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ABSTRACT

Sparse matrix-dense vector (SpMV) multiplication is inherent in
most scientific, neural networks and machine learning algorithms.
To efficiently exploit sparsity of data in SpMV computations, several
compressed data representations have been used. However, com-
pressed data representations of sparse data can result in overheads
of locating nonzero values, requiring indirect memory accesses
which increases instruction count and memory access delays. We
call these translations of compressed representations as metadata
processing. We propose a memory-side accelerator for metadata (or
indexing) computations and supplying only the required nonzero
values to the processor, additionally permitting an overlap of in-
dexing with core computations on nonzero elements. In this con-
tribution, we target our accelerator for low-end micro-controllers
with very limited memory and processing capabilities. In this paper
we will explore two dedicated ASIC designs of the proposed accel-
erator that handles the indexed memory accesses for compressed
sparse row (CSR) format working alongside a simple RISC-like
programmable core. One version of the accelerator supplies only
vector values corresponding to nonzero matrix values and the sec-
ond version supplies both nonzero matrix and matching vector
values for SpMV computations. Our experiments show speedups
ranging between 1.3 and 2.1 times for SpMV for different levels
of sparsity. Our accelerator also results in energy savings ranging
between 15.8% and 52.7% over different matrix sizes, when com-
pared to the baseline system with primary RISC-V core performing
all computations. We use smaller synthetic matrices with different
sparsity levels and larger real-world matrices with higher sparsity
(below 1% non-zeros) in our experimental evaluations.
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1 INTRODUCTION

With the trend towards embedding intelligence into the edge, there
is a growing need towards architectural support for compute and
storage-efficient machine learning (ML) algorithms on low-power
sensing and handheld devices. These devices are characterized by
simpler cores and small on-chip memories, often without cache
memories [20, 21, 27]. Achieving real-time inference capability in
these devices requires optimizing both the storage and computa-
tions performed. Matrix computations such as matrix-vector multi-
plication is an essential component of machine learning algorithms.
For many practical applications, matrices contain a large propor-
tion of zeroes whose storage and processing is wasteful. Hence
sparsity (the percentage of zeroes in the matrix) can be exploited to
improve performance, as well as reduce storage and energy require-
ments [15, 22, 32]. Various sparse matrix representations have been
proposed and used in scientific and machine learning codes. These
include compressed sparse row (CSR [4]), block compressed CSR
(BCSR [5]), compressed sparse column (CSC [6]), coordinate list
(COO [10]), bit-vectors [22], and run-length encoding [22]. There
are also some newer representations including hierarchical bit vec-
tors [16] and compression on top of CSR [23]. Conceptually, com-
pressed representations store only the nonzero (denoted NZ) values
of a matrix along with metadata to identify the row and column
positions (i.e., indices) of these values. Matrix codes are written to
a specific sparse format in order to interpret the metadata and to
perform computations only on the NZ values.

We claim that accessing and processing compressed metadata
incurs overheads. For example, to perform pairwise multiplica-
tions of elements from matching column locations, metadata of
one matrix is used to locate the nonzero elements of another. If
the memory itself (or a small processing unit placed close to mem-
ory) could perform this metadata access and provide only needed
nonzero values to the primary processing element, it saves the CPU
energy and execution cycles. Such a memory system can provide
computation-memory parallelism by overlapping metadata accesses
with CPU computation. In this contribution we describe the de-
sign and evaluation of such a dedicated (or ASIC) memory-side
hardware accelerator called Sparse-T.

There are several studies that propose intelligent and programm-
able prefetching of data, particularly for applications that rely on
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irregular data structures including linked lists and sparse data rep-
resentations such as CSR. For example, IMP [31] proposes hardware
support for prefetching data items that involve indirect accesses
such as m[v[j]], which can represent accessing elements of a vector
based on the location of nonzero values of matrix rows using CSR-
based sparse matrices. We would like to point out that while our
Sparse-T has the affect of prefetching data for processing, Sparse-T
should not be considered merely as a prefetcher. In general IMP [31]
and other prefetchers only aid in prefetching data to the processor
while our Sparse-T can be programmed to supply only needed data,
rather than prefetching all data to the core. For SpMV application,
Sparse-T can be programmed to provide only matching nonzero
values when both the matrix and the vector are sparse. Likewise,
while there have been many prior studies in terms of decoupling or
off-loading memory access operation (consider an early decoupling
work reported in [26]), Sparse-T is a flexible hardware which can be
programmed to process application specific metadata processing.
Helper threads (particularly software threads) have been used to
aid primary threads with some operations (for example see [17]).
Such software techniques may not lead to performance gains if the
threads are scheduled on different cores requiring cache coherency
related overheads. We use separate hardware unit specifically for in-
dexing operations, placed near memory and hence eliminate cache
coherency issues and compiler optimization that leads to perfor-
mance loss in software threads.

This paper makes the following contributions.

(1) We designed two versions of ASIC memory-side accelera-
tor, called Sparse-T: in the first case (Sparse-T_1), Sparse-T
only provides vector values corresponding to nonzero matrix
values (and the primary CPU core obtains nonzero matrix
values); in the second case (Sparse-T_2), Sparse-T provides
both matrix and vector values to the primary core, eliminat-
ing the need for the primary core accessing memory.

(2) Using ARM current standard technology cell libraries, we
reported power, performance and area (PPA) for both the
ASIC designs of Sparse-T using Synopsys design tool suite
for SpMV computations.

(3) We evaluated performance gains (speedup and energy sav-
ings) with smaller synthetic matrices by varying sparsity lev-
els and also presented results using real-world large sparse
matrices with higher sparsities. We presented a compari-
son of the performance with RISC-V alone and RISC-V with
Sparse-T designs.

In this work, our focus is on computations on low-end compute
platforms. These microcontroller-based devices (MCUs) comprise
simple in-order cores (such as a core from ARM Cortex-M series or
RISC-V RV32) integrated with a small on-chip SRAM, clocked at no
more than a few hundred MHz. Thus, achieving intelligence at the
edge requires highly optimized implementations of various types
of ML inference algorithms. However, the use of a memory-side
accelerator such as our Sparse-T can be explored for other types
of processing environments. The primary concerns of SpMV op-
eration involve memory access latency, bandwidth utilization and
parallelism. In the MCU integration, BE and FE units of Sparse-T
issue requests directly to the on-chip SRAM via an on-chip inter-
connect. Thus bandwidth utilization is not a problem for Sparse-T.
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Similarly, Sparse-T is envisioned as an accelerator alongside single
in-order CPU core. In case of multicore systems, it may be possible
to use multiple Sparse-T accelerators, one per core. To summarize,
Sparse-T proposed in this work focuses on decreasing memory ac-
cess latency by overlapping computation time in primary RISC core
with that of memory fetching in Sparse-T accelerator.

2 BACKGROUND

Accessing and processing compressed metadata incurs overheads.
To perform pairwise multiplication of elements from matching
columns (of rows of one matrix), metadata of one matrix is used to
locate (and often match) the nonzero elements of another matrix
(or vector). Consider the SpMV algorithm that multiplies a sparse
matrix M by a dense vector V to produce an output (dense) vector
Y. Figure 1 shows a sample 3 X 3 matrix M of compressed sparse
row (CSR) representation.

Figure 1: A 3x3 sparse matrix in CSR Format

In the CSR representation, a cols array holds the column indices
of the nonzero values for each row of the matrix. A rows array
holds pointers (indices) to the cols array where the row’s nonzero
column indices are stored. The vals array holds the NZ values.
The SpMV algorithm traverses M row by row, obtains the column
indices of the NZ values, and accesses the corresponding indices
of the (dense) vector V. An outline of this algorithm implemented
for a CSR representation of M is shown in Algorithm 1.

Algorithm 1 CSR Version of SpMV

1: procedure SPMV(M_rows, M_cols, M_vals, n, v)
2 s« 0

3 k0

4 fori=0;i<n;i=i+1do
5: nnz < M_rows[i+1] — M_rows[i]
6 s<—20
7 for j=0;j <nnz;j=j+1do
8 s < s+ M_vals[k+j] = v[M_cols[k+j]]
9: k «— k+nnz
10: y[i] — s

Among the memory accesses made by this code, the indirect
accesses performed by v[cols[.]] are expensive — these indirect
accesses require accessing cols[.] before values of v[.] can be read.
As illustrated in the Algorithm 1, the Sparse Matrix-Vector multi-
plication (SpMV) is bottle-necked by memory accesses. Figure 2
illustrates this. Each iteration accesses are made to M_cols (blue

Iteration 1 Iteration 2 Iteration N
M M_ M_
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Figure 2: Metadata Overhead for Memory Accesses in SpMV
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blocks) to obtain nonzero column indices. Using these column in-
dices, the values of V are read (shown in yellow blocks). Next, val-
ues from the sparse matrix row are read from M_vals|.] (shown
as green blocks). Finally, multiply-accumulate (MAC) operations
are performed (shown as gray blocks) on values obtained from
M_vals[.] and V[.]. There are 3 memory accesses per iteration per
MAC operation.

We deem that fetching the elements of M_cols[.] in order to
access elements of V|[.] as overhead — the CPU incurs the cost of
fetching, decoding, and executing this memory access instruction
(loading M_cols[.]) whose only usefulness is to provide the address
for the memory access into array V. If the memory itself could
perform this metadata access to fetch V[.], then it saves the CPU
energy and cycles. Such a memory system can provide computation-
memory parallelism by overlapping metadata accesses with CPU
computation. This parallelism is depicted in Figure 2. Here, the
memory system accesses the metadata first and performs a read of
V[.]. The CPU no longer issues explicit metadata accesses followed
by accesses to the vector V. Instead, the CPU directly reads the
values of V[.] that the memory system has gathered. In this sense,
the memory system can act as an accelerator to improve the over-
all performance of real-time ML code. Our memory-side Sparse-T
accelerator, is motivated by this observation.

3 DESIGN OF SPARSE-T

Figure 3 shows the system organization of a typical embedded
environment. We envision our Sparse-T accelerator to be either
embedded or placed very close to the RAM of a MCU. In Figure 3,
the black lines show that the primary CPU core still has access to
both RAM and external flash memory of the device whereas the
accelerator is connected only to the RAM. Our Sparse-T accelerator
snoops over the memory requests sent from primary CPU core to
memory over the memory bus to determine when to start fetching
required data for CPU. In this section we describe the designs
of our proposed ASIC Sparse-T accelerator. We first describe in
Section 3.1 a design where Sparse-T supplies only the vector values
corresponding to the nonzero values in the sparse matrix for the
processor. In Section 3.2, we describe an ASIC design where Sparse-
T supplies both the nonzero values of matrix and corresponding
vector values to the processor. Both versions of Sparse-T use a 4-
stage pipeline design and operate at the same clock rate as the main
processor (Ibex [18] core).

Figure 3: System Organization with Sparse-T

3.1 Sparse-T fetching vector values (Sparse-T_1)

In the first ASIC Sparse-T version, the 4-stage pipeline architecture
is organized into memory buffers, front-end (FE) unit, back-end
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(BE) unit and processor-side buffer as shown in Figure 4. The BE
loads matrix column indexes (location of nonzero matrix values)
from CSR metadata and stream them to FE which fetches vector
elements using the column indexes. The FE is responsible for CPU-
side interactions, supplying vector elements to the CPU in response
to buffer load requests. The architecture assumes at least two mem-
ory read ports; one for FE and one for BE to operate without stalls
and in a decoupled manner synchronized by a control unit that
starts or throttles the BE and FE units based on availability of space
in the buffers.

3.1.1 Sparse-T Front-End. The Sparse-T FE is responsible for fetch-
ing vector values using matrix metadata configuration, and coordi-
nating with the CPU. The FE is supplied with matrix metadata by
the primary processor core. This is achieved by writing to a set of
memory-mapped registers (MMRs) upon initializing the Sparse-T.
The MMRs needed for CSR-based SpMV multiplication are listed
below.!

e M_Num_Rows: Number of rows of sparse matrix M.

e M_Rows_Base: Base address of CSR rows array of M.

e M_Cols_Base: Base address of CSR cols array of M.

e V_Base: Base address of dense vector V.

e ElementSizes: Sizes for Rows, Cols, Vals arrays and Vector.

For SpMV computations, Sparse-T provides indexed gather sup-
port. Values from vector V[.] are gathered using indices from
M_Cols to construct buffers. Vector values collected by Sparse-T
are written into the scratch-pad memory shared between CPU and
Sparse-T and are read by the CPU without load instructions. In our
design, we assume a scalar load-store interface, but the Sparse-T
design can work with vector load-store interfaces as well. The CPU
obtains scalar or vector V[.] values from Sparse-T and perform
multiply-accumulate to produce the output vector. Whenever the
CPU accesses the stored vector value, the FE updates its buffer state
to determine when the buffer has been completely drained by the
CPU. If multiple CPU-side buffers are available for Sparse-T, then
whenever one buffer is drained, the FE switches to the next ready
buffer. In this sense, the FE offers a streaming FIFO interface to the
CPU. If the CPU performs a load when the buffer is not ready, then
the FE stalls the load. Figure 4 describes the design of the Sparse-T
pipeline operation.

Figure 4: Sparse-T Pipeline fetching vector values

'We described ASIC Sparse-T for SpMV here. The design can be extended for Sparse
matrix - Sparse vector SpMSpV multiplication using additional metadata and comparing
indexes of Matrix columns with Vector indexes to match non-zero values.
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3.1.2  Sparse-T Back-End. The BE pipeline stage issues memory
read requests to obtain contents of the M_cols[.] array. Using the
base address of M_cols[.] array (stored in register M_cols_Base)
and element size s, the element address is calculated as M_cols_Base+
s by BE. This computed address is used to generate requests to mem-
ory. The memory response obtained through the memory buffer is
shared with FE. Column index values from BE are used to compute
the addresses of the elements of array V[.]. This computed address
is used to issue a second memory request in FE stage of the pipeline.
Values read from array V[.] are stored in a CPU-side buffer. While
CPU issues load instruction for the matrix value fetch for the next
operation, vector value for the operation is available from Sparse-T.

The control unit generates signals for all stages of the pipeline. In
particular, the unit tracks processor buffer empty or full conditions
to stall CPU load requests (when no ready buffer is available) or to
stall memory request generation to V[.] (when column indices have
not yet been read from memory) or to skip issuing new memory
read requests when all buffers are full. The unit also tracks the
coordination between the pipeline stages and their communication
with the memory buffers. Depending on the number of buffers
provisioned to interface between Sparse-T and CPU, the control
unit can also be configured to track which buffer to access.

3.2 Sparse-T fetching matrix and vector values
(Sparse-T_2)

In the second version of Sparse-T, the BE calculates load address
and fetches sparse matrix nonzero row and column indices from
the memory system to enable the FE assemble CPU data buffer in a
timely fashion. In addition, FE is responsible for fetching nonzero
matrix and corresponding dense vector values for CPU and handling
configuration writes from the CPU. In CSR representation, the
difference of the current row index and previously fetched row
index determines the number of nonzero values in the current row.
Initially, the row address is calculated by incrementing the value
stored in M_Rows_Base register by element size s and is stored in
cur_row register in BE. The value in cur_row register will be used
to calculate address for next elements by incrementing. At the start
of each row, the current row index value is stored in cur_row_idx
register. When switching rows, the cur_row_idx register value is
mapped to prev_row_idx register while cur_row_idx register is
updated with new value. To calculate the number of non-zeros in
each row, the difference is calculated between cur_row_idx register
value and prev_row_idx register value. This difference is stored in
cur_non_zero register and is updated only when switching rows
by BE. This value in cur_non_zero register determines the number
of column indices to be fetched for that row. The column indices
are fetched by calculating address as M_cols_Base + s and updating
cur_col_idx register by BE. FE calculates the matrix values starting
from M_base address by incrementing the value stored in M_base
register with element size s and is stored in cur_mat_val. This
value in cur_mat_val is incremented for each matrix value fetch.
The vector address generation and value fetch by FE remain same
as described in the previous architecture. Figure 5 describes the
pipelined architecture of Sparse-T_2 design.

For this implementation, the Sparse-T constructs two values
into the output buffer at each step — one is the nonzero value of
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Figure 5: Sparse-T Pipeline fetching matrix and vector values

the matrix row and the other is the vector value corresponding
to this nonzero matrix value. The nonzero value of sparse matrix
is pushed into the buffer first followed by the vector value. CPU
buffer is continuously updated with required nonzero matrix and
vector value and there is a break only when Sparse-T is switching
to the next row. Two memory buffers are still in use as described in
previous architecture for FE and BE units to fetch memory values
and the size of the buffers can remain as small as required. There are
no additional metadata registers or pipeline stages required for the
enhanced architecture. This architecture consumes slightly more
area but less execution time compared to the Sparse-T architecture
discussed in Section 3.1 and reduces the stalls due to memory access
conflicts between CPU and Sparse-T. The matrix and vector values
are available to the CPU directly from the scratch-pad memory
without any additional load instructions.

4 EXPERIMENTAL EVALUATION

In this paper we evaluated both ASIC Sparse-T designs described
in the previous section (Section 3); one which fetches only the
required vector values (Sparse-T_1) and the second fetches both
matrix and vector values (Sparse-T_2) for SpMV operations in em-
bedded processing environments.

System Configuration: Table 1 describes the system configuration
used in our work. While evaluating the ASIC Sparse-T designs, we
used Ibex RISC-V [18] core as the primary core. The ASIC hardware
is designed using Verilog language to accurately model the embed-
ded RISC-V Ibex core [18] and Sparse-T architectures. The system
includes a 32-bit RISC-V [11] based instruction set architecture that
supports compressed, integer multiply and divide, embedded and
bit manipulation extensions also known as Zero-Riscy [18] along
with required Sparse-T architecture. The primary CPU core uses
an in-order 3-stage pipeline implementation. In particular, loads
require two cycles to complete; hence stalling the pipeline for one
cycle. ASIC Sparse-T is equipped with a 32-byte buffer to commu-
nicate with the primary CPU core. Both ASIC Sparse-T and CPU
core are evaluated at a maximum of 50MHz frequency.

Tools and Libraries Used: We used ARM standard libraries of
7nm, 16nm and 28nm to estimate the area occupied by Sparse-T
architecture with respect to the CPU (Ibex [18]) core. However, the
comparisons of ASIC Sparse-T with baseline (using only a Ibex RISC-
V core) for power, execution time and energy estimates are based
on ARM 16nm technology node library with a standard thresh-
old voltage (svt) of 80mV. We used Synopsys Design Compiler tool



Sparse-T: Hardware accelerator thread for unstructured sparse data processing

Table 1: System Configuration

Processor Values
Core RISC-V32 with IMC Extensions
Frequency = 50 MHz
In-order 3-stage
Element Size (SEW) = 32 bit
N=2 Buffers
Buffer size = 32B

ASIC Sparse-T

to generate gate-level netlist of the Verilog described hardware.
Both the Verilog design and the synthesized netlist are verified for
functionality against different workloads as specified below using
Synopsys VCS tool. Synopsys Primetime is used to generate the
power report for the netlist generated against the value change
dump (VCD) trace file. We collected total execution cycles, area
and power estimates for different combinations of RISC-V core and
Sparse-T configurations.

Workloads: To analyze the performance of Sparse-T, synthetic ma-
trices are generated. Since ML applications involve different sparse
levels, we generated synthetic matrices with different percentages
of zero values (or sparsity) varying from 10% to 90% in steps of
10%. Experimental results are presented in Section 5 with synthetic
sparse matrices of sizes 16*16, 32*32 and 6464 for ASIC designs. We
also included performance results for several matrices drawn from
the Texas A&M Sparse Matrix collection (TAMU) [8]. These sparse
matrices benchmark collection represent scientific workloads with
very high levels of sparsity.

5 EXPERIMENTAL RESULTS

In this section we report power, performance and area for both ASIC
Sparse-T designs and compare them with RISC-V alone as baseline.
We used the same clock frequencies for the primary RISC-V core
and Sparse-T. The two Sparse-T designs, (i) Sparse-T fetching vector
values and processor fetching matrix values (Sparse-T_1 design)
and (ii) Sparse-T fetching matrix and vector values while processor
only performs matrix-vector multiplications (Sparse-T_2 design)
are compared with the baseline where the processor fetches matrix
and vector values and performs the arithmetic computations.

5.1 Area Results

The area of ASIC Sparse-T is the sum of logic gates of the control
unit, pipeline stages, Sparse-T buffers, memory-mapped registers
and internal state registers. The area of Sparse-T varies by the
type of variant chosen whereas processor area remains constant
in all three configurations. The designs (Sparse-T and RISC-V) are
synthesized using three of the recent semiconductor technology
nodes (7nm, 16nm and 28nm of standard threshold voltage (svt)
libraries from ARM) that are used in embedded devices. From Table
2, it can be observed that Sparse-T_1 design occupies 30.86% of the
processor area while Sparse-T_2 design occupies almost 40.09% of
the processor area for standard 16nm node technology. The reported
area for Sparse-T designs considers RISC-V area as well since Sparse-
T is an addition to the processor. Sparse-T_2 occupies more area
compared to Sparse-T_1 since it requires more registers to store the
state of the design as shown in Figure 5 and performs more work
including calculating row address and addresses of nonzero matrix
values; the latter is handled by CPU core in Sparse-T_1.
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Table 2: Area in pm? of RISC-V and Sparse-T configurations

l ] Area(um?) ]
Configuration 7nm | 16nm | 28nm
RISC-V alone 1451 5543 10961

RISC-V with Sparse-T_1 | 1920 | 7254 | 14651
RISC-V with Sparse-T_2 2059 7766 15664

Table 3: Power in pW on 16*16 matrix size at 10% sparsity for
RISC-V and Sparse-T configurations

l ] Power in pW l
Configuration 10MHz | 25MHz | 50MHz
RISC-V alone 71 181 367
Sparse-T_1 alone 18 44 88
RISC-V of Sparse-T_1 75 195 377
Total RISC-V with Sparse-T_1 93 239 465
Sparse-T_2 alone 102 116 125
RISC-V of Sparse-T_2 63 168 323
Total RISC-V with Sparse-T_2 165 274 448

5.2 Power Results

The power estimates reported in Table 3 include both leakage power
and dynamic switching power using 16nm technology process run-
ning at 10MHz, 25MHz and 50MHz frequencies for 1616 matrix
size. It is observed that Sparse-T_1 alone without RISC-V consumes
less power compared to Sparse-T_2 without RISC-V at the reported
frequencies. This additional power consumption in Sparse-T_2 de-
sign is because there is more switching activity than Sparse-T_1
design as it has to compute address for matrix values as well. How-
ever, it is also observed that RISC-V processor consumes less power
when it is accelerated by Sparse-T_2 (represented as RISC-V of
Sparse-T_2 power) compared to rest of the configurations (RISC-V
of Sparse-T_1 and RISC-V alone). Due to the load balancing in RISC-
V with Sparse-T_2 design, power consumption is also distributed
among primary RISC-V core and Sparse-T_2. It is to be noted that
RISC-V of Sparse-T_1 has higher power consumption compared
to RISC-V of Sparse-T_2 and RISC-V alone since RISC-V in this
configuration performs memory accesses for matrix values as well
as access the buffered vector values supplied by Sparse-T. In the
case of RISC-V alone, the RISC core is accessing both matrix and
vector values, but it does not use the additional buffers as needed
when using Sparse-T, and the RISC-V core will be stalled during
the memory accesses. The total power of RISC-V with Sparse-T_1
is given by sum of RISC-V of Sparse-T_1 and Sparse-T_1 alone in
Table 3. Similarly, total power of RISC-V with Sparse-T_2 is sum of
RISC-V of Sparse-T_2 and Sparse-T_2 alone.

5.3 Execution time Results

From the pipeline representations shown in Figure 4 and Figure 5,
it can be observed that the execution time of the Sparse-T designs
depend on the number of nonzero column index values. Sparse-T_1
supplies a new vector element at every clock cycle after the initial
delay of 9 cycles to primary RISC-V core. Sparse-T_2 design supplies
anew nonzero matrix value and a corresponding vector value every
3 cycles after an initial delay of 14 cycles. Hence the execution time
of the Sparse-T_1 design is given as a product of the number of
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Table 4: Execution time in in ps on 16*16 matrix size at 10%
sparsity for RISC-V and Sparse-T configurations

l l

Execution time in ps

Configuration 10MHz | 25MHz | 50MHz

RISC-V alone 327 136 68
RISC-V with Sparse-T_1 225 90 41
RISC-V with Sparse-T_2 156 62 32

Table 5: Energy in nJ for different matrix sizes at 10% sparsity
and 50MHz frequency on RISC-V and Sparse-T configurations

l [ Energy (nJ) ]
Configuration 16*16 | 32*32 | 64764
RISC-V alone 24 94 372
RISC-V with Sparse-T_1 20 78 305
RISC-V with Sparse-T_2 12 45 176

nonzero column indices in sparse matrix times the clock period
added to the initial delay. However, Ibex processor [18] requires
3 cycles for a multiplication (MUL) and hence by the end of the
execution on previous operands, both Sparse-T_1 and Sparse-T_2
designs will be able to supply new data to CPU without any CPU
stalls waiting for Sparse-T. Also, if the processor has multiple buffers,
then Sparse-T fetching both matrix and vector values will greatly
reduce the loading of data and wait times compared to the other
two configurations. Table 4 shows execution times that include
arithmetic operations for matrix-vector multiplication and address
computations for 16*16 matrices at 10% sparsity using 16nm node
technology. Sparse-T_2 design results in the lowest execution time,
since Sparse-T handles the memory accessing and CPU performs
multiply-accumulate operations in parallel. Whereas in Sparse-T_1
design, Sparse-T fetches vector values, while RISC-V fetches matrix
values and perform computations which increase the total execution
time of Sparse-T_1 design compared to Sparse-T_2 design with RISC-
V. Although RISC-V in Sparse-T_2 design requires less execution
times than Sparse-T_1 design, RISC-V with Sparse-T_2 requires
additional 10% of hardware area to accommodate matrix value
computations.

5.4 Energy Results

Energy consumption is particularly important for embedded com-
puting devices. Since execution time is saved by using Sparse-T to
support the processor with loading matrix and vector values, Sparse-
T_1 and Sparse-T_2 designs result in energy savings compared to
the RISC-V alone configuration as can be seen from Figure 6. How-
ever, the performance improvements depend on the amount of
work offloaded to Sparse-T. The reported values are for both Sparse-
T designs and RISC-V processor running at 50MHz frequency and
synthesized using 16nm process technology. For Sparse-T designs,
RISC-V is considered to be executing in parallel that adds to the area
and power while reducing execution time. Since memory accesses
in Sparse-T overlap with CPU’s arithmetic operations, Sparse-T is
never turned off during the entire execution time. Figure 6 shows
that Sparse-T_1 design achieves between 15.8% and 5.4% energy
savings for sparsities between 10% to 90% and Sparse-T_2 design
achieves between 50.2% and 18.9% energy savings. On average,
Sparse-T_1 and Sparse-T_2 achieve 13.7% and 38.7% energy savings
respectively.

Vasireddy, et al.

Figure 6: Energy in nJ of 16*16 matrix with varying percent-
ages of sparsity

Using different matrix sizes of 16*16, 32*32 and 64764 with 10%
sparsity, power and execution times are obtained at 50MHz fre-
quency to calculate the energy savings shown in Table 5. Energy
savings slightly increase with increasing size of the matrix; 15.8%
on 1616, 17% on 32*32 and 18% on 6464 for Sparse-T_1 and 50.2%
on 16*16, 52.1% on 32*32 and 52.7% on 6464 as the number of
nonzero values at chosen 10% sparsity increase with matrix size.
From the table, it can also be observed that both Sparse-T_1 and
Sparse-T_2 perform better than RISC-V across all the matrix sizes
due to the offloading and compute-memory overlap. In Sparse-T_2
design, Sparse-T executes almost half of the instructions (3 loads)
required in each of the SpMV loop iteration and hence shows 50%
reduction in energy compared to the baseline RISC-V alone per-
forming both load and arithmetic operations. Sparse-T_1 design still
requires RISC-V to compute arithmetic computations and hence
shows lower savings.

5.5 Benchmark Evaluation

Most of the real world applications store information as highly
sparse large matrices. But for fast and effective parallel processing
of these large matrices in ML applications, they are broken into
smaller batches or blocks of size 16, 32 and 64. Our Sparse-T can
effectively work with any sparse matrix irrespective of its size.
Table 6 shows the results of six large sparse matrices from different
domains of engineering that are available on SuiteSparse Matrix
Collection [8]. These scientific matrices exhibit very high degree of
sparsity. The distribution of non-zeros across the rows of the matrix
(symmetry) does not have a large impact on the speedup and energy
savings on our accelerator unlike the common prefetchers. Among
the matrices selected, jpwh, rbsa_480 and pesa have asymmetric
nonzero distribution and the other three benchmarks (685_bus, G10
and Andrews) are symmetric. rbsa_480 and G10 have 7.4% and 5.9%
nonzero values and hence show higher speedups and energy savings
with Sparse-T compared to other benchmarks with 1% nonzeros.
Among the other benchmarks (685_bus, jpwh, pesa and Andrews),
as matrix size increases, we notice an increase in the speedup and
energy savings. The energy savings and speedups of RISC-V with
Sparse-T_1 and RISC-V with Sparse-T_2 exhibit the same trend that
was observed with smaller matrices. Since Sparse-T_2 has equal
distribution of workload with RISC-V, it has more energy savings
and higher speedup when compared to Sparse-T_1 design where
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Table 6: Percentage of energy savings and speedup for matrices from SuiteSparse Matrix collection [8] at 50MHz frequency on

RISC-V and Sparse-T configurations

l I

Energy savings and Speedup ]

RISC-V
RISC-V with
Number with RISC-V with WL | RISC-V with
Benchmark L. .. Sparse-T_2
. Matrix size of non- Application Sparse-T_1 Sparse-T_1 Sparse-T_2
suite Zeros Ener Speedu Energy Speedu
® gy P P savings P p
savings
685_bus 685 x 685 1,967 Power network problem 6.21% 1.38x 27.78% 1.79x
jpwh 991 x 991 6,027 Semiconductor device problem 10.78% 1.46x 38.80% 2.01x
rbsa480 480 x 480 17,088 Robotics problem 14.17% 1.53x 45.65% 2.26x
G10 800 x 800 38,352 Undirected weighted random graph 15.22% 1.54x 46.34% 2.28x
pesa 11738 x 11738 79,566 Directed weighted random graph 13.21% 1.47x 40.84% 2.02x
ional hics/visi
Andrews | 60000 x 60000 | 410,077 Comp utatw;ibiff ics/vision 14.63% 1.50x 44.49% 2.14x

the workload is unequally distributed between primary core and
accelerator (primary core doing more work than the accelerator).

6 RELATED WORKS

Sparse Matrix Accelerators. Accelerating sparse matrix operations
has received attention from both the hardware and software com-
munities. On the hardware side, works propose hardware accel-
eration of the entire computation: some of these works include a
CAM-based accelerator [30], accelerator for very large SpMV. The
work in [25] proposes a Two-Step SpMV algorithm and a memory-
based accelerator to accelerate such computations on very large,
very sparse graphs. Our work is different: we focus on reducing
memory latency issues of embedded systems for matrix computa-
tions. Unlike works that aim to move the entire computation to
a dedicated accelerator, our goal is simply to reduce the memory
bottleneck faced by vectorized codes running on traditional cores.
Some researchers explored hardware that expands sparse data into
dense by inserting zeroes [3], [1]. However, it is believed that only at
lower sparsities, such expansion can improve performance since the
expanded data can be executed using vector and SIMD instructions.
In [19] hardware SVM-based accelerator is designed which relies
on data prefetchers and Compressed Sparse Column (CSC) format
to reduce the number of indirect memory accesses and speed up
SpMV computations. CSC format is similar to CSR format but com-
presses along columns. This allows for reuse of vector values by
computing partial results using the nonzero values in each col-
umn of the matrix. These accelerators require (possibly floating
point) multipliers inside the accelerators unlike our Sparse-T which
only calculates memory addresses and requires only simple integer
ALUs (possibly with shift operations instead of multipliers). The
design reported in [28] takes advantage of the DRAM interleaving
storage for improving bandwidth utilization in SpMV computations
but our implementation focuses on embedded processors which do
not have DRAMs and do not suffer from bandwidth utilization.
There are several works that focus on performance of sparse ma-
trices for scientific applications. Authors of [7] proposed a parallel
sparse matrix algorithm based on SUMMA used in BLAS library and
parallelized the sparse matrix multiplication, while we used hard-
ware accelerator to extract only nonzero values. Greathouse [14]
proposed an algorithm, CSR-Stream to compute sparse Matrix -
dense Vector multiplication for smaller rows. They also present

a CSR-Adaptive algorithm which chooses CSR-Stream instead of
traditional CSR, and expands sparse matrices to dense to enable
parallelization. Azad and Buluc [2] proposed a parallel sparse Ma-
trix - sparse Vector (SpMSpV) algorithm that stores the product of
sparse Matrix - dense Vector based on the row indices and later
accumulates it, all by using buckets.

Processing In Memory and Near Data Processing Approaches. There
have been many studies on near-data processing (or Processing-In-
Memory) approaches for improving memory latencies and utilize
higher bandwidths. More recent works focused on migrating com-
putations to PIM. Some older reports proposed migrating memory
intensive operations closer to memory including memory allocation
and garbage collection functions (see for example [9, 24, 29]). In one
interesting work, the authors propose creating memory gestures
(or macros) for some common operations involved in traversing
linked lists and avoid bringing intermediate nodes into processor
caches [12].

New Sparse Representations. In a different vein, there have been
proposals on improving compression of sparse matrices and pro-
posed techniques including hierarchical bit vectors [16] or com-
pression on top of CSR [23]. There are proposals for specialized
hardware to compress and decompress data for use by CPU (assum-
ing that the CPU uses conventional SpMV software) [23]. Others
propose hardware for new compression formats (such as hierar-
chical bit maps) for performing sparse matrix computations [16].
We programmed Sparse-T to handle sparse data represented using
SMASH [16] format. SMASH format requires complicated indexing
to locate the row and column positions of non-zero values of a
sparse matrix. This implies that Sparse-T for SMASH is performing
more work than the CPU, causing CPU to idle. Moreover, we feel
that SMASH format may not be suitable for embedded systems. Due
to space limitations, we did not include of the performance gains
achieved when Sparse-T is programmed using Spike simulator [13]
to process hierarchical bit representation of sparse data as done in
SMASH [16].

7 CONCLUSIONS

In this work, we presented two ASIC designs of a memory-side ac-
celerator for sparse matrix-dense vector multiplications. The accel-
erator, denoted as Sparse-T, decouples the overhead of accessing and
interpreting metadata of compressed sparse representation from
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the primary CPU core. Our approach should be distinguished from
most other accelerators that accelerate the entire computation, not
just index computations. In addition, we focus on micro-controller
domain, necessitating low power design. We presented the ASIC
implementation of Sparse-T that handles CSR sparse data repre-
sentations. Although not shown in this paper, we have evaluated
ASIC Sparse-T designs for other sparse representations like bit-
vector and run-length. However, CSR format is chosen in this work
since it is widely used. While more specialized sparse formats may
be explored for specific domains and specific sparsity levels, they
likely require more complex programming and/or more complex
hardware support.

The two ASIC Sparse-T designs presented in this paper show
average performance gains between 1.3 and 2.1 depending on the
sparsity levels with small synthetic and large real-world matrices
over RISC-V baseline. The Sparse-T designs also result in energy
savings, as high as 18% with Sparse-T fetching only vector values
and 52.7% with Sparse-T fetching both matrix and vector values
when compared to baseline of RISC-V alone performing indexed
computations for SpMVover different matrix sizes.

We are currently exploring the design of programmable Sparse-
T using a bare minimum RISC-V like instructions with very few
integer instructions, registers and caches so that different sparse
representations and access patterns can be processed by Sparse-T.
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