
Evaluation of Techniques to Improve Cache Access Uniformities

Izuchukwu Nwachukwu, Krishna Kavi, Fawibe Ademola and Chris Yan
University of North Texas

Denton, Texas, USA
{iun0001, krishna.kavi, ademolafawibe, chrisyan}@unt.edu

Abstract — While higher associativities are common at L-2 or
Last-Level cache hierarchies, direct-mapped and low
associative caches are still used at L-1 level. Lower
associativities result in higher miss rates, but have fast access
times on hits. Another issue that inhibits cache performance is
the non-uniformity of accesses exhibited by most applications:
some sets are underutilized while others receive the majority
of accesses. Higher associative caches mitigate access non-
uniformities, but do not eliminate them. This implies that
increasing the size of caches or associativities may not lead to
proportionally improved cache hit rates.

Several solutions have been proposed in the literature over the
past decade to address the non-uniformity of accesses; and
each proposal independently claims improvements. However,
because the published results use different benchmarks and
different experimental setups, it is not easy to compare them.
In this paper we report a side-by-side comparison of these
techniques. The conclusion of our work is that, each
application may benefit from a different technique and no
single scheme works universally well for all applications. Our
research is investigating the use of multiple techniques within
a processor core and across cores in multicore system to
improve the performance of cache memory hierarchies. The
study reported in this paper allows us to select best possible
solutions for each running application. In this paper, we have
included some preliminary results of using multiple solutions
simultaneously when running multiple threads.

Keywords-Cache Memories; Cache Indexing; Non-Uniformity of
Cache Accesses; Performance Improvement;

I. INTRODUCTION
In this paper we report a comprehensive study of techniques
to improve uniformity of cache accesses and minimize
cache conflicts. The approaches can be classified into two
groups.

• Architectural modifications to improve cache uniformity,
which include Adaptive cache, B-cache, and Column
associative cache. We call this group as Programmable
Associativities.

• Cache indexing functions to uniformly distribute accesses
across cache sets, which include XOR, odd-multiplier,
prime-modulo and a techniques proposed by Givargis [6].

The purpose of this paper is to evaluate schemes that fall in
one of these two categories. While several of these
techniques have been reported in the literature over the past
decade, the published results use different benchmarks and
different experimental setups and it is not easy to compare

them. In this paper we report a side-by-side comparison of
these techniques.

In conventional direct mapped caches the next data item
whose memory address index bits map to that line evicts
data stored in cache line. Set associative caches mitigate
such evictions by employing several cache lines per each
set. However set-associative caches incur higher access
latencies when compared direct-mapped caches.

Several researchers (for example, [6], [8], [11], [13]) have
reported that accesses to cache memories are non-uniform:
not all cache sets are equally accessed and the heavily
accessed sets lead to most of the conflict misses and thus to
poor performance. Consider for example Figure 1, which
shows the accesses to the L-1 data cache for the FFT
Mibench program (X-axis corresponds to cache line number
and Y-axis corresponds to the number of cache accesses).
The graph shows that a small number of sets are heavily
accessed while a majority of sets are under-utilized. About
90.43% of the cache sets get less than half of the average
accesses while 6.641% get twice the average accesses.
Spreading the cache accesses more uniformly across all
cache sets may reduce the conflict misses. Higher
associativities mitigate the non-uniformity of accesses, but
do eliminate them. The non-uniformity is even more
detrimental to shared caches in multicore and multi-
threaded systems.

The work by [16] reduces conflict misses in direct and set-
associative caches by adjusting the placement of a program
procedures. They propose 2 approaches: the intermediate
block profile (IBP) algorithm, which is dependent on the
processors' cache configuration and the neutral procedure
placement, which is independent of the cache specifications.
The procedure placement algorithms aim to reduce conflict
misses caused by procedure switching. More specifically,
the algorithm iterates through all the hot procedures and
selects the displacement value that yields the highest
benefit. Liang [16] also proposed a cache locking
mechanism to improve instruction cache performance. The
temporal reuse distance mechanism employed assesses the
benefit of locking each block address. In order to identify
lock-worth block addresses extra instructions are inserted at
the end of the program however, the cost of executing these
instructions are negligible.

Ghosh [17] propose an algorithm for efficiently determining
the cache parameters that would improve performance. This

2011 International Conference on Parallel Processing

0190-3918/11 $26.00 © 2011 IEEE
DOI 10.1109/ICPP.2011.12

31

approach is useful in embedded applications where the
applications being run is known.

We previously observed ([1], [8]) that the degree of non-
uniformity is application dependent. In some benchmarks,
even if most accesses fall to a small number of sets, most of
these accesses are hits (as in Figure 1). Thus a single
technique will not address the needs of all applications and
different solutions are needed for different applications.
Fortunately several different techniques are available and
we compare these techniques in this paper.

Figure 1 Non-Uniform Cache Accesses for Mibench

benchmark FFT

This data can be used to explore the idea of using different
indexing schemes for each thread or application when they
are running concurrently in multithreaded and multicore
processors. In this paper we include preliminary results of
multiple indexing techniques for SMT like multithreaded
systems.

1.1. Optimal Indexes.

Mapping an address to a cache set relies on the use of a
portion of the address. Consider an address space of 2N
bytes (i.e., N address bits), and a cache with 2n lines of 2b
bytes (for a capacity of 2n+b bytes). We will use m bits out
of the N address bits to locate a set with k lines (k-way
associative), where m = {n- log2(k)} ; and use b additional
bits to locate a byte, leaving (N-m-b) bits as the tag. In
traditional caches we use lower-end m index bits, defining
modulo 2m hashing (Figure 2)

Figure 2: Cache Address Mapping

A more general view treats this process as finding a hash
function that maps a given key (representing the specified
address) to a bucket in which the data may (or may not) be
found. Cache access uniformity can be improved by finding
a “perfect hash function” by using different m bits of the
address for set index (or the bucket to store data). The size
of the bucket will determine the set-associativity: not all
buckets need to be of the same size.

It should be noted that finding a perfect hash function (i.e.,
selecting address bits representing the hash function) is NP-
complete [6]. In the Section 2 we will present several
heuristics for computing cache indexes.

1.2. Dynamic relocation of addresses (or programmable
associativity).
As stated previously higher associativities can lead to more
uniform utilization of a cache and reduce its conflict misses.
In pseudo-associative caches [10], the cache is viewed first
as a direct mapped cache – by mapping an address to a
specific cache line. If the desired element is not found, the
cache is then viewed as 2-way associative and the second
element of the set is searched. This approach provides a
higher associativity only when needed. Consider the
following variation to pseudo associativity (Figure 3).

We add two fields to traditional caches: L and Partner Index
(V is the traditional Valid bit). The L field indicates if the
cache line is associated with another and the Partner index
identifies the second cache line. We can select less
frequently used (or cold) cache lines as partners to more
frequently used (or hot) cache lines. We can either use
profiling, or dynamically match cache lines as partners by
keeping count of accesses and/or misses to each set. In
principle we can extend the “partner index” idea to create a
linked list of cache lines, effectively increasing the set-
associativity for selected “hot” sets. Of course, the longer
the list, the more cycles are expended in finding the desired
object. While this approach offers a great deal of flexibility,
the solution can be costly because of the extra bits in cache,
and added cycles to find desired data.

Figure 3: Programmable Associativity

Other implementations can achieve similar goals with
restricted flexibility. We will describe two such techniques
in Section 3. It should be noted, however, most of these
techniques incur additional cycles on a miss in the primary
location, to locate the item in a secondary location.

TAG INDEX BYTE OFFSET

TAG V L Partner
Index

DATA

2 332 662 992
35
68
101
134
167
200
233
266
299 365

398
431
464
497
530
563
596
629 695

728
761
794
827
860
893
926
959

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

C ache	
 S ets

A
cc

es
se

s	

P
er
	
 C

ac
he

	
 S
et

32

II. OPTIMAL CACHE INDEXING SCHEMES
Traditional cache addressing methods use the lower order
address bits as an index into the cache, as described in the
previous section (see Figure 2). In this section we describe
several techniques for selecting optimal indexing.

A. Givargis
Givargis [6] relies on address traces resulting from a

program execution. From the traces, the unique addresses
accessed by the program are identified. Two measures are
defined with address bits of the unique addresses. The
quality of a bit as an index depends on how often the bit
takes the value of zero and one. High quality implies that the
bit takes zero and one values equally across all the (unique)
addresses accessed by the program. The correlation metric
identifies the correlation between a pair of bits -- there is a
high correlation if the two bits either take the same value or
complementary values in all the addresses. Bits with the
largest quality values and low correlation are selected until
all the m bits needed to index 2m cache sets are identified

The first step in the algorithm is to calculate the quality
value Qi for each address bit. The quality value is calculated
as follows:

 Q i=
min (Z i ,O i)
max (Z i ,O i)

. (1)

Here Zi and Oi denote the number of times bit i takes the
values of zero and one respectively, among all unique
addresses in the trace. The maximum value for Qi is 1. The
correlation between bits i and j is computed as follows:

 C i,j=
min (Ei,j ,D i,j)
max (E i,j ,D i . j)

. (2)

Where Eij and Dij denotes the number of times bits i and j
have identical or different, respectively.

A correlation matrix describes all pairwise correlations.
The bit with the highest quality value is selected and the dot
product between the quality value vector and the correlation
for the selected bit is computed. The next high quality bit is
then selected and the correlation vectors are updated, and
this process is repeated until the required number of index
bits are selected.

B. Prime Modulo

Unlike the Givargis approach, which relies on address traces,
the Prime Modulo technique [7] utilizes a different hashing
function without regard to specific address traces. In Prime
modulo hashing, the set to which a given address maps is
computed using modulo of a prime number (instead of using
the number of sets for computing the index as done in
conventional caches).

 Cache Index = Address modulo p (3)

The prime number p is selected such that it is less than or
equal to the number of cache sets. There are several
drawbacks with this hashing scheme. It is expensive to
implement in hardware given the prime modulo arithmetic.
The computation is likely to take several cycles. Cache
fragmentation occurs because not all the sets in the cache
will be utilized. However, with larger caches the
fragmentation is not significant.

C. Odd-Multiplier Displacement
In odd-multiplier [7], a multiple of tag value is added to
traditional index bits, and modulo arithmetic is applied to the
resulting value – the modulo depends on the number of sets,
as with traditional caches.

 Cache Index = (p*Ti + Ii) Mod s (4)

 Here p is the odd integer uses as the multiplier, Ti is tag and
Ii is the index of the address; s is the number of cache sets.

This function is based on hashing functions in [5] and is
related to Raghavan and Hayes’s RANDOM-H functions
[12].The choice of the odd-multiplier determines the
performance of this technique. The authors recommend
using 9, 21, 31, and 61 as multipliers.

D. Exclusive-OR Hashing
In exclusive-or hashing [7], the set index bits are exclusive-
OR-ed with selected bits chosen form the tag portion of the
address.

 Cache Index = (ti XOR Ii) Mod s (5)

Here ti is a portion of the tag and Ii is the index of address
(the number of tag bits selected is equal to the number of
index bits).

The Exclusive-Or operation reduces conflicts as follows:
when the set index bits are the same for two different
addresses, at least one of the tag bits will be different for the
addresses. When tag bits are exclusive-or-ed with index bits,
the conflicting addresses will be mapped to different cache
sets. However, this may cause conflicts with other addresses.
Since caches exhibit non-uniform accesses patterns, XOR
technique has the potential to reduce conflicts at heavily
accessed sets.

E. Givargis-XOR
We propose a hybrid technique that combines Givargis’
approach with the XOR indexing. We select high quality and
low correlation tag bits using Givargis’ approach and then
Exclusive-Or these bits with index bits before finding a
cache set.

F. Optimal Indexes

Patel [9] exhaustively searches for the index bit
combinations that results in the least number of conflict
misses for a memory trace. To obtain the cost for a given
index combination we simply sum the conflict pattern (CP)
for all addresses in the trace as described below.

33

Cost = CPi
i=0

L!1

" (6)

Here L is the length of the entire trace file, the CPi for an
address is the Boolean condition, which includes all
possible conflict conditions between an address and its
successors in the trace. CPi can be computed by OR-ing all
the direct conflict patterns (DCP’s) relative to address ai
and its successors DCPik.

 DCPi,k= ∧ k= 1,nγk∗ y'k (7)

The direct conflict pattern between 2 addresses ai and aj can
be represented as the Boolean condition for which ai and aj
would map to the same cache set.

III. PROGRAMMABLE ASSOCIATIVITY
In principle, a fully associative cache with a perfect
replacement policy will access all cache lines uniformly,
because data can be placed anywhere in the cache. However,
fully associative caches with perfect replacement policies are
not realistic and only serve as a theoretical lower bound for
cache miss rates. In this section we describe some techniques
that increase the effective associativities for cache lines that
incur higher misses, without increasing the associativity of
the entire cache.

A. Column-associative Cache
In column-associative (or pseudo-associative) caches [2], the
cache is viewed first as a direct mapped cache – by mapping
an address to a specific cache line. If the desired element is
not found, the cache is then viewed as 2-way associative and
the second element of the set is searched. The alternate
location is obtained by complementing the most significant
bit of the index. When there is a miss in both locations, the
data residing in the original index location is moved to the
alternate location, instead of being evicted and the rehash bit
of the alternate set is set to 1. When a direct miss occurs in a
set whose rehash bit is set to one, new data is written into
that set and the rehash bit is reset to zero, indicating that it is
indexed conventionally.

B. Adaptive Group Associative Cache
In Adaptive-cache [11], conflicting data items are relocated
to new sets by using two tables. SHT (Set-reference History
Table) keeps only the set indexes corresponding to Most
Recently Used (MRU) sets. The OUT (Out-of-position
directory) maintains indexes selected from Least Recently
Used (LRU) for items evicted from MRU sets. When an
access to the cache occurs, the OUT directory is accessed in
parallel with the cache. If the data is in the cache, the set
history table SHT is updated for MRU status. If however, the
data is not present in the cache, the OUT directory is
accessed to see if an entry in this structure matches the tag of
the address referenced; then the OUT table provides the
cache index of the alternate location that contains the address

referenced. The data may be swapped between the primary
cache location (based on direct mapped index) and the
alternate location stored in OUT to improve future access
latencies. The OUT directory is updated to reflect the new
set holding data corresponding to the tag. To simplify cache
management a disposable or d bit is maintained for each
cache block to indicate whether a block should be evicted or
kept in an alternate location. The OUT table is not consulted
when the disposable bit is set. On a miss, the data residing in
a block is simply replaced if the disposable bit is set.
However, if the disposable bit is reset, then an alternate
block has to be identified to hold the data that would
otherwise be evicted from the cache. If the OUT directory
has empty slots then a nearby disposable line is used to hold
the data. The OUT directory is then updated with this new
entry. On the other hand if the OUT directory is full then the
least-recently used slot in the OUT directory is used. The
disposable bit of the entry is reset and the tag of the data
being evicted to an alternate location is stored in the OUT
directory. The SHT is updated on every access to maintain
the table of MRU sets. The performance of this technique
depends on the number of entries in SHT and OUT tables.
Based on empirical results, possible sizes for the SHT and
OUT are 3/8 and 4/16 of the number of lines in the direct
mapped cache.

This technique can be viewed as selective victim caching
[14] since not every evicted data is place in the victim cache;
only victims belonging to MRU sets.

C. B-Cache
Zhang’s B-cache [13] reduces accesses to frequently missed
sets and increases the accesses to less active sets. In this
method, we will extend normal index bits with additional
bits. The combined index bits are divided into
Programmable (PI) and Non-Programmable Index Bits
(NPI). NPI work as traditional index bits while
programmable index bits work as associative matching.
While the potential associativity possible is given by 2PI, B-
caches uses a subset of combinations resulting from PI bits.
One can select different combinations possible with PI bits
in order to increase associativity with some indexes (or NPI
combinations) and restrict other indexes to fixed locations.
Thus it is possible to selectively increase associativity for
highly utilized sets. The length of the programmable and
non-programmable index is determined by the mapping
factor (MF) and B-cache associativity (BAS), as expressed
below.

 MF =
2PI + NPI

2OI . (6)

Here OI (original index) is the number of index bits in the
direct-mapped cache, PI and NPI are the number of
programmable and non-programmable bits. The B-cache
associativity (BAS) determines how the cache is partitioned
into clusters.

34

 BAS =
2OI

2NPI . (7)

In this paper, we compare the techniques presented in this
section and the previous section. We will also explore hybrid
techniques that combine indexing methods (Section 2) with
programmable associativities.

IV. EXPERIMENTAL METHODOLOGY AND RESULTS
In this evaluation we use MiBench benchmarks (we are
currently repeating our experiments with SPEC as well as
HPC applications). We use SimpleScalar tool-set to simulate
different cache configurations [4]. SimpleScalar is a cycle
accurate processor simulator that supports out-of-order issue
and execution. All the benchmarks used are compiled for the
Alpha Instruction-set-architecture. We simulated an out-of-
order processor and collected the miss rates and accesses per
set to assess the uniformity achieved with the schemes
discussed in this paper.

The cache configuration used in the simulations is as
follows: 32kB direct mapped L1 data and instruction caches
with 32 byte blocks. We used a unified L2 cache with 256kB
and an LRU replacement policy. The baseline configuration
against which all the schemes are compared is a direct-
mapped cache with 1024 sets and 32 bytes a line, using
traditional 10 bit indexes (i.e., modulo 1024 hashing).

The sizes of OUT and SHT tables for the Adaptive cache are
3/8 and 4/16 of the number of cache sets respectively. The
replacement policy used in our B-cache implementation is
LRU.

A. Comparing Cache Indexing Schemes
We not only explore the performance improvement attained
by the schemes described in this paper, but we also evaluate
the non-uniformity of cache accesses. We did not evaluate
Patel’s indexing scheme because of the intractability of the
computations needed to find optimal indexes. In this section
we show the results comparing Givargis, Odd multiplier,
Prime modulo and XOR schemes for Mibench benchmarks.

Figure 4 shows the percentage reduction in cache misses
achieved using these techniques, when compared to
conventional cache indexing. A negative value indicates that
the use of a given indexing function increases cache miss-
rate when compared to traditional directly-mapped cache.
Figure 4 shows that none of the techniques perform
consistently well. On average, Givargis' technique displays
the worst performance among the techniques studied in this

paper. In using Givargis’ method, we did not use bits from
byte-offsets to find high quality index bits. Ignoring these
bits appear to impact the performance. Thus for smaller
cache blocks (say 8-bytes), fewer bits are ignored in finding
index bits, and Givargis’s method appears to show better
performance for such caches, but perform poorly for caches
with wider cache lines (say with 32 or 64 bytes).

Figure 4: Cache miss rates for different indexing methods

While this study indicates that none of the techniques
consistently outperform traditional modulo indexing, some
specific applications benefit from a specific indexing
scheme, such as odd-multiplier, prime-modulo or XOR
schemes. Some indexing schemes are ideal for some
applications and reduce performance for others. Also XOR
and Givargis’s approache require minimal hardware
extensions.

One of our research goals is to explore multiple indexing
schemes within a single cache system as shown in Figure 5.
Applications can be profiled off-line to determine the
indexing scheme that yields fewer misses. The default will
use conventional indexes. During the execution of an
application, system will be set to use the chosen indexing
scheme. We will show some preliminary results of using
multiple indexing schemes for multithreaded applications
later in this paper.

adpcm
bas icmath

bitc ount
c rc

dijk s tra
fft

pa tric ia
qs ort

rijndael
s ha

s us an
A verage

-­‐20.00

0.00

20.00

40.00

60.00

80.00

100.00

120.00

0.
0

82
.9

0.
0

0.
0

-­‐3
.9

86
.1

-­‐9
2.
6

-­‐1
05

.9

-­‐3
02

.2

96
.5

0.
0

-­‐2
1.
7

0.
0

71
.5

0.
0

10
0.
0

-­‐0
.8

78
.4

14
.0

-­‐6
1.
8 6.
5

98
.2

-­‐1
6.
1

26
.4

0.
0

13
.0

0.
0

-­‐1
20

0.
0

-­‐2
4.
0

90
.6

-­‐2
0.
7

-­‐9
1.
2

93
.5

40
.4

3.
2

-­‐9
9.
6

-­‐5
00

00
00

00
.0

14
.6

0.
0

0.
0

0.
0

-­‐3
.1

-­‐3
42

.1

-­‐5
.9

-­‐3
77

.3

98
.2

0.
0

-­‐4
54

54
60

1.
4

X OR Odd_Multiplier P rime_Modulo G iv a rg is G iv a rg is _X or

MIbench	
 Benchmarks

%
	
 R

ed
uc

tio
n	

in
	
 M

is
s-­‐
R
at
e

35

Figure 5: Proposed design to select optimal indexing
scheme depending on the application.

B. Comparing Programmable Associativity Schemes
Figure 6 show the percentage reduction in miss-rates

achieved by the techniques discussed in Section 3 (labeled as
programmable associativities) when compared to traditional
direct mapped caches for Mibench benchmarks. While
column-associative cache shows higher improvements for
most applications, all three techniques show reduction in
cache misses. It has been observed [13] that the B-Cache as
implemented here achieves the same miss rates as an 8-way
associative cache, while using a direct-mapped cache. The
B-cache posts the smallest performance improvements for
all the Mibench applications evaluated.

Since some of the methods compared require longer access
times (including searching in alternate locations), we
compared the average memory access times for these
schemes. The adaptive cache incurs 3 extra cycles if there is
a a miss in primary cache set and a hit in the OUT-directory.
This is due to the additional cycles used to search the out-
directory and for the second cache lookup of that entry.
Consequently, the hit-time is split into two fractions, one for
direct hit to the cache and the other for hits in the OUT-
directory. The formula used to compute the average memory
access-time for the adaptive-cache is given below.

 (8)

In the case of a column associative cache, the hit-time and
the miss-penalty are comprised of 2 different components.
Similar to the adaptive cache, a hit during the first lookup of
the cache incurs 1 cycle, a hit in the second cache lookup
incurs 2 cycles.

Figure 6. Cache miss rates for different programmable
associative techniques

The same is true for the miss-penalty, the miss-penalty
during the rehash lookup incurs one additional cycle-time.
The rehash-bit ensures that the rehash lookup occurs less
frequently, since it uniquely identifies cache lines, which
have been rehashed. The formula below shows the AMAT
calculation for a column associative cache.

 (9)

Figure 7. Percent reduction in average memory access-times
when compared to a directly mapped cache.

AMATAdaptiveCache= (FractionofDirectHits× 1cycle)+ ((1− FractionofDirectHits)× 3cycles)

+ (MissRate× MissPenalty)

AMATColumnAssociativeCache= (FractionofRehashHits× 2cycles)+ ((1− FractionofRehashHits)× 1cycles)

+ ((FractionofRehashMisses× MissRate)× (MissPenalty+ 1))
+ (((1− FractionofRehashMisses)×MissRate)× MissPenalty)

adpcm
bas icmath

bitc ount
c rc

dijk s tra
fft

pa tric ia
qs ort

rijndael
s ha

s us an
A verage

0

20

40

60

80

100

120

A daptiv e_C ac he B _C ac he C olumn_as s oc ia tiv e

Mibench	
 Benchamarks

%
	
 R

ed
uc

tio
n	

in
	
 M

is
s-­‐
R
at
e

adpcm
bas icmath

bitcount
crc

dijkstra
fft

patricia
qsort

rijndael
sha

susan
Average-­‐5

0
5

10
15
20
25
30
35
40
45

Adaptive_C ache B_C ache C olumn_associative

Mibench	
 Benchmarks

%
	
 R

ed
uc

tio
n	

in
	
 A
M
A
T

36

For some benchmarks, for example bit-count, CRC and
quick-sort, the performance improvements are negligible.
These benchmarks access all cache sets uniformly and there
are very few conflict misses that can be eliminated by
Column Associative, Adaptive or B-Caches.

We explored a modification of the column-associative
cache, where non-conventional indexing schemes are used
as the initial index into the cacahe. More specifically, we
compared the column-associative cache using traditional
indexing for non-programmable indexes and using
Exclusive-OR, Prime-Modulo and Odd-Multiplier
techniques. Figure 8 shows the percentage reduction (or
increase) in misses resulting from the various indexing
schemes when compared to a column-associative cache.
From the figure, pairing the column-associative cache with
odd-multiplier indexing scheme shows the most
improvement in performance. For some benchmarks the
performance detilorates when non conventional indexing
schemes are used like with Calaculix and Sjeng.

Figure 8. Reduction in miss-rates when XOR, Odd-
multiplier and Prime-modulo indexing schemes are used as

the primary index to a column-associative cache.

C. Cache Uniformity
While results so far show some improvements in terms of
miss rates, and average memory access times, we also
wanted to explore the uniformity of cache accesses
achieved by these various techniques. Zhang [13] measured
uniformity by computing the percentage of sets that are
“Frequently Hit (FHS)”, “Frequently Missed (FMS)”, and
“Least-Accessed (LAS)”. A set is FHS if it received at least

two times the average number of hits; a set is FMS if it
received at least twice the average number of misses and a
set is LAS if it received less than half the average number
of accesses. In order to more formally describe the behavior
of cache access patterns, we convert the accesses, hits and
misses into probability distributions. We can then measure
various statistical values known as central moments. Most
commonly used moments are: mean (first moment) and
standard deviation (second moment). Higher moments
describe the shape of the distribution. We use two such
moments in this paper.

D. Skewness and Kurtosis
Skewness (third central moment) is a measure of symmetry,
or more precisely, the lack of symmetry. A distribution, or
data set, is symmetric if it looks the same to the left and
right of the center point (mean). If the left tail is more
pronounced than the right tail, the function is said to have
negative skewness. If the reverse is true, it has positive
skewness.
Kurtosis (fourth central moment) is a measure of whether
the data is peaked or flat relative to a normal distribution.
That is, data sets with high Kurtosis tend to have distinct
peaks and long tails. This also indicates very few values
near the peaks. Data sets with low Kurtosis tend to have a
flat top near the mean rather than sharp peaks. A uniform
distribution would be the extreme case with zero Kurtosis.
For our purpose, a highly non-uniform behavior results in a
high Kurtosis, while a more uniform access behavior leads
to lower Kurtosis.

In order to better assess the uniformity achieved across the
sets using these schemes, we computed the kurtosis and
skewness of misses in each of the 1024 sets (we did not
report these statistical measures for hits, since non-uniform
hits do not cause performance penalties). The results are
shown in Figures 9-12. An increase in Kurtosis and
skewness indicate that the technique actually excasberated
the non-uniform behavior of cache misses. A reduction of
Kurtosis and Skewness indicates that the technique
improved uniformity of misses to different cache sets. The
figures show that while the different indexing techniques
(viz., Givargis, Prime Modulo, Odd-Multiplier, XOR)
improve uniformity of misses for some programs, the
improvement is not significant. These techniques actully
increase the non-uniformity for some benchmarks.
However, the programmable associativity techniques (viz.,
Adaptive and B-Caches) show significant improvements in
unformities of misses (reduced Kurtosis and Skewness).

astar
bz ip2

calculix
gromacs

hmmer
libquantum

mcf
milc

namd
sjeng

Average

-­‐30

-­‐20

-­‐10

0

10

20

30

C olumn	
 A s s oc ia tiv e 	
 X OR C olumn	
 A s s oc ia tiv e 	
 Odd	
 Multiplier
C olumn	
 A s s oc ia tiv e 	
 P rime	
 Modulo

S PEC 	
 2006	
 Benchmarks

%
	
 R
ed

uc
tio

n	

in
	
 M

is
s-­‐
R
at
e

37

Figure 9: Kurtosis of Misses for Different Indexing

Schemes
Figure 10. Skewness of Misses for Different Indexing

Schemes

Figure 11. Kurtosis of Misses for Different Programmable

Associativities

Figure 12. Skewness of Misses for Different Programmable

Associativity Schemes

E. Multiple Indexing Schemes

In this section we show some preliminary results of using
different indexing techniques with different threads in a
multithreaded system. We use M-Sim to simulate SMT like
multithreaded system. We evaluated the reduction in cache
misses when 2 concurrent threads are executing, with each
thread using a different indexing schemes. In our initial
experiments we used odd multiplier technique (see Section
2) with different multipliers for each thread. Figure 13
shows the results.

Figure 13. Multiple Indexing Schemes in Multithreaded
Systems

The figure shows significant reductions in cache misses
when different indexing schemes are use with each of the
two threads (the two names listed with each bar).

adpcm
bas ic math

bitc ount
c rc

dijk s tra
fft

pa tric ia
qs ort

rijndael
s ha

s us an
A v erage

-­‐2000

0

2000

4000

6000

8000

10000

12000

x or_index odd_multiplier prime	
 modulo Giv a rg is G iv a rg is _X OR

Mibench	
 Benchmarks

%
	
 In

cr
ea

se
	
 in

	
 K
ur
to
sis

	
 (M
iss

es
)

adpcm
bas ic math

bitc ount
c rc

dijk s tra
fft

pa tric ia
qs ort

rijndael
s ha

s us an
A v erage

-­‐120

-­‐100

-­‐80

-­‐60

-­‐40

-­‐20

0

A daptiv e_C ac he B _C ac he C olumn_as s oc

Mibench	
 Benchmarks

%
	
 In

cr
ea

se
	
 in

	
 S
ke

w
ne

ss
	
 (M

is
se

s)

bitcount_adpcm

bzip2_libquantum

fft_susan

grom
acs_nam

d

m
ilc_nam

d

qsort_bas icm
ath

qsort_patricia

fft_bas icm
ath_patricia_susan

susan_bitcount_adpcm
_patricia

Average

0
20
40
60
80

Multi-­‐Threaded	
 Benchmarks

%
	
 R
ed

uc
tio

n	

in
	
 M

is
s-­‐
R
at
e

adpcm
bas icmath

bitc ount
c rc

dijk s tra
fft

pa tric ia
qs ort

rijndael
s ha

s us an
A verage

-­‐200

0

200

400

600

800

1000

1200

1400

1600

1800

x or_index odd_multiplier prime	
 modulo G iv a rg is G iv a rg is _X OR

Mibench	
 Benchmarks

%
	
 In

cr
ea

se
	
 in

	
 S
ke

w
ne

ss
	
 (M

is
se

s)

adpcm
bas ic math

bitc ount
c rc

dijk s tra
fft

pa tric ia
qs ort

rijndael
s ha

s us an
A v erage

-­‐200

-­‐100

0

100

200

300

400

500

600

700

800

A daptiv e_C ac he B _C ac he C olumn_as s oc

Mibench	
 Benchmarks

%
	
 In

cr
ea

se
	
 in

	
 K
ur
to
sis

	
 (M
iss

es
)

38

We also explored how the Adaptive caches can benefit
multithreaded systems. In this experiment we divided the
cache equally among the two threads. But we used Pier’s
SHT and OUT tables so that lightly used sets in one
partition could be used to place displaced data from the
other partition, thus increasing the cache sizes available to
each thread adaptively. Figure 14 shows the results.

Figure 14. Percent reduction in AMAT for multithreaded
applications using the adaptive partitioned scheme

V. CONCLUSION

Two classes of techniques have been evaluated in this work.
Techniques that employ non-traditional hash functions to
index into the cache and programmable associativity
techniques. Indexing techniques incur much lower
implementation overhead, with regards to area and
complexity. In general XOR performs well and incurs
minimal hardware extensions. Still all indexing techniques,
unlike programmable associativity techniques, are static; as
they do not adjust dynamically to a given applications
memory access pattern. As a result the performance of cache
indexing schemes vary significantly with the applications
memory access behavior.

Programmable associativity schemes on the other hand,
results in much better improvements in performance. In
evaluating the merits of these programmable associativity
schemes the performance impact of the overhead incurred by
these techniques have to be taken into account. In addition,
the hardware costs have to also be evaluated. The adaptive
cache yields performance improvements however, it has
significant hardware overhead that are introduced in order to
assess cache set utilization in hardware and leverage this
information to achieve better uniformity. The simplest of the
programmable associativity schemes is the column

associativity cache, which moved to-be evicted blocks to an
alternate location. Unlike the adaptive-cache and the B-
cache, the column associative cache does not rely on an in-
depth analysis of the cache behavior, but naively addresses
the uniformity problem. However, it posts the greatest
reduction in AMAT when compared to the other
programmable associativity schemes.

We also introduced a technique to improve the performance
of multithreaded applications. This technique improves
performance by combining the benefits of thread isolation
with the ability to identify less-frequently accessed sets and
divert traffic away from frequently accessed sets.
Experiments show that this scheme can reduce the AMAT in
applications by 60% for some multi-threaded applications.

Acknowledgements. This research is supported in part by the
NSF Net-Centric Industry/University Research Center (Net-
Centric IUCRC) and a gift from AMD.

VI. REFERENCES

[1] O. Adamo, A. Naz, K. Kavi, T. Janjusic and
C.P.Chung. "Smaller split L-1 data caches for multi-
core processing systems", Proceedings of IEEE 10th
International Symposium on Pervasive Systems,
Algorithms and Networks (I-SPAN 2009) Kaosiung,
Taiwan, December 14-16, 2009

[2] A. Agarwal and S. D. Pudar, “Column-Associative
Caches: A Technique for Reducing the Miss Rate of
Direct-Mapped Caches.” In Proc. of the Int. Symp. on
Computer Architecture, 1993, pp. 179–180.

[3] A. V. Aho and J. D. Ullman. Principles of Compiler
Design, chapter 7..6, pages 434.8. Addison-Wesley,
1997

[4] D. Burger and T.M. Austin, “The SimpleScalar Tool
Set, Version 2.0,” Univ. of Wisconsin-Madison
Computer Sciences Dept. Technical Report #1342,
June 1997.

[5] K Ghose and MB Kamble, “Reducing power in
superscalar processor caches using subbanking,
multiple line buffers, and bit-line segmentation.” In
Proc. of IEEE Int. Symp. on Low Power Electronics
and Design, 1999.

[6] T. Givargis, “Improved Indexing for Cache Miss
Reduction in Embedded Systems,” In Proc. of Design
Automation Conference, 2003.

[7] M. Kharbutli, K. Irwin, Y. Solihin, and J. Lee, “Using
PrimeNumbers for Cache Indexing to Eliminate
Conflict Misses,” Proc.Int’l Symp. High Performance
Computer Architecture, 2004.

[8] A. Naz, O. Adamo, K. Kavi and T. Janjusic.
"Improving uniformity of cache access patterns using
split data caches", Proceedings of ISCA PDCS-2009,
Sept. 2009, Louisville,

bitcount_adpcm

fft_susan

qsort_bas icm
ath

qsort_fft

qsort_patricia

libquantum
_m

ilc

m
ilc_nam

d

grom
acs_nam

d

bzip2_libquantum

fft_bas icm
ath_patricia_susan

susan_bitcount_adpcm
_patricia

Average

0

20

40

60

80

Multi-­‐threaded	
 Applications

%
	
 Im

pr
ov
em

en
t	
 i
n	

AM

AT

39

[9] K. Patel, E. Macii, L. Benini, and M. Poncino.
Reducing cache misses by application-specific re-
configurable index-ing. In Proceedings of the 2004
IEEE/ACM International conference on Computer-
aided design (ICCAD ’04), pages 125–130, 2004.

[10] D.A. Patterson and J. Hennessy: Computer
Organization and Design, 3rd Edition. Morgan
Kaufmann Publishers. San Francisco, 2005.

[11] J. Peir, Y. Lee, and W. Hsu, “Capturing Dynamic
Memory Reference Behavior with Adaptive Cache
Topology.” In Proc. of the 8th Int. Conf. on
Architectural Support for Programming Language and
Operating Systems, 1998, pp. 240–250.

[12] R. Raghavan and J. Hayes. On randomly interleaved
memories. In Supercomputing, 1990

[13] C. Zhang. Balanced cache: Reducing conflict misses of
direct-mapped caches. ACM International Symposium
on Computer Architecture, pages 155–166, June 2006.

[14] Norman P. Jouppi. Improving direct-mapped cache
performance by the addition of a small fully-associative
cache and prefetch buffers. SIGARCH Comput. Archit.
News, 18(3a):364–373, 1990.

[15] Y. Liang and T. Mitra. Instruction cache locking using
temporal reuse profile. In DAC
’10: Proceedings of the 47th annual Design Automation
Conference.

[16] Liang, Y. and Mitra, T. Improved procedure placement
for set associative caches. In Proceedings of CASES.
2010, 147-156.

[17] Arijit Ghosh , Tony Givargis, Cache optimization for
embedded processor cores: An analytical approach, ACM
Transactions on Design Automation of Electronic Systems
(TODAES), v.9 n.4, p.419-440,October,2004.

40

