
Reconfigurable Dataflow Graphs For Processing-In-Memory

Charles F. Shelor
 Computer Science and Engineering

 University of North Texas
 Denton, Texas, USA

 Charles.shelor@gmail.com

Krishna M. Kavi
 Computer Science and Engineering

 University of North Texas
 Denton, Texas, USA
Krishna.kavi@unt.edu

ABSTRACT
In order to meet the ever-increasing speed differences between
processor clocks and memory access times, there has been an
interest in moving computation closer to memory. The near data
processing or processing-in-memory is particularly suited for very
high bandwidth memories such as the 3D-DRAMs. There are
different ideas proposed for PIMs, including simple in-order
processors, GPUs, specialized ASICs and reconfigurable designs.
In our case, we use Coarse-Grained Reconfigurable Logic to build
dataflow graphs for computational kernels as the PIM. We show
that our approach can achieve significant speedups and save
energy consumed by computations. We evaluated our designs
using several processing technologies for building the coarse-
gained logic units. The DFPIM concept showed good
performance improvement and excellent energy efficiency for the
streaming benchmarks that were analyzed. The DFPIM in a 28
nm process with an implementation in each of 16 vaults of a 3D-
DRAM logic layer showed an average speed-up of 7.2 over that
using 32 cores of an Intel Xeon server system. The server
processor required 368 times more energy to execute the
benchmarks than the DFPIM implementation.

CCS CONCEPTS
• Computer systems organization ~ Data flow architectures

KEYWORDS
Dataflow Architectures, Coarse Grained Reconfigurable Logic,
Processing in Memory, 3D-Stacked Memories

ACM Reference format:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from Permissions@acm.org.

ICDCN '19, January 4–7, 2019, Navi mumbai, India
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6094-4/19/01...$15.00
https://doi.org/10.1145/3288599.3288605

1 Introduction
One of the major problems facing today’s computer systems is the
disparate speeds between processor instruction cycles and memory
access times. This is not a new issue as this timing mismatch was
recognized and known as the memory wall [42]. Advances in
processor clock rates and architectures have outpaced
improvements in memory bandwidth and access delay. Processors
are running at 2 to 4 GHz range, while DRAM latency is 41.25 ns
for the fastest DDR4 device from Micron [31]. The cache
hierarchy in computer systems has been used to reduce the effects
of the memory wall by providing fast access to data items on
subsequent accesses. The use of multilevel memory caches,
prefetching of data, multiple memory channels, and wide data
paths mitigate the memory access delay, but there are still times
when the processor must wait the 83 to 166 clocks for the
requested data to arrive. Increasing computer system performance
through multicore processors increases the pressure on the
memory system as more memory requests are being generated.
Conditions will occur where one or more cores must wait until an
existing memory access completes before beginning its own
memory access. With every fifth instruction [17] being a data
request, the memory access delay and imperfect caching leads to
high end servers being idle three out of four clocks [21]. Energy
consumption of computer systems has been an increasing issue in
recent years.
Advances in silicon technology have dramatically decreased the
energy per computation for the processor core. However, the
energy for memory accesses is increasing to achieve improved
bandwidth and latency to attempt to match processor performance
[34, 35]. The memory system is an increasingly significant fraction
of the computing system energy use [26]. A 64-bit external
memory access requires approximately 100 times the energy of a
double precision computation [20, 9, 25].
Energy is particularly important to both high-performance
applications and emerging Big Data and Deep Learning
applications. For Exascale systems, the goals include a memory
bandwidth of 4 TB/s at each node for 100,000 nodes with a
maximum power budget of 20 MW [41]. Aggressive assumptions
about memory technology improvements show that 70% of the
power budget will be needed for memory accesses [43].
Demand for higher performance computer systems has pushed
processor architectures to longer pipelines with multiple issue, out-
of-order capabilities and larger memory caches to supply data.

ICDCN-2019, Bangaluru, India, Jan 4-7, 2019 C.F. Shelor and K.M. Kavi

These high-performance microarchitectural features require an
energy overhead that reduces the energy efficiency of the
processor. A 4-issue core has six integer ALU, two load-store, two
floating point, and one integer multiply-divide. Only 26% of the
energy is used by functional units that generate algorithmic results.
The remaining energy is consumed by cache hierarchy, network
on the chip, instruction scheduling, renaming registers and other
logic needed for out of order execution.
Our architecture addresses both the execution and energy
consumption. Execution performance is improved by moving
computations closer to memory (that is, Processing in Memory)
and eliminating traditional instruction pipelines with a
reconfigurable graph describing a computation. Energy savings
result from the elimination of instruction fetch/decode/issue
cycles, cache memories and using lower clock frequencies.
The rest of the paper is organized as follows. Section 2 describes
the technologies that enabled our work. Section 3 provides an
overview of our dataflow processing-in-memory (DFPIM)
architecture. Section 4 provides details of our experimental setup.
Section 5 contains results of our evaluation and discussions.
Section 6 includes research that is closely related to ours and
Section 7 contains conclusions of our study.

2. Enabling Technologies
Our architecture is enabled by (hybrid) dataflow model of
computation, coarse-grained reconfigurable logic and 3D-stacked
memories with room for processing-in-memory logic.
2.1. Dataflow model represents a computation as a graph where
the nodes represent operations on inputs received via the incoming
edges and results are sent to other nodes via outgoing edges [3, 4,
5, 23, 24]. In our system, we deviate from the pure dataflow model.
We use load units to bring input data from DRAM memory into
local buffers. There are delay operations in the dataflow graphs to
balance and synchronize all paths in the graph, eliminating the
need for additional inputs to trigger when data is consumed. The
dataflow graph is ’executed’ only when all graph inputs for the
next computation are available (not just inputs to nodes in the input
layer). This pipelined execution also handles loop carried
dependencies and simplifies memory ordering issues.
Programmable state machines are used to implement looping
structures within the dataflow graphs to increase graph execution
independence from a host processor or controller. Figure 1 shows
a dataflow graph representation of FFT. Detailed description of the
operations is omitted due to space limitations.
2.2. Coarse Grained Reconfigurable Logic (CGRL) is similar to
FPGA, but the reconfigurability is at a functional block level and
not at gate level. The CGRL fabric consists of functional units such
as Integer ALUs, Floating Point Adders, Floating point
multipliers, or other specialized functional units. The inputs of
functional units can be connected to the outputs of other functional
units, thus creating a dataflow graph representing a computation.
Reconfiguring the input to output connections results in a new
computational graph. We assume a partitionable crossbar
interconnection network to communicate inputs and outputs. An
example of a CGRL that is configured is shown in Figure 2.

Figure 1: An Example Dataflow Graph for FFT

2.3. Processing in Memory (PIM) using 3D DRAM. One approach
to mitigating the memory wall for applications that do not work
well with caches is moving the processing of the data closer to
the data itself [36, 43]. The advent of 3D-stacked DRAMS, which
include a logic layer makes this Near Data Computing (NDC) or
Processing-in-Memory (PIM).
The close, physical proximity of the stacked layers combined with
the low capacitance of the TSV interconnect [30] provides a faster
and lower power communication path than the standard memory
controller to DRAM DIMM path through sockets and PCB
traces. The multiple independent channels and high-speed serial
links provides 256 GB/s for HBM [22, 31] and 160 GB/s for HMC
[19, 32, 35].

Figure 2. An Example of CGRL Configuration

3. Dataflow Processing In Memory (DFPIM)

DFPIM uses a hybrid dataflow technology to extract parallelism
and pipelining for high performance computation in streaming
data applications. The dataflow logic is configured into the
application solution graph by using CGRL comprised of
functional blocks and connectivity elements. The CGRL is
implemented as PIM on the logic layer within a 3D stacked
DRAM. Figure 3 shows a high-level architecture of the proposed
dataflow PIM.

ar1

W

ai1

ar2 ai2

ai0ar0

tr ti

RealOut ImagOut

RealOut[k]

ImagOut[k]

RealOut[j] ImagOut[j]

RealOut[k] ImagOut[k]

RealOut[j] ImagOut[j]

i j

rd_adr

wr_adr

selectselect

select

select

 rd_adr
rd_dat

 wr_adr
 wr_dat

 rd_adr
rd_dat

 wr_adr
 wr_dat

fp +

fp *fp *

fp *fp *fp * fp *

fp -fp -

fp -fp -

fp -fp -

fp +

11

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

ALU ALU ALU ALU

A CB D

Y ZXW

*

*

pass

nop

+

*

+

-

nop

*pass

A
B
C
D

A * B B + D A C - D

A * B A + B + D A (B+D)*(C-D)

pass

(A*B) * (A*B) A*B * (A+B+D) A * (B+D) * (C-D)

pass

A * B A*B * (A+B+D) A * (B+D) * (C-D)

passpass

*

Reconfigurable Dataflow Graphs for Processing in Memory ICDCN-2019, Bangaluru, India, Jan. 4-7, 2019

Figure 3: DFPIM Architecture

The left section represents the host computer for the DFPIM
elements. This is a standard server or workstation computer
system. The only feature that is not standard on current
systems is a high-speed serial interface for connecting the
accelerated memory modules. Processor manufacturers are
incorporating these links in new products to take advantage
of the higher bandwidth and lower energy of 3D stacked
DRAM devices [7, 8].

There can be multiple accelerated memory modules (AMM) as
shown in the figure. The center section shows an accelerated
memory module expanded into the logic layer base and a stack
of DRAMs, including representation of the sixteen independent
vertical vaults. The logic layer base contains one memory
controller and one DFPIM instance for each vault. A
microcontroller is included on the logic layer to assist DFPIM
configuration and minimize the communication between the host
and DFPIM for optimum performance.

The right section shows an expanded view of the logic layer
for one vault. The memory controller accesses the memory stack
vault directly above the vault controller [2, 36, 43]. The memory
controller communicates with the high-speed link for data
transfers with the host. The DFPIM instance has load and store
units within the CGRL that access the DRAM stack through
the memory controller and buffer input data for the dataflow
graphs. The DFPIM instance consists of the CGRL logic and
the scratch pad memories that are local to the CGRL functional
units. for implementing the dataflow graphs of the applications.
There is also a link to the DFPIM microcontroller that is used
to configure the CGRL and to initialize and store data from the
scratch pad memories as needed.

3.1. DFPIM Operation

DFPIM operation can be divided into four phases. Initiation
is performed by the host processor. Configuration is executed
by the DFPIM micro-controller. Computation is executed by
the DFPIM logic until the input data is exhausted. An update
phase is conducted by the micro-controller for storing results.

The host computer initiates a DFPIM operation when a
command that uses the DFPIM is executed. As an example, a
user could enter a command via the keyboard. The operating
system reads an executable file that contains the machine
instructions that implement the given command. When the
DFPIM is to be involved, there is a data segment within the
file that must be transferred to the DFPIM. This is very similar
to executing a command implemented in OpenCL or CUDA that
involves a graphics processor. The code to be executed by the

graphics processor is copied from a data segment of the host
executable to the graphics processor to be used as the
instructions to execute. The data segment directed to the DFPIM
is copied through the high-speed link to an address dedicated to
this.

The DFPIM logic accepts input data and generates results until
it runs out of input data. If there is no input data ready for a
particular clock cycle, the entire logic network waits for the
data to become available. This is needed to ensure data stays
synchronized through the computational sequence. If an
exception condition is encountered it can be posted for detection
after the computation has completed or it can be passed to
the micro-controller which will terminate processing and notify
the host processor that the operation has failed.

The update phase uses the micro-controller to download any
results that are contained in scratchpad memories. The host
processor is then notified that the requested operation has
completed. In some cases, the results might be transferred to
the host processor, in other cases it might just be an
acknowledgement that the operation completed and the results
are available at the requested location.

All DFPIM operations are based on physical address offsets since
the DFPIM resides inside a physical memory. Any indirect or
pointer accesses within the application must either be based on
physical addresses or the application data must have been
allocated as a large, continuous segment and all pointers are
simply offsets within the segment. DFPIM applications are limited
to the memory within the 3D-stacked component that contains
the DFPIM logic. A communication network on the logic layer
allows DFPIM elements to access data in other vaults, but this is
likely to introduce delays.

3.2. DFPIM Layout

Figure 4 shows a possible floor plan for a DFPIM implementation.
The DFPIM components use 50% of a 68 mm2 stacked DRAM
logic layer (the other 50% is set aside for memory controllers and
TSVs). The illustration is drawn to scale using logic synthesis
estimates for each block for a 28nm process technology. ARM core
is used as the microcontroller for DFPIM.

Figure 4: An Example PIM Layout

CGRL

CGRL

CGRL

CGRL

SPM

SPM

CORE

L1

L2

L3

CORE

L1

L2

CORE

L1

L2

CORE

L1

L2

MEMORY CONTROLLER

HOST PROCESSOR

COMMODITY DIMM

PCIe

AMM

AMM

AMM

PERIPHERALS

AMMHSL

3-D STACK
DRAM

LOGIC &
DFPIM

HSL if

uCTRL

MC

ONE CLUSTER

MC

XIF

Arm

MC
1.4 x 1.4

128
KB

128
KB

M I M MI I

I
M
I

I

I

M

M

M

128
KB

128
KB

M2

D

256
KB

F

M2

D M2FM2

XIF

MC
1.4 x 1.4

128
KB

128
KB

M I M MI I

I
M
I

I

I

M

M

M

128
KB

128
KB

M2

D

256
KB

F

M2

D M2FM2

MC
1.4 x 1.4

128
KB

128
KB

M I M MI I

I
M
I

I

I

M

M

M

128
KB

128
KB

M2

D

256
KB

F

M2

D M2FM2

MC
1.4 x 1.4

128
KB

128
KB

M I M MI I

I
M
I

I

I

M

M

M

128
KB

128
KB

M2

D

256
KB

F

M2

D M2FM2

MC
1.4 x 1.4

128
KB

128
KB

M I M MI I

I
M
I

I

I

M

M

M

128
KB

128
KB

M2

D

256
KB

F

M2

D M2FM2

MC
1.4 x 1.4

128
KB

128
KB

M I M MI I

I
M
I

I

I

M

M

M

128
KB

128
KB

M2

D

256
KB

F

M2

D M2FM2

MC
1.4 x 1.4

128
KB

128
KB

M I M MI I

I
M
I

I

I

M

M

M

128
KB

128
KB

M2

D

256
KB

F

M2

D M2FM2

MC
1.4 x 1.4

128
KB

128
KB

M I M MI I

I
M
I

I

I

M

M

M

128
KB

128
KB

M2

D

256
KB

F

M2

D M2FM2

MC
1.4 x 1.4

128
KB

128
KB

M I M MI I

I
M
I

I

I

M

M

M

128
KB

128
KB

M2

D

256
KB

F

M2

D M2FM2

MC
1.4 x 1.4

128
KB

128
KB

M I M MI I

I
M
I

I

I

M

M

M

128
KB

128
KB

M2

D

256
KB

F

M2

D M2FM2

MC
1.4 x 1.4

128
KB

128
KB

M I M MI I

I
M
I

I

I

M

M

M

128
KB

128
KB

M2

D

256
KB

F

M2

D M2FM2

MC
1.4 x 1.4

128
KB

128
KB

M I M MI I

I
M
I

I

I

M

M

M

128
KB

128
KB

M2

D

256
KB

F

M2

D M2FM2

MC
1.4 x 1.4

128
KB

128
KB

M I M MI I

I
M
I

I

I

M

M

M

128
KB

128
KB

M2

D

256
KB

F

M2

D M2FM2

MC
1.4 x 1.4

128
KB

128
KB

M I M MI I

I
M
I

I

I

M

M

M

128
KB

128
KB

M2

D

256
KB

F

M2

D M2FM2

MC
1.4 x 1.4

128
KB

128
KB

M I M MI I

I
M
I

I

I

M

M

M

128
KB

128
KB

M2

D

256
KB

F

M2

D M2FM2

MC
1.4 x 1.4

128
KB

128
KB

M I M MI I

I
M
I

I

I

M

M

M

128
KB

128
KB

M2

D

256
KB

F

M2

D M2FM2

ICDCN-2019, Bangaluru, India, Jan 4-7, 2019 C.F. Shelor and K.M. Kavi

In this layout the memory controllers are located in the lower left
corner of each memory vault of an HMC like 3D stacked memory.
The DFPIM logic is above and to the right of each memory controller.
The logic units include integer units I (2 load, 1 store, 20 ALUs, four
multiply units, some specialized units, two FIFOs), floating point
units F (32 single precision adders and multipliers, ten double
precision adders and multipliers) and a small local memory M. The
interconnection bus is a 16 x 32 crossbar which can be segmented
into smaller buses. This layout is only one example configuration.

4. Experimental Setup
In this paper we compare the execution times and energy consumed
by DFPIM with a host system with two 14-core Intel Xeon E5-
2683v3 processor running at 2GHz. Intel Performance Counter
Monitor tools package [39] was used to monitor the power
consumed by the CPUs during benchmark execution. We carefully
isolated the execution time and energy consumed only for the
benchmark kernels for a fair comparison with DFPIM. The
execution and energy values for our DFPIM components
(functional units and ARM core) are estimated using very detailed
logic synthesis value using TSMC libraries for 7nm and 16nm
FinFET and 28nm planar CMOS technologies and obtained
through ARM Limited Artisan physical IP [27]. We evaluated
eleven clock rates in six variants of 7nm libraries, eight clock rates
in twelve variants of 16nm libraries and seven clock rates in four
variants of 28nm libraries. From these 190 different synthesis runs
for each DFPIM component, we selected the best configuration
(clock rate and library) that results in optimal energy-delay values.
Table 1 shows the selected libraries and clock frequencies for the
three criteria of minimum energy, minimum energy-delay product,
and the average of those two. We use the libraries and clock rates
from the average column as a balance of energy and performance is
desired.

Table 1: Optimal Silicon Libraries and Clock Rates
 Energy Energy * Delay E, E*D Ave

07nm
16nm
28nm

svt-c8, 1.0 GHz
lvt-c16, 0.8 GHz
svt-c35, 0.6 GHz

ulvt-c8, 2.0 GHz
ilvt-c16, 1.5 GHz
svt-c30, 1.1 GHz

lvt-c8, 1.8 GHz
ilvt-c16, 1.0 GHz
svt-c30, 1.1 GHz

4.1. Dataflow Graph Generation

We developed a backend to LLVM compiler [28, 29] to generate
dataflow graphs. The portion of the C program that is targeted for
execution on DFPIM is first identified. Using LLVM intermediate
representation for the identified kernel code, a dataflow graph is
generated. For our purpose the output is represented in XML
representing the various functional units used by the graph and the
connections between these units to form the graph. This XML code
is used by our DFPIM simulator for producing execution results
presented in Section 5.

4.2. DFPIM Simulator

Our simulator takes the input (in XML) generated by LLVM for
each benchmark kernel, configures the functional units to represent
the dataflow graph represented by the LLVM output, and executes
the graph with inputs transmitted by the host processor. For our
purpose we assume that both the host and DFPIM use the same

address space and thus DFPIM will access the data from the shared
3D DRAM memory. Both host and DFPIM rely on physical
addresses. The load units contained within DFPIM will buffer
inputs for use by the computational functional units, and the store
units copy results back to memory.

The execution delays and energy consumed by the various DFPIM
logic components are based on the values obtained by our logic
synthesis as described above in Section 4.

5. Results
In this section we describe the results of our experiments comparing
the execution times and energy consumed by DFPIM with a host
system as described in the previous section.

5.1. Benchmarks

We selected representative benchmarks from a wide-variety of
application domains. The map-reduce benchmarks from HiBench
[18], the map-reduce benchmarks from PUMA [1], the Rodinia
benchmarks [6], SPEC benchmarks [38], and MiBench
benchmarks [16] were reviewed. We selected benchmarks that
had significant differences in their suitability for dataflow
implementation. The seven benchmarks used in this paper are
histogram, word occurrence count, fast Fourier transform,
breadth first search, string match, linear regression, and SHA256.
The SHA256 benchmark had three versions implemented in
DFPIM for a total of nine analyses. We now describe these
benchmarks.

Histogram. The histogram benchmark inputs an RGB image
and generates a histogram of values for the red (R), green (G),
and blue (B) components of the pixels. The benchmark code
isolates the 8-bit color values from a 24-bit input with shift and
mask operations. The pixel component values are used as
addresses to three arrays (scratch pad memory in DFPIM) that
returns the current count, increments it, and stores the new
count. The input file contained 468,750,000 RGB pixels.

Word Count. The word occurrence count benchmark is based on
tasks used in web indexing and searches. The first part of the
benchmark inputs a character stream and isolates it into words.
The second part of the benchmark creates a hash for the word
and looks for the word in a hash table. If the word is found in
the table its occurrence count is incremented, otherwise it is
added to the table with a count of 1. The server implementation
of the benchmark serially finds a word then processes the word,
then looks for the next word. The DFPIM implementation has
two sections. The first section processes the input looking for
words. When a word is found it is put into a FIFO. The second
section pulls a word from the FIFO, processes the word and
then pulls the next word. The DFPIM uses word-wide
comparison for word matching. The two sections work
independently and are synchronized through the FIFO. The
benchmark input was 94,858,002 bytes in length.

Fast Fourier Transform. The FFT benchmark processes a frame
of time sampled data into a frame of frequency bins. The number
of samples in the input frame is a power of 2, designated as N.
The butterfly implementation of the algorithm is a triple nested

Reconfigurable Dataflow Graphs for Processing in Memory ICDCN-2019, Bangaluru, India, Jan. 4-7, 2019

loop where the outer loop is repeated log2 (N) times. The middle
loop iterates based on powers of 2 from log2(N)-1 to 1 while
the inner loop iterates based on powers of 2 from 1 to log2(N)-
1. The code within the inner loop is executed log2(N) * N/2.
The FFT algorithm does benefit from caching as each data
sample is accessed log2(N) times during a frame processing.
However, a program using an FFT is likely to process many
frames in sequentially ordered streaming. The outer loop
includes two sine and two cosine operations. As the DFPIM does
not have sine and cosine blocks defined, the micro-controller
must intervene and perform these operations. Alternately, they
could be precomputed and stored in a scratch pad, eliminating the
micro-controller involvement. This analysis was based on a
frame size of 4096 samples and processing 500 frames of data.
FFT is an example of a benchmark that is not very well suited for
pure dataflow implementation.

Breadth First Search. The breadth first search benchmark is
neither streaming nor cache friendly. It searches through a tree
resulting in a random memory access pattern. The only
advantage of the DFPIM is its faster access time to memory. The
input file contains a tree with one million nodes.

String Match. The string match benchmark searches a text file
for a list of keys. Whenever a match is found, it’s location in
the text file is saved. The algorithm first locates the end of the
current word and then compares the word to each of the keys.
The pointer to the word is stored in the results block when a
match occurs. This analysis searched a 502 MiB file while
searching for four keys.

Linear Regression. The linear regression benchmark takes a
file of points and accumulates 5 information components: x-
coordinate value, x-coordinate squared, y-coordinate value, y-
coordinate squared, and x-coordinate times y-coordinate. The
five accumulated values are returned when the end of the input
data is reached. This benchmark was evaluated with a 670
MiB file.

SHA256. The SHA256 benchmark is a cryptographic
application that creates a digest of a message that can later be
used to guarantee the message has not been modified. A large
sequence of rotation, logical and arithmetic operations are
performed on the input data to generate the 32-byte message
digest. Each round of the algorithm requires 6 rotate, 3 logical
AND, 6 logical XOR, 2 logical OR, and 7 addition operations
for a total of 24 operations per round. Sixty-four rounds are
performed on each 64-byte input block for a total of 1536
operations per block Three DFPIM implementations of the
SHA256 benchmark are used in this evaluation. The first is a
straightforward implementation where an integer ALU is used
for each of the operations. One input stream is processed at a
time. The second implementation creates three new DFPIM
components implementing macros of the processing round. This
implementation is designated as SHAmac. The 24 integer ALUs
per round are reduced to three special components and two
integer ALUs. The reduced component count decreases power
and energy while maintaining the same performance. The
algorithm loops the result of each round to the start of the next

round. Since the round takes three clocks to pass through the
pipeline, each component is idle two-thirds of the time. The third
implementation interleaves three different input streams to
achieve three times the throughput of the first two
implementations. This version is designated SHAmac3. The
pipeline is fully utilized resulting in higher energy to obtain the
better performance. A 50 MiB file is processed by the SHA256
benchmark in this evaluation. It should be noted that the two
alternatives described here are not available with server
implementation of SHA (since we cannot modify the functional
units of the server).

5.2. Server Benchmark Results

The results of running the benchmarks on the server processor
are shown in Table 2. The first eight rows of the table provide
the measured data from the benchmark execution. The last five
rows of the table are calculated values derived from the measured
data. All three variants of the SHA256 benchmark are shown in
this table even though the server data is the same for the three
variants since there is only one implementation of SHA on the
server. This keeps the four result tables consistent.

The Base Clocks / Item is the number of processor clocks
needed to complete the benchmark while running on a single
processor divided by the number of benchmark items processed.
This baseline is compared to the clocks per item measured when
the server is running 32 instances of the benchmark
simultaneously to show how well the benchmark scales. The
Clocks (M) row is the total number of processor clocks to
complete the benchmark. The number is in millions of clock
ticks. The Freq (clk / usec) entry is the actual operating frequency
of the processor as reported by the hardware during the
benchmark. This is measured to ensure the operating system
did not change the frequency of the processors during operation.

The Items / Proc (K) measurement is the number of
thousands of benchmark items processed on each of the 32
instances of the benchmark executed on the server. The Item Size
(bytes) is the size of the benchmark item. The histogram
benchmark processes pixels that are composed of a red, a green,
and a blue component for a total of three bytes per pixel. The word
count benchmark processes characters as input for a 1 byte size.
The FFT benchmark operates on complex numbers with a
floating-point real and imaginary values for a total of 8 bytes.
Breadth first search operates on pointers with a size of 8 bytes.
String match processes characters as input for an item size of
1 byte. The linear regression processes data points with an x
component and y component that are both bytes. The SHA256
algorithm processes a 64-byte block of data as an item.

The CPU Power (W) row contains the measured CPU power
in Watts for the benchmark. The Mem Power (W) row provides
the measured memory power in Watts. There is very little
variation in power for the different benchmarks. The power
measurements showed more correlation to the number of cores
that were active than the type of activity being performed.

ICDCN-2019, Bangaluru, India, Jan 4-7, 2019 C.F. Shelor and K.M. Kavi

__
Table 2: Server Benchmark Results

 Hist Word FFT BFS Str M Lin R SHA256 SHAmac SHAmac3

Base Clocks / Item 45.08 18.57 348.85 82.08 12.28 25.08 2160.19 2160.19 2160.19

Clocks (M) 299.30 76.70 776.64 164.64 262.74 372.49 131.07 131.07 131.07
Freq (clk/usec) 1997 1997 1997 1997 1997 1997 1997 1997 1997
Items / Proc (K) 4882 2964 2048 1000 16454 10986 51 51 51
Item Size (bytes) 3 1 8 8 1 2 64 64 64
CPU Power (W) 126.17 125.86 125.62 125.35 125.73 124.81 126.34 126.34 126.34
Mem Power (W) 2.27 2.07 1.96 2.09 2.02 2.02 2.02 2.02 2.02
Kernel percent 99.99 99.99 98.88 99.25 99.99 99.99 95.81 95.81 95.81
Execution Time (S) 0.1499 0.0384 0.3889 0.0824 0.1316 0.1865 0.0656 0.0656 0.0656

Server Energy (J) 19.250 4.913 49.617 10.507 16.808 23.657 8.425 8.425 8.425
Bandwidth (MB/S) 3127.6 2469.8 1348.1 3105.1 4002.1 3769.6 1604.5 1604.5 1604.5
Clocks per item 61.30 25.87 379.22 164.64 15.97 33.91 2549.05 2549.05 2549.05

Congestion Factor 0.36 0.39 0.09 1.01 0.30 0.35 0.18 0.18 0.18

__

The Kernel percent measurement indicates the percentage of
benchmark clocks that were used for execution of the
benchmark kernel section.

The Execution Time (S) is derived from the total clocks
executed divided by the clock frequency and expressed in
seconds.

The Server Energy (J) is computed by adding the CPU power
and memory power and multiplying the sum by the execution
time. This expresses the energy in Joules.

The Bandwidth (MB/S) is the number of benchmark items
times the size of each item divided by the execution time. It
does not include any instruction accesses, incidental cache hits,
or memory accesses from algorithmic overhead such as loop
indexing or address calculations.

The Clocks per item metric is the number of processor clock cycles
divided by the number of benchmark items of a benchmark
instance running on each of 32 processors. As the actual
number of clock cycles required per item is given in the base
clocks per item, any additional cycles must be attributed to
congestion in accessing memory or other resources. The
Congestion Factor row expresses this congestion as a
percentage of the base clocks per item. There is a noticeable
trend for higher memory bandwidths to have higher congestion
factors.

5.3. DFPIM Benchmark Results

Table 3 displays the measurements for the DFPIM benchmarks. We
analyzed three different silicon technologies as described in
Section 4. This resulted in a separate measurement for each
technology. The units used in this table are consistent with
the units in Table 2 allowing the numbers to be directly

compared. The data for the server processor was collected with
32 active cores. The DFPIM has 16 vaults and each DFPIM
executes an instance of the benchmark (server system represents
twice as many “cores” that are executing twice as many copies of
the benchmark kernel when compared DFPIM implementation).
Therefore, the Items / Vault (K) will be double the number of
items per process used for the server processor data.

The DF Power.. (W) is the power of the DFPIM components
which is equivalent to the CPU power of the server data (and
we show the values for 28, 16 and 7nm versions. The Mem
Power.. (W) is the power of the memory accesses within the
stacked DRAM. The Clocks per item measurement does not
have three components as the underlying silicon technology does
not impact the dataflow pipeline organization resulting in the
same number of clocks for each technology. The lower clocks per
item in the DFPIM results compared to the server processor
results show the benefits of the dataflow parallelism and
pipelining. The power values show the benefits of low power
silicon libraries and not pushing the technology to its performance
limits (running at lower frequency than maximum possible).

The advantages of using specialized functional units for the
SHAmac version of the SHA256 benchmark can be seen in
the DF Power values. There is no difference in timing as the
benchmark round still requires three clocks. Interleaving three
benchmark instances in the SHAmac3 version does show a
factor of three timing improvement. This version shows an
increase in power as each component is active every cycle while
components are only active for 1 in 3 clocks in the other two
SHA256 versions.

Reconfigurable Dataflow Graphs for Processing in Memory ICDCN-2019, Bangaluru, India, Jan. 4-7, 2019

__
Table 3: DFPIM Benchmark Results

 Hist Word FFT BFS Str M Lin R SHA256 SHAmac SHAmac3

Clocks (M) 9.77 6.02 49.27 57.56 33.57 21.97 19.75 19.75 6.58
Freq28 (clk/usec) 1100 1100 1100 1100 1100 1100 1100 1100 1100
Freq16 (clk/usec) 1300 1300 1300 1300 1300 1300 1300 1300 1300
Freq07 (clk/usec) 1800 1800 1800 1800 1800 1800 1800 1800 1800
Items / Vault (K) 9765 5928 4096 2000 32909 21972 102 102 102
Item Size (bytes) 3 1 8 8 1 2 64 64 64
DF Power28 (W) 0.2000 4.6165 1.7990 0.2885 0.5598 0.6358 0.2899 0.0972 0.3803
DF Power16 (W) 0.1313 2.8157 1.1809 0.1845 0.3587 0.4120 0.1840 0.0634 0.2442
DF Power07 (W) 0.0779 1.8954 0.7514 0.1132 0.2198 0.2690 0.1063 0.0376 0.1556
Mem Power28 (W) 2.0329 0.9828 0.8165 0.6148 0.9807 1.5119 0.6437 0.6437 0.9909
Mem Power16 (W) 2.3170 1.0760 0.8795 0.6411 1.0736 1.7014 0.6752 0.6752 1.0857
Mem Power07 (W) 3.0274 1.3091 1.0369 0.7070 1.3058 2.1750 0.7542 0.7542 1.3224
Exec Time28 (S) 0.0089 0.0055 0.0448 0.0523 0.0305 0.0200 0.0180 0.0180 0.0060
Exec Time16 (S) 0.0075 0.0046 0.0379 0.0443 0.0258 0.0169 0.0152 0.0152 0.0051
Exec Time07 (S) 0.0054 0.0033 0.0274 0.0320 0.0186 0.0122 0.0110 0.0110 0.0037
DF Energy28 (J) 0.0261 0.0336 0.1484 0.0815 0.0631 0.0537 0.0160 0.0142 0.0123
DF Energy16 (J) 0.0221 0.0198 0.0960 0.0569 0.0466 0.0423 0.0109 0.0101 0.0091
DF Energy07 (J) 0.0185 0.0115 0.0571 0.0352 0.0327 0.0327 0.0067 0.0063 0.0065
BW28 (MB/S) 52800.0 17322.8 11704.8 4892.5 17254.9 35200.0 5866.6 5866.6 17599.4
BW17 (MB/S) 62400.0 20472.4 13832.9 5782.0 20392.2 41600.0 6933.2 6933.2 20799.2
BW07 (MB/S) 86400.0 28346.4 19153.2 8005.8 28235.3 57600.0 9599.9 9599.9 28798.9

Clocks per item 1.00 1.02 12.03 28.78 1.02 1.00 192.00 192.00 64.00

__

5.4. Server to DFPIM 28 nm Comparison

The Intel Xeon E5-2683v3 processor used in this evaluation is
implemented in a 22 nm FinFET silicon process. It is being
compared to the DFPIM in a 28 nm planar process. This gives the
server processor a moderate technology advantage. The lower
production volume of a PIM logic layer compared to a server
processor would favor the lower development and production
cost of the 28 nm planar technology making this a reasonable
comparison. The benefits of the two smaller FinFET
technologies are shown in Table 4 for applications needing the
additional performance while maintaining low energy.

The speedup 28 shows the execution time on server compared to
that on DFPIM using 28nm technology.

The large histogram speedup is a result of computing the red,
green, and blue pixel components in parallel. The DFPIM ability
for single clock-cycle read-modify-write of the scratch pad
memories is another factor contributing to the large histogram
speedup. The word occurrence count benchmark speedup results
from separate, independent character and word processing sections
and the DFPIM capability to perform a full word comparison in a

single clock. The FFT speedup is achieved by parallelism and
pipelining to achieve 14 algorithm operations per clock cycle.
The breadth first search benchmark has only a marginal speedup
due to its unstructured and limited parallelism. The string match
benchmark speedup results primarily from processing the four keys
in parallel and independent character and word processing sections.
The linear regression benchmark performs all five updates in
parallel with the three multiplications pipelined for eight
operations per clock. The standard SHA256 algorithm provides an
average of eight operations per clock, but is limited to a
threeclock pipeline latency due to data dependencies. Interleaving
three benchmark instances increases the speedup for SHAmac3.

Likewise, E-ratio 28 shows the energy consumed on server
compared to the energy consumed on DFPIM using 28nm
technology. \ The energy ratio of 334.4 for the FFT indicates
performing an FFT on a server processor requires 334 times that
of DFPIM implementation. The speedup is then multiplied
with the energy ratio to get a ratio of the energy-delay products
of the benchmark implementations. The Table also includes the
memory bandwidths taken directly from Table 3.

ICDCN-2019, Bangaluru, India, Jan 4-7, 2019 C.F. Shelor and K.M. Kavi

__
Table 4: Server vs 28nm DFPIM comparisons

 Hist Word FFT BFS Str M Lin R SHA256 SHAmac SHAmac3

Speedup 28 16.9 7.0 7.9 1.6 4.3 9.3 3.2 3.2 7.5

Server energy (J) 19.250 4.913 49.617 10.507 16.808 23.657 8.425 8.425 8.425
E-ratio 28 737.3 146.3 334.4 128.9 266.5 440.5 525.6 592.3 686.3

S * E-ratio 28 12425 1025 2646 201 1149 4109 1667 1878 5158

Server BW 3127.6 2469.8 1348.1 3105.1 4002.1 3769.6 1604.5 1604.5 1604.5

DFPIM 28 BW 52800.0 17322.8 11704.8 4892.5 17254.9 35200.0 5866.6 5866.6 17599.4

5.5. DFPIM 28 to DFPIM 16 nm and 7 nm Comparison

The 28 nm planar technology has been in production since 2009.
The 16 nm technology began production in 2013 and the 7 nm
technology began production in 2017. The newer technologies
offer both performance and energy efficiency benefits. These

benefits are quantified in Table 5. The first section of the table
uses all three DFPIM time values from Table 3. The speedup 16
(speedup 7) row is the DFPIM 28 execution time divided by the
DFPIM 16 (DFPIM 7)execution time. Likewise, E-ratio 16 and
E-ratio 7 show the energy comparisons of 28, 16 and 7nm
technologies

Table 5. Comparing 28nm, 16nm and 7nm DFPIM results

Hist Word FFT BFS Str M Lin R SHA256 SHAmac SHAmac3

Speedup 16 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2

Speedup 7 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6

E-ratio 16 1.18 1.69 1.55 1.43 1.35 1.27 1.46 1.41 1.34

E-ratio 7 1.41 2.92 2.60 2.31 1.93 1.64 2.39 2.25 1.90

S * E-ratio 16 1.40 2.00 1.83 1.69 1.60 1.50 1.73 1.67 1.59

S * E-ratio 7 2.31 4.78 4.25 3.79 3.15 2.69 3.91 3.68 3.10

__

The speedup, energy ratio, and speedup * energy product ratio
factors are multiplicative with the values for the server to DFPIM
28 nm comparison shown in Table 4. Thus, the average speedup
of 7.2 for server to DFPIM 28 nm becomes 11.5 (7.2 * 1.6) for the
server to the DFPIM 7 nm speedup. The energy efficiency of 368
for server to DFPIM 28 nm becomes 810 for server to DFPIM 7nm.

6. Related Works
We only include works that rely on dataflow like processing. There
are too many proposals for PIM or Near Data Processing that use
conventional processing architectures or GPUs.

The Near DRAM Accelerator (NDA) [10] utilizes a dataflow
network of functional devices to reduce energy by 46% and
increase performance by an average 1.67 times. The NDA does
not include sequencing functional units or scratch pad memories
which DFPIM has shown to be necessary for improved
performance in some benchmarks. The NDA connects each
accelerator to a single DRAM die rather than a 3D-DRAM stack
used by DFPIM. This results in a higher accelerator-to-memory
cost ratio as a single DFPIM can support 4 or 8 DRAM dies.

Gan uses a reconfigurable dataflow architecture [11] to
implement stencil operations for atmospheric modeling. The
FPGA implemented system achieved a speedup of 18 compared
to a server processor. The server processor used 427 Watts,
while the FPGA hardware added 523 Watts to achieve the
speedup. The overall power efficiency was 8.3. The power
required is not suitable for a PIM application, but the
performance gain showed the effectiveness of a dataflow
implementation.

The Heterogenous Reconfigurable Logic (HRL) near data processing
[12] uses CGRL functional units and bus-based routing as well as
dedicated memory load and store units. This paper illustrates the
area, performance, and energy advantages of mixed granularity
systems such as HRL and DFPIM. The HRL system requires 8
memory stacks to achieve an average 2.5 speedup, while DFPIM
gets a 7.2 speedup with a single memory stack. Part of this is
attributable to the difference between the 45 nm process of HRL
and the 28 nm process of DFPIM. DFPIM uses a flexible,
partitioned bus rather than the mesh network of the HRL which may
allow more efficient implementation of some dataflow graphs.

Reconfigurable Dataflow Graphs for Processing in Memory ICDCN-2019, Bangaluru, India, Jan. 4-7, 2019

HRL does not have the programmable state machine for
sequencing and depends on the host for looping.

The DySER system integrates dataflow graph processing into the
pipeline of a processor essentially transforming the dataflow
graph into a processor instruction [13, 14]. The CPU instruction
fetch and single memory access per instruction greatly limits the
performance of DySER. Harmonic mean speedup ranged from
1.3 on SPECint benchmarks to 3.8 on GPU benchmarks. Being
integrated into the processor pipeline restricts the parallelism
and pipelining that a full dataflow construct can provide.

The bundled execution of recurring traces (BERET) research
implements basic blocks as a dataflow subgraph in a coprocessor
[15]. Each subgraph is executed through the CPU coprocessor
interface. A set of eight subgraphs were selected through trace
analysis to be implemented. The system resulted in a 19%
performance improvement and a 35% energy savings. A
coprocessor implementation of a standard eight subgraphs limits
the capability of a full dataflow approach.

Single Graph Multiple Flows (SGMF) [40] uses a dynamic
dataflow paradigm and CGRL to compare with an Nvidia Fermi
streaming multiprocessor. The applications for SGMF are
compute intensive applications so it is not suitable as a PIM.
However, the advantages of using dataflow with CGRL is shown
in this paper with an average speedup of 2.2 and energy efficiency
of 2.6.

The Wave Computing dataflow based neural net accelerator [33]
uses an array of small processors to execute basic block
instructions. Each processor is assigned a basic block and
accepts data from its predecessors and provides data to its
successors. The processor contains a 256-entry instruction RAM
and a 1KB data RAM. The network routing forms the dataflow
graph. Current implementation of a Wave compute appliance
consists of four data processing units per board, multiple boards
per chassis and multiple chassis. This is not suitable for a low
power PIM implementation

7. Conclusions
In this paper we described a processing-in-memory accelerator
based on dataflow computing model and we show that our system
can be used for distributed applications such as Big Data analytics.

We used careful and extensive logic syntheses to obtain execution
and energy values for our DFPIMs components using 28nm, 16nm
and 7nm technologies. We developed a backend to LLVM to
generate dataflow graphs from C code kernels identified for PIM
processing. These graphs are then used by our simulator, which
executes the graph with inputs and generates results. We have
verified the correctness of execution by our simulator by comparing
the results generated from an execution on a host processor that uses
Intel Xeon cores.

We compared the performance and energy values of DFPIM
implementations with those obtained from our baseline host
consisting of 2 14-core Intel Xeon processors for a variety of
benchmarks. We evaluated three different versions of DFPIM using
28nm, 16nm and 7nm technologies. We compared 28nm planar

version of DFPIM with the host (which uses 22 nm FinFET
technology).

The DFPIM concept showed good performance improvement
and excellent energy efficiency for the streaming benchmarks
that were analyzed. The DFPIM in a 28 nm process with an a
DFPIM core in each of 16 vaults showed an average speedup of
7.2 over 32 cores in the server system. The server processor
required 368 times more energy to execute the benchmarks than
the DFPIM implementation. These values result from the
parallelism and pipelining available in the DFPIM architecture
and the use of low power libraries in the silicon process.

Better performance and higher energy efficiency are possible by
using the more recently available 16 nm and 7 nm silicon
technologies. The 16 nm technology provides a modest speedup
of 1.2 with an energy efficiency improvement of 1.4 compared to
the 28 nm. The 7 nm technology provides a speedup of 1.6 with
an energy efficiency of 2.2 compared to the 28 nm.

The 7 nm DFPIM implementation has an average speed-up of 11.5
with an energy efficiency ratio of 810 when compared to the
server processor system.

Acknowledgements. This research is supported in part by NSF
Net-centric Industry/University Cooperative Research Center and
its industrial memberships.

8. References
[1] F. Ahmad, S. Lee, M. Thottethodi, and T. N. Vijaykumar,

Puma: Purdue mapreduce benchmarks suite, Tech. report,
Purdue University, 2012.

[2] B. Akin, F. Franchetti, and J. C. Hoe, Data reorganization
in memory using 3d-stacked dram, Computer Architecture
(ISCA), 2015 ACM/IEEE 42nd Annual International
Symposium on, June 2015, pp. 131–143.

[3] Arvind, Data flow languages and architectures, Proceedings
of the 8th Annual Symposium on Computer Architecture
(Los Alamitos, CA, USA), ISCA ’81, IEEE Computer
Society Press, 1981, pp. 1–.

[4] Arvind and D. E. Culler, Dataflow architectures, Annual
Review of Computer Science Vol. 1, 1986 (Joseph F. Traub,
Barbara J. Grosz, Butler W. Lampson, and Nils J. Nilsson,
eds.), Annual Reviews Inc., Palo Alto, CA, USA, 1986, pp.
225–253.

[5] Arvind and R. S. Nikhil, Executing a program on the mit tagged-
token dataflow architecture, IEEE Transactions on
Computers 39 (1990), no. 3, 300–318.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaff
and K. Skadron, Rodinia: A benchmark suite for
heterogeneous computing, Workload Characterization,
2009. IISWC 2009. IEEE International Symposium on, Oct
2009, pp. 44–54.

[7] Xilinx Corp, UltraScale Architecture and Product Data Sheet:
Overview, Jan 2018.

[8] Nvidia17 Corporation, Nvidia TESLA V100 GPU
Architecture, 2017.

[9] Elpida Corp, Elpida begins sample shipments of ddr3 sdram
(x32) based on tsv stacking technology, 2011.

ICDCN-2019, Bangaluru, India, Jan 4-7, 2019 C.F. Shelor and K.M. Kavi

[10] A. Farmahini-Farahani, J. H. Ahn, K. Morrow, and N.S.
Kim, NDA: Near-dram acceleration architecture
leveraging commodity dram devices and standard memory
modules, 2015 IEEE International Symposium on High
Performance Computer Architecture (HPCA), IEEE
Conference papers, March 2015, pp. 283–295.

[11] L. Gan, H. Fu, W. Luk, C. Yang, W. Xue, and G. Yang,
Solving mesoscale atmospheric dynamics using a
reconfigurable dataflow architecture, IEEE Micro 37 (2017),
no. 4, 40–50.

[12] M. Gao and C. Kozyrakis, Hrl: Efficient and flexible
reconfigurable logic for near-data pro- cessing, 2016 IEEE
International Symposium on High Performance Computer
Architecture (HPCA), March 2016, pp. 126–137.

[13] V. Govindaraju, C. H. Ho, and K. Sankaralingam,
Dynamically specialized datapaths for energy efficient
computing, 2011 IEEE 17th International Symposium on
High Performance Computer Architecture, Feb 2011, pp.
503–514.

[14] V. Govindaraju, Chen-Han Ho, T. Nowatzki, J. Chhugani,
N. Satish, K. Sankaralingam, and Changkyu Kim, Dyser:
Unifying functionality and parallelism specialization for
energy- efficient computing, Micro, IEEE 32 (2012), no. 5,
38–51.

[15] S. Gupta, S. Feng, A. Ansari, S. Mahlke, and David August,
Bundled execution of recurring traces for energy-efficient
general purpose processing, Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture
(New York, NY, USA), MICRO-44, ACM, 2011, pp. 12–23.

[16] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin,
T. Mudge, and R.B. Brown, Mibench: A free,
commercially representative embedded benchmark suite,
Workload Char- acterization, 2001. WWC-4. 2001 IEEE
International Workshop on, Dec 2001, pp. 3–14.

[17] J. L. Hennessy and D. A. Patterson, Computer architecture,
fifth edition: A quan- titative approach, 5th ed., Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2011.

[18] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, The
hibench benchmark suite: Characterization of the mapreduce-
based data analysis, Data Engineering Work- shops
(ICDEW), 2010 IEEE 26th International Conference on,
March 2010, pp. 41–51.

[19] Hybrid Memory Cube Consortium, Hybrid memory cube
specification 2.1, 2014.

[20] International Technology Roadmap for
Semiconductors, Itrs interconnect working group, 2012
update, 2012.

[21] J. Jeddeloh and B. Keeth, Hybrid memory cube new dram
architecture increases density and performance, 2012
Symposium on VLSI Technology (VLSIT), June 2012, pp.
87–88.

[22] JEDEC Solid State Technology Association, Jesd235a high
bandwidth memory (HBM) dram, 2015.

[23] K. M. Kavi, R. Giorgi, and J. Arul, Scheduled dataflow:
execution paradigm, architecture, and performance
evaluation, IEEE Transactions on Computers 50 (2001), no.
8, 834–846.

[24] K. M. Kavi, C. Shelor, and D. Pace, Concurrency,
synchronization, and speculation - the dataflow way,
Advances in Computers 96 (2015), 47–104.

[25] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and
D. Glasco, Gpus and the future of parallel computing, IEEE
Micro 31 (2011), no. 5, 7–17.

[26] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M.
Kistler, and T. W. Keller, Energy management for
commercial servers, Computer 36 (2003), no. 12, 39–48.

[27] Arm Limited, Arm Physical IP, 2017.
[28] LLVM Project, The llvm compiler infrastructure, 2018.
[29] ___, Writing an LLVM Pass, 2018.
[30] G.H. Loh, 3d-stacked memory architectures for multi-core

processors, Computer Architec- ture, 2008. 35th
International Symposium on, June 2008, pp. 453–464.

[31] Micron Technology, 16gb: x16 twindie single rank
ddr4 sdram datasheet, nov 2014.

[32] ___, Hmc high-performance memory brochure, jun
2016.

[33] C. Nicol, A Dataflow Processing Chip for Training Deep
Neural Networks, Hot Chips: A Symposium on High
Performance Chips, August 2017.

[34] D. A. Patterson, Latency lags bandwith, Commun. ACM 47
(2004), no. 10, 71–75. [90] J. Thomas Pawlowski, Hybrid
memory cube (HMC), 2011.

[35] J. Thomas Pawlowski, Hybrid memory cube (HMC), 2011.
[36] M. Scrbak, M. Islam, K. M. Kavi, M. Ignatowski, and N.

Jayasena, Processing-in-Memory: Exploring the Design
Space, Architecture of Computing Systems ARCS 2015
(Lus Miguel Pinho Pinho, Wolfgang Karl, Albert Cohen, and
Uwe Brinkschulte, eds.), Lecture Notes in Computer
Science, vol. 9017, Springer International Publishing,
2015, pp. 43–54.

[37] SK hynix, DRAM HBM products, 2018.
[38] SPEC Benchmarks, https://www.spec.org/benchmarks.html.
[39] P. Fay, T. Willhalm, R. Dementiev, Intel Performance

Counter Monitor - A Better Way to Measure CPU
Utilization, January 2017.

[40] D. Voitsechov and Y. Etsion, Single-Graph Multiple Flows:
Energy Efficient Design Alternative for GPGPUs,
Proceeding of the 41st Annual International Symposium on
Com- puter Architecture (Piscataway, NJ, USA), ISCA ’14,
IEEE Press, 2014, pp. 205–216.

[41] A. White, Exascale Challenges: Applications, Technologies,
and Co-design, From Petascale to Exascale: R&D Challenges
for HPC Simulation Environments, 03 2011.

[42] W. A. Wulf and S. A. McKee, Hitting the Memory Wall:
Implications of the Obvious, SIGARCH Comput. Archit.
News 23 (1995), no. 1, 20–24.

[43] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse,
L. Xu, and M. Ignatowski, TOP-PIM: Throughput-oriented
Programmable Processing in Memory, Proceedings of the
23rd International Symposium on High-performance
Parallel and Distributed Computing (New York, NY, USA),
HPDC ’14, ACM, 2014, pp. 85–98

