

Abstract— In our prior work we explored the use of a

separate cache for I-structure memories within the
context of dataflow based multithreaded systems. I-
structure memories in dataflow systems are used to
store arrays and other indexed or stream data items.
This work showed that using separate (data) caches for
indexed or stream data and scalar data items could lead
to substantial improvements in terms of cache misses. In
addition, such a separation allowed for the design of
caches that could be tailored to meet the properties
exhibited by different data items.

 In this paper we explore a similar cache
organization providing architectural support for
distinguishing between memory references that exhibit
spatial and temporal locality and mapping them to
separate caches. Since significant amounts of
compulsory and conflict misses are avoided, the size of
each cache (i.e., array and scalar), as well as the
combined cache capacity can be reduced. According to
the results of our simulations a partitioned 4k scalar
cache with the streams (or arrays) mapped to a 2k
array cache can be more efficient than a 16k unified
data cache.

I. INTRODUCTION

onventional caches imply no separation of data based
on the nature of the locality exhibited by different data
references, handling all memory references in a

uniform manner - whenever a reference misses, a new
block is brought into cache at the expense of replacing
another block. Since not all data items exhibit both spatial
and temporal localities, this simple minded treatment to the
references makes the data cache inefficient at adapting to
the two types of localities. Generally, caches exploit
temporal locality by retaining recently referenced data for a
long time, and spatial locality by fetching multiple
neighboring words as a cache block whenever a cache miss
occurs. If a data item exhibits no temporal locality, bringing
it into the cache is useless. Likewise if no spatial locality is
exhibited by data items, bringing an entire cache block
leads to wastage. Thus traditional treatment of cache misses
not only causes unnecessary movement of data between the
various levels of the memory hierarchy, it may lead to
premature displacement of blocks that are likely to be re-
referenced (i.e., cache pollution). This can become very
costly if the newly loaded data tends to be non-temporal. In
any case the result is an unnecessary increase in miss ratios,
memory access times and memory bandwidths.

In our prior work we explored the use of a separate cache

for I-structure memories within the context of dataflow
based multithreaded systems [1]-[3]. I-structure memories
in dataflow systems are used to store arrays and other
indexed or stream data items. This work showed that using
separate (data) caches for indexed or stream data and scalar
data items could lead to substantial improvements in terms
of cache misses. In addition, such a separation allowed for
the design of caches that could be tailored to meet the
properties exhibited by different data items.

In this paper we explore a similar cache organization
providing architectural support for distinguishing between
memory references that exhibit spatial and temporal
locality and mapping them to separate caches. The selection
of proper block size or associativity to maximize
performance while staying within the cost are the hardest
choices in designing cache memories. By partitioning the
cache as we propose, our cache system can implement
different configurations exploiting different cache
parameters more selectively and effectively. The “array
cache” is a direct mapped cache with larger block sizes to
exploit spatial localities more aggressively by (pre)fetching
multiple neighboring small blocks on a cache miss.
Whereas the “scalar cache” is a 2-way (or 4-way) set
associative cache with smaller block sizes to exploit
temporal locality. The combination of different block sizes
and associativities together with partitioned cache
architectures provides an effective solution for alleviating
the existing problems in cache designs and maximizes the
effective cache memory space for any given cache size and
cost. Since significant amounts of compulsory and conflict
misses are avoided, the size of each cache (i.e., array and
scalar), as well as the combined cache capacity can thus be
reduced. According to the results of our simulations a
partitioned 4k scalar cache with streams (or arrays) mapped
to a 2 k array cache can be more efficient than a 16 k
unified data cache.

The rest of the paper is organized as follows. Section 2
discusses related issues and performance metrics in more
detail to motivate the reader. Section 3 provides a survey
and analysis of related research. Section 4 describes
benchmarks and experimental set up used in our evaluation
while, section 5 presents the results. The main conclusions
are drawn in section 6 with a brief synopsis of the future
work.

II. CACHE, ITS DATA, PARAMETERS AND DEFICIENCIES

Although caching dates back to Von Neumann's classic
1946 paper that laid the foundation for modern practical
computing, it became vital in the performance of a
processor since the beginning of 1990’s as the gap between

 A Study of Separate Array and Scalar Caches

Afrin Naz, Krishna Kavi, Philip Sweany and Mehran Rezaei

C

the processor cycle and memory latency times increased
dramatically. Caches are typically placed between a large,
relatively slow and inexpensive source of information (the
lower level of memory) and a much faster consumer of that
information, the processor. The success of cache memories
has been explained by the property of locality of reference
[4], which is a property exhibited by most programs. A
cache exploits this property to improve the effective access
time to data and reducing the cost of accessing main
memory. The property of locality has two aspects, temporal
and spatial. Temporal locality implies that, once a location
is referenced, there is a high probability that it will be
referenced again soon, and less likely to do so as the time
passes; spatial locality implies that when an instruction or
datum is accessed it is very likely that nearby instructions
or data will be accessed soon. Since cache buffers recently
used segments of information, the property of locality
implies that needed information is also likely to be found in
the cache.

As the CPU speed has outstripped the rest of the system
by many orders of magnitude and the memory bandwidth
problem keeps growing, some deficiencies of conventional
caching are becoming evident. Existing cache organization
suffers from the inability to distinguish different types of
localities and non-selectively cache all data rather than
making any attempt to take special advantage of the locality
type. This causes unnecessary movement of data among the
levels of the memory hierarchy, significant interference
between unrelated data inside the cache, removal of
potentially useful data causing cache pollution and
unnecessary increases in miss ratio, memory access time
and memory bandwidth. The references can be easily
divided into two groups according to the types of localities
exhibited by the program -- the scalar and streamed
(strided) references. Conventional cache techniques are
acceptable for general-purpose scalar references with high
temporal locality. But the picture is totally opposite for
stream references, which do not reuse data soon or often
enough to derive much benefit from caching. Since arrays
and streams exhibit only spatial localities and the data sizes
are often too large for caches, computations with streams
and array access patterns cause mostly compulsory misses
(rather than conflict misses) and perform extremely poorly
in terms of cache behavior. In order to solve this problem,
our proposed architecture groups the memory accesses as
scalar or array references according to their inherent
locality and each group subsequently mapped to a
dedicated cache partition, equipped with architectural
constructs built to exploit that particular locality type. In
this system, since the scalar references and streamed
references are no longer negatively affecting each other,
cache interference, thrashing and pollution problems will
be diminished, delivering better performance. Not only
both caches would be designed more optimally according
to their specific needs, it will simplify some other general
issues and concerns in cache design, such as the
associativity, cache block size or cache capacity. Even if

the program displays only a small percentage of scalar
references (in case of scientific applications) or very few
arrays or streams we feel that it is better to use separate
scalar and stream caches. In the following subsections we
will talk about issues in general cache design.

A. Cache block size

The selection of block size depends on both the latency
and bandwidth of the lower-level memory [5]. It is possible
to achieve higher memory bandwidths on modern
memories that are supported by wider buses, multiple
banks, more pins, integrated circuit properties of DRAMs
(for example on-chip memory), the newer Rambus and
Synchronous DRAM [6]. However, high memory latency is
still an issue that must be addressed. Although high latency
and high bandwidth both encourage larger block sizes since
the cache gets many more bytes per miss for a small
increase in miss penalty, not all applications can benefit
from larger blocks. Increasing block size to reduce the
impact of memory latency also implies prefetching of data
for applications exhibiting greater spatial localities, such as
the applications using streams. On the other hand
applications that exhibit very little spatial but greater
temporal localities (as exhibited by scalar data items)
cannot benefit from preteching or larger cache blocks. In
fact, for scalar references, it is better to have smaller cache
block sizes and more cache lines to eliminate conflict
misses and even capacity misses when smaller caches are
used [5]. Our work is motivated by the observation that it is
not possible to design a single cache that works well for
different types of localities and data types. We propose
multiple data caches designed with different block sizes to
meet the needs of the different data types.

B. Cache capacity
Increasing cache size will obviously reduce capacity

misses; however as cache size increases, a capacity miss
will become a conflict miss [5]. On the other hand if the
number of capacity misses is small, increasing the capacity
of the cache will not benefit the application. Jouppi et. al.
[7] reported that increasing cache capacity actually
increases cold-start or compulsory misses and these misses
are more likely to be sequential in nature. This is
particularly the case with stream data types. Thus for
stream references it is not necessary to have a large cache.
A larger cache can benefit applications that access several
sets of data, but not for applications that access a single
stream [7]. Similar results have been reported for media
processing workloads [8].

C. Associativity

For a cache of given size, its set-associativity is dictated
by a number of criteria, which include implementation cost,
access time (both on hit and miss) and miss rate. Direct
mapped caches are simpler, easier to design and require
less silicon area, than set associative caches. The main
disadvantage of a direct mapped cache is the high conflict

miss rate. Because of lack of associativity, conflict misses
typically account for 40% of all direct-mapped cache
misses [7]. Conversely for caches with higher associativity
the main advantage is lower miss rate, but they are more
expensive and incur longer access times on hit. The goal of
a computer architect is to maximize performance while
staying within the cost and power constraints. A more
desirable cache design would reduce the conflict miss rate
to the same extent as a set associative cache, but at the
same time it would maintain the critical hit access path of
the direct mapped cache. Because of the lack of temporal
locality, the stream references will cause more compulsory
misses than conflict misses and direct mapping will be the
better option for an array cache. Whereas for a scalar cache,
increasing associativity will lead to a reduction of conflict
misses and exploitation of temporal locality.

D. Streams

In this paper we focus on the class of computations that
involve access to stream references. Streams are sequential,
structured data or collection of successive elements with a
known, fixed displacement (called stride) between
elements. Streams are traversed linearly - during read these
return successive elements, and during write these accept
successive elements and store them sequentially. Typically
the elements are operated on iteratively. And the elements
are used once or very few times during the traversals. Thus
streams exhibit high degree of spatial locality with very
little temporal locality. Another characteristic is their
transparent and completely predictable reference pattern.
Stream accesses are typically generated in loops. At the
beginning of the loop, only by knowing the base address
(the address of the first element in the stream), stride and
the length of the stream, the entire reference pattern of this
specific type of structure can be predicted. Examples of
computations using streams include vector (scientific)
computations, string processing, multimedia applications,
compression and decompression, encryption, signal
processing, image processing, text searching, and DNA
sequence matching.

 Since caches that rely on temporal locality are
ineffective for streams, memory bandwidth is rapidly
becoming limiting for these streaming computations. The
presence of higher spatial locality of the stream accesses
makes them a better candidate for prefetching by increasing
the block size. Since most modern DRAM components
support modes that make it possible to perform some access
sequences faster than others, the predictability of the stream
accesses makes it possible to reorder them to get better
memory performance [6].

III. RELATED WORKS

Complementing the cache with a small extra module to
exploit temporal and spatial localities was first proposed by
Jouppi [7]. The Stream buffer is a fully associative, FIFO
buffer with 4 or 5 entries designed to support the direct
mapped cache through prefetching. A miss will induce the

prefetching of the missed block along with successive
blocks that will be stored in the buffer rather than the cache
to avoid cache pollution(premature displacement of data).
The Stream buffer will not only mitigate traditional
problems with larger cache lines and extensive prefetching,
it is more effective than other investigated prefetch
techniques [9]. The biggest problem with Stream buffer is
the it needs to be flushed at the detection of any non-spatial
data. Jouppi’s investigation did not explore the Stream
Buffer only for data with spatial localities (such as
streams), the buffer was used for all data items.
Subsequently, two different approaches have emerged; the
first approach retains Jouppi’s original idea and
supplements the regular cache with a small buffer for
prefetching all data items regardless of the nature of
locality exhibited by the data; the second approach is real
cache partitioning to exploit different data localities
exhibited by different data types. Partitioning of the cache
can be either static or dynamic.

The most extensive and prominent work belonging to the
first trend is done by Mckee et. al. [6]. They designed a
SMC (stream memory controller), which is a combination
of a small buffer and an intelligent scheduling unit for
supporting the regular cache. When the program enters a
loop that accesses one or more streams, compiler-generated
code provides the scheduling unit with the base addresses,
the number of elements, and the strides for any streams
accessed in the loop body. The Memory Scheduling Unit
(MSU) uses this information to reorder the requests so that
even though the processor still issues requests to the Stream
Buffer Unit (SBU) in the natural order, the order in which
associated requests are made to memory will maximize the
use of its bandwidth. Since the stream accesses no longer
affects the cache, the cache can be designed more optimally
for the remaining requests. Palacharla et. al. [10] proposed
to use multiple stream buffers to replace the big secondary
cache.

Sanchez et. al. [11] have proposed a dual data cache,
which is composed of two modules, temporal module
which is a fully associative buffer, built to exploit just
temporal locality and spatial module, which is a direct
mapped cache targeted to exploit spatial locality. The
former module has only 16 very short blocks (each 64-bits)
and the later has larger blocks (32 bytes per block). At the
compile time memory instructions are tagged as bypass
(data that do not exhibit any type of locality), spatial, or
temporal. For misses both modules are checked in parallel
to find the required data. References tagged as bypass are
sent to CPU directly, rather than bringing them into cache.
If a reference with a spatial or temporal tag misses in both
modules, a new block is brought into the module indicated
by the tag. Previously they proposed a similar architecture
[12], where instead of compile time annotations, the
memory references were tagged at execution time using an
additional hardware unit called locality prediction table.

Tomasko et. al. [13] reported on a preliminary
experimental evaluation of an architecture with separate

array and scalar caches to observe the potential benefits to
design a cache organization to a specific type of locality. In
their experiment they assumed a model where the tagging
of data as array or scalar to be allocated in one or the other
caches would be done statically by compiler and the model
does not assume any extensive analysis of references to
determine the nature of the locality of access; rather it
allocates the data only on the basis of the data type
declaration. The main difference between their work and
the one reported here is not using different configurations
for exploiting associativity and implementing different
sizes of array and scalar caches

STS (Split Temporal/Spatial) cache proposed by
Milutinovic et. al. [14] is a little different than other
proposed split caches. Since for “temporal” data hierarchy
is needed (to reduce miss penalty for subsequent misses)
but fetching the entire block is unnecessary, the temporal
part is organized as a two level hierarchy with one word
block size. The spatial part is one-level with four 32-bit
words with a hardware implemented prefetching
mechanism. The STS cache has four variants STS1, STS2,
STS4a STS4b, each with same sized temporal module but
larger spatial modules. Both modules are 4-way set
associative with LRU replacement. Initially all data blocks
are regarded as “spatial”; a data block may be changed to
“temporal” and re-allocated through optimization of
relevant parameters (using different counters to detect
locality) during profiling or during runtime by means of a
monitoring hardware unit.

In order to avoid the problem of determining counter
thresholds present in STS method and also the problem of
complicated memory hierarchies for each module,
Milutinovic et. al. [15] proposed a simple method of
detecting useful spatial locality which is tested by
incorporating it into a new split cache design, called the
Split Spatial/Non-Spatial cache (SS/NS). For detecting
different types of locality the design used a flag based
method, requiring fewer cache bits than counter
implementation of STS. For exploiting the locality the
system has two separate modules with same associativity
and equal hierarchy. Prefetching is used if spatial locality is
too large to be exploited by larger cache block.

The HP-7200 Assist Cache [16]-[17] design tries to
avoid both cache conflict and cache pollution due to
prefetching. The primary direct-mapped cache is coupled
with a small fully-associative buffer (the Assist buffer),
with a one cycle lookup in both units. The direct-mapped
primary cache and the buffer units are designed with equal
sized blocks. Until a block is identified as temporal, if it is
requested either by a cache miss or a prefetch, the block is
first loaded into the Assist buffer. It is promoted into the
direct-mapped unit only when it exhibits temporal reuse.
Spatial-only data, especially array data, may bypass the
direct-mapped cache entirely, moving back to memory in
FIFO fashion from the Assist buffer. In this system
dynamic associativity is provided by allowing up to N+1
conflicting blocks which belong to the same direct-mapped

set, to co-exist in the cache simultaneously, where N is the
number of block entries in the Assist buffer. Since only a
uni-directional communication exists between the direct-
mapped unit and the Assist buffer; no swapping between
the two units is allowed.

The NTS (Non-Temporal Streaming) Cache proposed by
River et. al. [18] dynamically detects temporal (T) and non-
temporal (NT) data and cache them separately. The NTS
Cache consists of a data storing unit (DSU) which is a
conventional direct mapped cache supplemented with a
small fully-associative buffer (NT buffer) and a non-
temporal detection unit (NTDU), which is a hardware bit-
map structure attached to the main cache in order to
monitor the reuse behavior of the blocks. Cache block size
is uniform across the direct-mapped cache primary cache,
the buffer units and the next level of memory. The
strategies adopted in the NTS cache for detecting and
caching temporal and non-temporal references are very
similar to those implemented in HP-7200 Assist Cache
[16]-[17]. Since the NTS cache did not handle the
compulsory misses, Rivers et. al. [18] evaluated a group of
caching strategies that integrate various combinations of
temporal locality based caching and tagged prefetching.

Lee et. al. [19]-[20] have proposed a cache system called
STAS (Selective Temporal and Aggressive Spatial) cache.
Although they claimed to have two separate caches for
temporal and spatial references with different block sizes,
the module for spatial locality is actually a buffer rather
than a cache. In this system on every memory access, both
modules are accessed simultaneously. If a miss occurs at
both places the block is brought to the spatial buffer.
However a write back of dirty block in spatial buffer cannot
occur directly - the dirty block is always placed in the direct
mapped cache before being replaced. Later they have
extended the STAS cache into another cache structure SMI
(Selective Mode Intelligent) cache which consists of three
parts: a direct mapped cache with a small block size, a fully
associative spatial buffer with large block size and a
hardware prefetching unit.

In the arena of media/embedded processors, static or
dynamic cache partitionings are even more popular. Unsal
et. al. [21] have proposed minimax cache which has a 8k 2-
way set associative cache for non scalar data while the
scalar data are directed to a 512 byte fully associative
minicache. The system also has a secondary cache and the
block size is the same across the buffer and caches. Intel’s
StrongARM SA-1110 [22], a low-power processor for
embedded system, has a 8k data cache with 32-way set
associativity and 512 byte fully associative mini data cache
to enhance caching performance when dealing with
temporal references. This system does not contain a L-2
cache.

Ranganathan et. al. [8], Petrov et. al. [23] and many
others have proposed reconfigurable caches for embedded
systems with dynamic cache partitioning. In their
customizable partitioned cache, Petrov et. al. have used
same block size and associativity for the partitions. The

reconfigurable cache proposed by Ranganathan et. al.
allows the cache array to be divided dynamically into two
or more partitions that can be utilized by the processor for
various purposes.

To contrast our approach with the designs summarized in
his section, we propose a very simple design by providing
two separate caches, named array and scalar, with
individual design parameters optimized to meet the needs
of different data types. The scalar cache will exploit
temporal locality for some data items, while the array cache
will be used to exploit spatial locality exhibited by other
types of data items. Among the approaches mentioned
above, SMC, Dual data cache, Assist cache, NTS, STAS,
SMI are using multiple stream buffers to supplement the
single data cache whereas STS, SS/NS, Array/Scalar,
minimax cache, StrongARM are real split cache
architectures. Our simple design principles of cache allows
one to build correspondingly simple hardware controller.
We believe that rather than using a multiple streamed FIFO
buffer it is more practical to use a cheaper, faster, well-
established architectural construct like cache. The
performance of the split caches can be improved with
compile time analysis and direct memory accesses to
appropriate cache.

Our architecture permits the use of different block sizes
and different associativities within a single CPU design.
STS cache, SS/NS cache, Array/Scalar cache systems use
the same associativity with different block sizes. Victim
caches, Assist cache, the NTS cache system, the minimax
cache, Intel StrongARM SA-1110 use different
associativities but the same block size. None of these
designs permit both different blocks sizes and different
associativies in a truly split cache model. For stream
references with spatial locality which causes more
compulsory misses, we use direct mapped array cache with
larger block sizes to benefit from prefetching. For scalar
references which causes more conflict misses we use a 2-
way set associative cache with smaller block sizes and
more blocks in cache to avoid the high conflict and
thrashing effect of direct mapped caches.

IV. EVALUATION METHODOLOGY

In order to evaluate our ideas we developed a simulation
environment. In this section, we briefly describe the
characteristics of our benchmark codes and the simulation
environment.

A. Benchmarks

The cache architecture proposed in this paper has been
evaluated for the following SPECfp2000 benchmarks, art,
ammp, mesa and equake [24]. Each of the program is
written in C. We used gcc compiler version 2.3. The
percentages of array and scalar references in the
benchmarks are shown in Table 1. From the table it can be
seen that the percentage of array references ranged from a
low of 6.58% in mesa to a high of 26.92% in art. It should
be mentioned that we used the exact benchmark codes and

did not modify them to make efficient use of split cache
(such as reordering array references or including
prefetching hints). We traced complete program runs and
did not limit only to array and in-loop references. Non-
array references, especially scalar and stack variables
contribute most to temporal reuse and are the main victims
of cache pollution (premature replacement by array
references). Hence excluding them from traces will not
provide the true picture of program’s memory reference
behavior. The number of instructions executed by each
application varied from 1 billion to 129 billions.

B. Simulation Environment

We used trace driven simulation as our evaluation
methodology. The executables of the benchmarks are
instrumented using ATOM, a performance measurement
tool [25]. ATOM instrumentation routine produces a new
executable file a.out.atom. When this file is executed in the
same manner and same input as the original program, a
highly compressed trace file of every load and store
reference made by the program is produced which is fed to
the analysis routine of ATOM to simulate1 different cache
organizations for split array and scalar cache to generate
miss rate and other relevant statistics for the program. In an
actual implementation of split caches, compile time
analyses can be used to tag stream data so that they can be
directed to array cache, separate from scalar cache.

In an attempt to evaluate the optimal configuration of the
split cache, a variety of array and scalar cache sizes, block
sizes and associativity were examined. We simulated three
cache sizes for array cache (1k, 2k and 4k) and four cache
sizes for scalar cache (4k, 8k, 16k, 32k and 64k) and block
sizes ranging from 32 bytes to 128 bytes for both array and
scalar caches. We have chosen two common approaches,

1 We simulated caches directly inside ATOM analysis instead of
collecting address traces and then using a separate cache simulator such as
the Dinero V.

TABLE I

DESCRIPTIONS OF BENCHMARKS USED IN THE EXPERIMENT

Benchmark Function Total references % of
Array
reference

% of
Scalar
reference

179.art Image
Recognition/
Neural
Networks

1244504516 26.92 73.08

183.equake Seismic
Wave
Propagation
Simulation

93304349658 18.63 81.37

188.ammp Computation
al Chemistry

2338560511 14.38 85.62

177.mesa 3-D
Graphics
Library

129910909077 6.58 93.42

the direct mapped cache and 2-way set associative cache
for both array and scalar cache. For 2-way set associativity
we used both least recently used (LRU) and random
replacement policies. We also simulated a conventional
cache with corresponding configurations for comparison.

V. RESULTS

 of our experiments. By changing the block size, cache

capacity and associativity, attempt is made to obtain the
best configurations for array and scalar caches. The next
three subsections present the selection of a cache parameter
in the same order as these parameters were described in
section 2. Finally we compare the effective miss rate of
split-cache against that of conventional unified cache (for
both stream and scalar data types), which support our view
that a complete separation of array and scalar data items
can be a key to boosting cache performance.

A. Selection of Block size

Approaches to exploit both types of locality in a unified
data cache contradicts each other because in a fixed sized
cache increasing block size will result in decreased number

of lines. Hence in a single data cache, it is not possible to
achieve a balance between these two forms of accesses.

Figure 1 shows the decrease in miss rate with increasing
block sizes in a 4k-array cache. Whereas for scalar cache as

shown in figure 2, for benchmark mesa, increasing block
size actually causes an increase in miss rate. Similar results
have been found for the other three benchmarks. Hence in
our proposed architecture we will take advantage of both
techniques-- by using larger cache blocks for array caches
and smaller block sizes for scalar cache.

B. Selection of Cache size

As mentioned in section 2.2, an important criterion for
selecting cache size is the frequency of capacity misses. We
expect that when separate scalar and array caches are used,

the scalar cache can be very small (say 4K level 1) since
the number of capacity misses is small with scalar data
items. As figure 3 shows for scalar cache almost no
improvement is achieved even after doubling or
quadrupling the cache size. For this reason we decided to

use a small 4k or 8k scalar cache.
Figure 4 shows that for array cache increasing cache

size with increasing block size reduces the miss rate. But
we did not repeat our experiments with larger array caches
than 4k because it has already been demonstrated that for
stream references miss rate increases with cache size [7]-
[8], unless even larger block sizes are used.

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4

art equake ammp mesa

C
ac

h
e

M
is

s
R

at
e

32 bytes block
size

64 bytes block
size

128 bytes block
size

Fig. 1.Changes in miss rate with increase in block size of 4k array cache

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4

art equake ammp mesa

C
ac

h
e

M
is

s
R

at
e

1k array cache

2k array cache

4k array cache

Fig. 4. Changes in cache miss rate with increase in cache size of array
cache

0

0.02

0.04

0.06

0.08

1 2 3

Blocksize16Blocksize32Blocksize 64

C
ac

h
e

M
is

s
R

at
e

Fig. 2. Increase in cache miss rate with increase in block size of scalar cache
for benchmark 177.mesa

0

0.05

0.1

0.15

0.2

1 2 3 4

 art equake ammp mesa

C
ac

h
e

M
is

s
R

at
e

16k scalar cache

32k scalar cache

64k scalar cache

Fig. 3. Changes in cache miss rate with increase in cache size of scalar
cache

C. Selection of associativity

Several experiments are performed to determine the
optimum associativity for each cache type and the cache
miss rates for each benchmark are plotted. From figure 5

we can see that for array cache, except benchmark mesa,
increasing associativity will not be worth its cost.

This observation is consistent with our initial
expectations. In our test suite, the percentage of capacity
misses is very low and after removing streamed references,

for our scalar cache, conflict misses are the main concern.
Whereas the lack of capacity misses first directed us to use
a small scalar cache, this decision and the higher conflict
miss rate then convinced us to select 2-way set
associativity, for the scalar cache. It is obvious from figure
6 that for scalar cache increasing associativity improves the
performance.

D. Comparison of split array and scalar data cache with
conventional unified data cache

After the evaluation of optimal configurations for both
array and scalar caches, weighted effective miss rate for
array and scalar caches of all four benchmarks are
compared against the miss rate of unified 16k data cache. In

order to find the effective miss rate we have used the
following formula,

Effective miss rate = Array miss rate * (Number of Array
references/Number of total references) + Scalar miss rate * (Number of
Scalar references/Number of total references)

Figure 7 shows the effectiveness of cache splitting across

the benchmark suite. The split array and scalar cache
demonstrate uniform superiority over the conventional
unified data cache design across all of the benchmarks. For
4k 32 bytes scalar cache and 2k 128 bytes array cache
43.41%, 24.14%, 11.76% and 43.33% improvement is
achieved over a 16k 64 bytes unified scalar cache for art,
equake, ammp and mesa benchmarks respectively.

VI. CONCLUSION

In this paper we have presented the initial evaluation of a
split array and scalar data cache. Existing cache memory
architectures exploit locality of reference in both data and
instruction address streams. Separation of cache is not a
new idea. Modern processors rely on split cache
architecture, at least on the first cache level, with separate
instruction and data caches. The locality within the data
address stream is also not uniform. Hence it seems
worthwhile to exploit the two types of localities in data
intensive applications, specifically in large-scale scientific
computations. Several papers have been published on
separate data caches. The main difference between this
work and those is the complete independence of the two
caches in terms of block size and associativity. We have
simulated a direct mapped array cache with larger block
size for stream references exhibiting spatial locality in
order to permit prefetching and reduce the compulsory
misses. Whereas our 2-way set associative scalar cache
with more number of smaller blocks overcomes the
structural drawbacks of direct mapped cache like high
conflict and thrashing effects to hold blocks longer and
exploit the reuse behavior of temporal locality. The
achievements of these goals has been confirmed by
extensive experimental results using SPEC 2000

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4

art equake ammp mesa

C
ac

h
e

M
is

s
R

at
e

Direct Mapped

2-Way Set
Associative

Fig. 6. Changes in cache miss rate for scalar cache with different
associativity

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 2 3 4

art equake ammp mesa

E
ff

ec
ti

ve
 m

is
s

ra
te

Dirct mapped
cache

2-way set
associative
cache

Fig. 5. Changes in cache miss rate for array cache with different
associativity

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4

art equake ammp mesa

E
ff

ec
ti

ve
 M

is
s

R
at

e Single 16k Data
Cache

Separated 4k
Scalar and 2k
Array Cache

Fig. 7. Reduction in effective miss rate with separate array and scalar caches

benchmarks. Since this benefit may be very effective in
increasing cache performance, which is expected to be an
important limitation in future, we believe that our split
cache architecture will find its way into the future
microprocessors and the multiprocessor/multicomputer
systems.

In a related research [26]-[30], we have been
investigating techniques for off-loading memory
management and other memory intensive operations to
separate hardware logic either embedded within a DRAM
or in the memory controller. When such intelligent
memories are available, they can also be designed to utilize
split data caches more effectively.

REFERENCES
[1] J. Arul, K.M. Kavi and S. Hanief, "Cache Performance of Scheduled

Dataflow Architecture", Proc. of the 4th International Conference
on Algorithms and Architectures for Parallel Processing
(ICA3PP2000), Hong Kong, Dec. 11-14, 2000.

[2] K. M. Kavi, A.R. Hurson, P. Patadia, E. Abraham and P.
Shanmugam. "Design of cache memories for multi-threaded
dataflow architecture", Proceedings of the 22nd Intl. Symp. on
Computer Architecture (ISCA-22), June 1995, St. Margherita
Ligure, Italy, pp. 253-264

[3] K.M. Kavi and A.R. Hurson. "Performance of cache memories in
dataflow architectures", Euromicoro Journal on Systems
Architecture, Vol. 44, No. 9-10, June 1998, pp 657-674.

[4] A.J. Smith, Cache Memories, ACM Computing Surveys 14 (1982)
473-530.

[5] J. L. Hennessy and D. A. Patterson, Computer Architecture A
Quantitative Approach, Morgan Kaufmann Publishers, Third
Edition 2003, pp 423-430.

[6] S. A. McKee, R. H. Klenke, K. L. Wright, KL, W. A. Wulf, M.H
Salinas, J. H. Aylor, A. P. Barson, “Smarter Memory: Improving
Bandwidth for Streamed References,” in IEEE Computer. July
1998. p. 54-63.

[7] N. P. Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully Associative Cache and Prefetch Buffers,”
In proceedings of the 17th ISCA, May 1990, pp. 364-373.

[8] P. Ranganathan, S. V.Adve, and N. P. Jouppi, “Reconfigurable
caches and their application to Media processing,” Proceedings of
the 27th International Symposium on Computer Architecture, June
2000, pp. 214-224.

[9] J. L. Baer and T. F. Chen, “An effective on –chip preloading
scheme to reduce data access penalty. ”In Proceedings of the
Supercomputing’91, pp. 176-186, 1991.

[10] S. Palacharla and R. E Kessler. “Evaluating Stream Buffers as a
Secondary Cache Replacement,” In Proceedings of the 21th
International Symposium on Computer Architecture, Chicago, IL,
Apr. 1994, pp. 24--33.

[11] F. J. Sanchez, A. Gonzalez, and M. Valero, Software Management
of Selective and Dual Data Caches, IEEE TCCA NEWSLETTERS,
March 97, pp. 3-10.

[12] C. Gonzalez, A. Aliagas, and M. Mateo, “Data Cache with Multiple
Caching Strategies Tuned to different Types of Locality,” In
proceedings of International Conference on Supercomputing '95,
July 1995, pp. 338-347.

[13] M. Tomasko, S. Hadjiyiannis, and WA Najjar, Experimental
Evaluation of Array Caches, IEEE TCCA Newslatters, March 97,
pp. 11-16.

[14] V. Milutinovic, M. Tomasevic, B. Markovic, and M. Tremblay, “The
Split Temporal/Spatial Cache: Initial Performance Analysis,”
SCIzzL-5, Mar. 1996.

[15] V.Milutinovic, M. Prvulovic, D. Marinov, Z. Dimitrijevic, “The Split
Spatial/Non-Spatial Cache:A Performance and Complexity
Evaluation”, in Newsletter of Technical Committee on Computer
Architecture, IEEE Computer Society, July 1999.

[16] G. Kurpanek, K. Chan, J. Zheng, E. DeLano and W. Bryg, PA7200:
A PA-RISC Processor with Integrated High Performance MP Bus
Interface, COMPCON Digest of Papers, Feb 1994, pp. 375-382.

[17] E. Rashid, A CMOS RISC CPU with On-Chip Parallel Cache,
ISSCC Digest of Papers, Feb 1994, pp. 210-211.

[18] J.A. Rivers and E.S. Davidson, “Reducing Conflicts in Direct-
Mapped Caches with a Temporality based Design, Proc. 1996
International Conference on Parallel Processing, August 1996.

[19] J. H. Lee, J. S. Lee, and S. D. Kim, “A new cache architecture
based on temporal and spatial locality,” Journal of Systems
Architecture, Vol. 46, pp. 1451-1467, Sep. 2000.

[20] J. H. Lee, G. H. Park, K. W. Lee, T. D. Han, and S. D. Kim, “A
Power Efficient Cache Structure for Embedded Processors Based
on the Dual Cache Structure,” In proceedings of the ACM
LCTES’2000, June 2000.

[21] O.S. Unsal, I. Koren, C.M. Krishna, C.A. Moritz, “The Minimax
Cache: An Energy-Efficient Framework for Media Processors,” 8th
International Symposium on High-Performance Computer
Architecture, HPCA8, Cambridge, MA, February 2002, pp. 131-
140.

[22] Intel StrongARM SA-1110 Microprocessor Brief Datasheet, April
2000.

[23] P. Petrov, A. Orailoglu, "Towards Effective Embedded Processors
in Codesigns: Customizable Partitioned Caches", in International
Symposium on Hardware/Software Codesign (CODES), pp. 79-84,
April, 2001.

[24] L. Henning. "SPEC CPU2000: Measuring CPU Performance in the
New Millennium", IEEE Computer, 33(7), pp. 28-35, July 2000.

[25] A. Eustance and A. Srivastava. "ATOM: A flexible interface for
building high performance program analysis tools", Western
Research Laboratory, TN-44, 1994.

[26] S.M. Donahue, M.P. Hampton, M. Deters, J.M. Nye, R.K. Cytron
and K.M. Kavi. “Storage Allocation for real-time, embedded
systems”, Proceedings of the First International Workshop on
Embedded Software (EMSOFT 2001) (October 2001), Springer
Verlag, pp 131-147

[27] S.M. Donahue, M.P. Hampton, R. Cytron, M. Franklin and K.M.
Kavi. “Hardware support for fast and bounded time storage
allocation”, Proceedings of the Workshop on Memory Processor
Interfaces (WMPI), in conjunction with the International
Symposium on Computer Architecture, May 2002, Anchorage,
Alaska

 [28] L.M. Fox, C.R. Hill, R.K. Cytron and K.M. Kavi. “Optimization of
storage-referencing gestures”, Proceedings of the Workshop on
Compilers and Tools for Constrained Embedded Systems (CTES-
2003), held in conjunction with Conference on Compilers,
Architecture and Synthesis for Embedded Systems (CASES-2003),
Oct. 29, 2003, San Jose, CA.

[29] M.Rezaei and K.M. Kavi. “Utilization of Separate Caches to
Eliminate Cache Pollution Caused By Memory Management
Functions”, Proceedings of the 16th International Conference on
Parallel and Distributed Computing Systems (PDCS-2003,
sponsored by the International Society for Computers and their
Applications, ISCA), Aug. 3-15, 2003, Reno, Nevada, USA.

[30] M. Rezaei. “Intelligent memory manager: Towards improving the
locality behavior of allocation intensive applications”, PhD
Dissertation, University of North Texas, May 2004.

