB 
and an LRU replacement policy. The baseline configuration 
against which all the schemes are compared is a direct-
mapped cache with 1024 sets and 32 bytes a line, using 
traditional 10 bit indexes (i.e., modulo 1024 hashing). 

The sizes of OUT and SHT tables for the Adaptive cache are 
3/8 and 4/16 of the number of cache sets respectively. The 
replacement policy used in our B-cache implementation is 
LRU. 

A. Comparing Cache Indexing Schemes 
We not only explore the performance improvement attained 
by the schemes described in this paper, but we also evaluate 
the non-uniformity of cache accesses. We did not evaluate 
Patel’s indexing scheme because of the intractability of the 
computations needed to find optimal indexes. In this section 
we show the results comparing Givargis, Odd multiplier, 
Prime modulo and XOR schemes for Mibench benchmarks.  

Figure 4 shows the percentage reduction in cache misses 
achieved using these techniques, when compared to 
conventional cache indexing. A negative value indicates that 
the use of a given indexing function increases cache miss-
rate when compared to traditional directly-mapped cache. 
Figure 4 shows that none of the techniques perform 
consistently well. On average, Givargis' technique displays 
the worst performance among the techniques studied in this 

paper. In using Givargis’ method, we did not use bits from 
byte-offsets to find high quality index bits. Ignoring these 
bits appear to impact the performance. Thus for smaller 
cache blocks (say 8-bytes), fewer bits are ignored in finding 
index bits, and Givargis’s method appears to show better 
performance for such caches, but perform poorly for caches 
with wider cache lines (say with 32 or 64 bytes). 

Figure 4: Cache miss rates for different indexing methods 

While this study indicates that none of the techniques 
consistently outperform traditional modulo indexing, some 
specific applications benefit from a specific indexing 
scheme, such as odd-multiplier, prime-modulo or XOR 
schemes.  Some indexing schemes are ideal for some 
applications and reduce performance for others. Also XOR 
and Givargis’s approache require minimal hardware 
extensions. 

One of our research goals is to explore multiple indexing 
schemes within a single cache system as shown in Figure 5. 
Applications can be profiled off-line to determine the 
indexing scheme that yields fewer misses. The default will 
use conventional indexes. During the execution of an 
application, system will be set to use the chosen indexing 
scheme. We will show some preliminary results of using 
multiple indexing schemes for multithreaded applications 
later in this paper. 
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Figure 5: Proposed design to select optimal indexing 
scheme depending on the application. 

B. Comparing Programmable Associativity Schemes 
Figure 6 show the percentage reduction in miss-rates 

achieved by the techniques discussed in Section 3 (labeled as 
programmable associativities) when compared to traditional 
direct mapped caches for Mibench benchmarks. While 
column-associative cache shows higher improvements for 
most applications, all three techniques show reduction in 
cache misses. It has been observed [13] that the B-Cache as 
implemented here achieves the same miss rates as an 8-way 
associative cache, while using a direct-mapped cache.  The 
B-cache posts the smallest performance improvements for 
all the Mibench applications evaluated.  

Since some of the methods compared require longer access 
times (including searching in alternate locations), we 
compared the average memory access times for these 
schemes. The adaptive cache incurs 3 extra cycles if there is 
a a miss in primary cache set and a hit in the OUT-directory. 
This is due to the additional cycles used to search the out-
directory and for the second cache lookup of that entry. 
Consequently, the hit-time is split into two fractions, one for 
direct hit to the cache and the other for hits in the OUT-
directory. The formula used to compute the average memory 
access-time for the adaptive-cache is given below. 

     (8) 

In the case of a column associative cache, the hit-time and 
the miss-penalty are comprised of 2 different components. 
Similar to the adaptive cache, a hit during the first lookup of 
the cache incurs 1 cycle, a hit in the second cache lookup 
incurs 2 cycles.  

 

 

 

Figure 6. Cache miss rates for different programmable 
associative techniques 

The same is true for the miss-penalty, the miss-penalty 
during the rehash lookup incurs one additional cycle-time. 
The rehash-bit ensures that the rehash lookup occurs less 
frequently, since it uniquely identifies cache lines, which 
have been rehashed. The formula below shows the AMAT 
calculation for a column associative cache.       

 
 

   (9) 

 

 

Figure 7. Percent reduction in average memory access-times 
when compared to a directly mapped cache. 

AMATAdaptiveCache= (FractionofDirectHits× 1cycle )+ ((1− FractionofDirectHits)× 3cycles)

+ (MissRate× MissPenalty )

AMATColumnAssociativeCache= (FractionofRehashHits× 2cycles )+ ((1− FractionofRehashHits )× 1cycles )

+ ((FractionofRehashMisses× MissRate)× (MissPenalty+ 1))
+ (((1− FractionofRehashMisses)×MissRate )× MissPenalty )
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For some benchmarks, for example bit-count, CRC and 
quick-sort, the performance improvements are negligible. 
These benchmarks access all cache sets uniformly and there 
are very few conflict misses that can be eliminated by 
Column Associative, Adaptive or B-Caches.  

 
We explored a modification of the column-associative 
cache, where non-conventional indexing schemes are used 
as the initial index into the cacahe. More specifically, we 
compared the column-associative cache using traditional 
indexing for non-programmable indexes and using 
Exclusive-OR, Prime-Modulo and Odd-Multiplier 
techniques. Figure 8 shows the percentage reduction (or 
increase) in misses resulting from the various indexing 
schemes when compared to a column-associative cache.  
From the figure, pairing the column-associative cache with 
odd-multiplier indexing scheme shows the most 
improvement in performance. For some benchmarks the 
performance detilorates when non conventional indexing 
schemes are used like with Calaculix and Sjeng. 

 
 

Figure 8. Reduction in miss-rates when XOR, Odd-
multiplier and Prime-modulo indexing schemes are used as 

the primary index to a column-associative cache. 
 

C. Cache Uniformity 
While results so far show some improvements in terms of 
miss rates, and average memory access times, we also 
wanted to explore the uniformity of cache accesses 
achieved by these various techniques. Zhang [13] measured 
uniformity by computing the percentage of sets that are 
“Frequently Hit (FHS)”, “Frequently Missed (FMS)”, and 
“Least-Accessed (LAS)”. A set is FHS if it received at least 

two times the average number of hits; a set is FMS if it 
received at least twice the average number of misses and a 
set is LAS if it received less than half the average number 
of accesses. In order to more formally describe the behavior 
of cache access patterns, we convert the accesses, hits and 
misses into probability distributions. We can then measure 
various statistical values known as central moments. Most 
commonly used moments are: mean (first moment) and 
standard deviation (second moment). Higher moments 
describe the shape of the distribution. We use two such 
moments in this paper.   

 

D. Skewness and Kurtosis 
Skewness (third central moment) is a measure of symmetry, 
or more precisely, the lack of symmetry. A distribution, or 
data set, is symmetric if it looks the same to the left and 
right of the center point (mean). If the left tail is more 
pronounced than the right tail, the function is said to have 
negative skewness. If the reverse is true, it has positive 
skewness.  
Kurtosis (fourth central moment) is a measure of whether 
the data is peaked or flat relative to a normal distribution. 
That is, data sets with high Kurtosis tend to have distinct 
peaks and long tails. This also indicates very few values 
near the peaks. Data sets with low Kurtosis tend to have a 
flat top near the mean rather than sharp peaks. A uniform 
distribution would be the extreme case with zero Kurtosis. 
For our purpose, a highly non-uniform behavior results in a 
high Kurtosis, while a more uniform access behavior leads 
to lower Kurtosis. 

 
In order to better assess the uniformity achieved across the 
sets using these schemes, we computed the kurtosis and 
skewness of misses in each of the 1024 sets (we did not 
report these statistical measures for hits, since non-uniform 
hits do not cause performance penalties). The results are 
shown in Figures 9-12. An increase in Kurtosis and 
skewness indicate that the technique actually excasberated 
the non-uniform behavior of cache misses. A reduction of 
Kurtosis and Skewness indicates that the technique 
improved uniformity of misses to different cache sets. The 
figures show that while the different indexing techniques 
(viz., Givargis, Prime Modulo, Odd-Multiplier, XOR) 
improve uniformity of misses for some programs, the 
improvement is not significant. These techniques actully 
increase the non-uniformity for some benchmarks. 
However, the programmable associativity techniques (viz., 
Adaptive and B-Caches) show significant improvements in 
unformities of misses (reduced Kurtosis and Skewness). 
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Figure 9: Kurtosis of Misses for Different Indexing 

Schemes 
Figure 10. Skewness of Misses for Different Indexing  

Schemes 

 
Figure 11. Kurtosis of Misses for Different Programmable 

Associativities 
 
 

 
 
 
 

 
Figure 12. Skewness of Misses for Different Programmable 

Associativity Schemes 
 
E. Multiple Indexing Schemes 
 
In this section we show some preliminary results of using 
different indexing techniques with different threads in a 
multithreaded system. We use M-Sim to simulate SMT like 
multithreaded system. We evaluated the reduction in cache 
misses when 2 concurrent threads are executing, with each 
thread using a different indexing schemes. In our initial 
experiments we used odd multiplier technique (see Section 
2) with different multipliers for each thread. Figure 13 
shows the results. 
 

 
 

Figure 13. Multiple Indexing Schemes in Multithreaded 
Systems 

 
The figure shows significant reductions in cache misses 
when different indexing schemes are use with each of the 
two threads (the two names listed with each bar). 
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We also explored how the Adaptive caches can benefit 
multithreaded systems. In this experiment we divided the 
cache equally among the two threads. But we used Pier’s 
SHT and OUT tables so that lightly used sets in one 
partition could be used to place displaced data from the 
other partition, thus increasing the cache sizes available to 
each thread adaptively. Figure 14 shows the results. 

 
 

Figure 14. Percent reduction in AMAT for multithreaded 
applications using the adaptive partitioned scheme 

 
 

V. CONCLUSION 
 

Two classes of techniques have been evaluated in this work. 
Techniques that employ non-traditional hash functions to 
index into the cache and programmable associativity 
techniques. Indexing techniques incur much lower 
implementation overhead, with regards to area and 
complexity. In general XOR performs well and incurs 
minimal hardware extensions. Still all indexing techniques, 
unlike programmable associativity techniques, are static; as 
they do not adjust dynamically to a given applications 
memory access pattern. As a result the performance of cache 
indexing schemes vary significantly with the applications 
memory access behavior. 

Programmable associativity schemes on the other hand, 
results in much better improvements in performance. In 
evaluating the merits of these programmable associativity 
schemes the performance impact of the overhead incurred by 
these techniques have to be taken into account. In addition, 
the hardware costs have to also be evaluated. The adaptive 
cache yields performance improvements however, it has 
significant hardware overhead that are introduced in order to 
assess cache set utilization in hardware and leverage this 
information to achieve better uniformity. The simplest of the 
programmable associativity schemes is the column 

associativity cache, which moved to-be evicted blocks to an 
alternate location. Unlike the adaptive-cache and the B-
cache, the column associative cache does not rely on an in-
depth analysis of the cache behavior, but naively addresses 
the uniformity problem. However, it posts the greatest 
reduction in AMAT when compared to the other 
programmable associativity schemes. 

We also introduced a technique to improve the performance 
of multithreaded applications. This technique improves 
performance by combining the benefits of thread isolation 
with the ability to identify less-frequently accessed sets and 
divert traffic away from frequently accessed sets. 
Experiments show that this scheme can reduce the AMAT in 
applications by 60% for some multi-threaded applications.  
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