
 
 

 

 
Abstract— In our prior work we explored the use of a 

separate cache for I-structure memories within the 
context of dataflow based multithreaded systems. I-
structure memories in dataflow systems are used to 
store arrays and other indexed or stream data items. 
This work showed that using separate (data) caches for 
indexed or stream data and scalar data items could lead 
to substantial improvements in terms of cache misses. In 
addition, such a separation allowed for the design of 
caches that could be tailored to meet the properties 
exhibited by different data items. 

   In this paper we explore a similar cache 
organization providing architectural support for 
distinguishing between memory references that exhibit 
spatial and temporal locality and mapping them to 
separate caches. Since significant amounts of 
compulsory and conflict misses are avoided, the size of 
each cache (i.e., array and scalar), as well as the 
combined cache capacity can be reduced. According to 
the results of our simulations a partitioned 4k scalar 
cache with the streams (or arrays) mapped to a 2k 
array cache can be more efficient than a 16k unified 
data cache. 

I. INTRODUCTION 

onventional caches imply no separation of data based 
on the nature of the locality exhibited by different data 
references, handling all memory references in a 

uniform manner - whenever a reference misses, a new 
block is brought into cache at the expense of replacing 
another block. Since not all data items exhibit both spatial 
and temporal localities, this simple minded treatment to the 
references makes the data cache inefficient at adapting to 
the two types of localities. Generally, caches exploit 
temporal locality by retaining recently referenced data for a 
long time, and spatial locality by fetching multiple 
neighboring words as a cache block whenever a cache miss 
occurs. If a data item exhibits no temporal locality, bringing 
it into the cache is useless. Likewise if no spatial locality is 
exhibited by data items, bringing an entire cache block 
leads to wastage. Thus traditional treatment of cache misses 
not only causes unnecessary movement of data between the 
various levels of the memory hierarchy, it may lead to 
premature displacement of blocks that are likely to be re-
referenced (i.e., cache pollution). This can become very 
costly if the newly loaded data tends to be non-temporal. In 
any case the result is an unnecessary increase in miss ratios, 
memory access times and memory bandwidths. 

In our prior work we explored the use of a separate cache 

for I-structure memories within the context of dataflow 
based multithreaded systems [1]-[3]. I-structure memories 
in dataflow systems are used to store arrays and other 
indexed or stream data items. This work showed that using 
separate (data) caches for indexed or stream data and scalar 
data items could lead to substantial improvements in terms 
of cache misses. In addition, such a separation allowed for 
the design of caches that could be tailored to meet the 
properties exhibited by different data items. 

In this paper we explore a similar cache organization 
providing architectural support for distinguishing between 
memory references that exhibit spatial and temporal 
locality and mapping them to separate caches. The selection 
of proper block size or associativity to maximize 
performance while staying within the cost are the hardest 
choices in designing cache memories. By partitioning the 
cache as we propose, our cache system can implement 
different configurations exploiting different cache 
parameters more selectively and effectively. The “array 
cache” is a direct mapped cache with larger block sizes to 
exploit spatial localities more aggressively by (pre)fetching 
multiple neighboring small blocks on a cache miss. 
Whereas the “scalar cache” is a 2-way (or 4-way) set 
associative cache with smaller block sizes to exploit 
temporal locality. The combination of different block sizes 
and associativities together with partitioned cache 
architectures provides an effective solution for alleviating 
the existing problems in cache designs and maximizes the 
effective cache memory space for any given cache size and 
cost. Since significant amounts of compulsory and conflict 
misses are avoided, the size of each cache (i.e., array and 
scalar), as well as the combined cache capacity can thus be 
reduced. According to the results of our simulations a 
partitioned 4k scalar cache with streams (or arrays) mapped 
to a 2 k array cache can be more efficient than a 16 k 
unified data cache.  

The rest of the paper is organized as follows. Section 2 
discusses related issues and performance metrics in more 
detail to motivate the reader. Section 3 provides a survey 
and analysis of related research. Section 4 describes 
benchmarks and experimental set up used in our evaluation 
while, section 5 presents the results. The main conclusions 
are drawn in section 6 with a brief synopsis of the future 
work. 

II. CACHE, ITS DATA, PARAMETERS AND DEFICIENCIES 

Although caching dates back to Von Neumann's classic 
1946 paper that laid the foundation for modern practical 
computing, it became vital in the performance of a 
processor since the beginning of 1990’s as the gap between 
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the processor cycle and memory latency times increased 
dramatically. Caches are typically placed between a large, 
relatively slow and inexpensive source of information (the 
lower level of memory) and a much faster consumer of that 
information, the processor. The success of cache memories 
has been explained by the property of locality of reference 
[4], which is a property exhibited by most programs. A 
cache exploits this property to improve the effective access 
time to data and reducing the cost of accessing main 
memory. The property of locality has two aspects, temporal 
and spatial. Temporal locality implies that, once a location 
is referenced, there is a high probability that it will be 
referenced again soon, and less likely to do so as the time 
passes; spatial locality implies that when an instruction or 
datum is accessed it is very likely that nearby instructions 
or data will be accessed soon. Since cache buffers recently 
used segments of information, the property of locality 
implies that needed information is also likely to be found in 
the cache.  

As the CPU speed has outstripped the rest of the system 
by many orders of magnitude and the memory bandwidth 
problem keeps growing, some deficiencies of conventional 
caching are becoming evident. Existing cache organization 
suffers from the inability to distinguish different types of 
localities and non-selectively cache all data rather than 
making any attempt to take special advantage of the locality 
type. This causes unnecessary movement of data among the 
levels of the memory hierarchy, significant interference 
between unrelated data inside the cache, removal of 
potentially useful data causing cache pollution and 
unnecessary increases in miss ratio, memory access time 
and memory bandwidth. The references can be easily 
divided into two groups according to the types of localities 
exhibited by the program -- the scalar and streamed 
(strided) references. Conventional cache techniques are 
acceptable for general-purpose scalar references with high 
temporal locality. But the picture is totally opposite for 
stream references, which do not reuse data soon or often 
enough to derive much benefit from caching. Since arrays 
and streams exhibit only spatial localities and the data sizes 
are often too large for caches, computations with streams 
and array access patterns cause mostly compulsory misses 
(rather than conflict misses) and perform extremely poorly 
in terms of cache behavior. In order to solve this problem, 
our proposed architecture groups the memory accesses as 
scalar or array references according to their inherent 
locality and each group subsequently mapped to a 
dedicated cache partition, equipped with architectural 
constructs built to exploit that particular locality type. In 
this system, since the scalar references and streamed 
references are no longer negatively affecting each other, 
cache interference, thrashing and pollution problems will 
be diminished, delivering better performance. Not only 
both caches would be designed more optimally according 
to their specific needs, it will simplify some other general 
issues and concerns in cache design, such as the 
associativity, cache block size or cache capacity. Even if 

the program displays only a small percentage of scalar 
references (in case of scientific applications) or very few 
arrays or streams we feel that it is better to use separate 
scalar and stream caches. In the following subsections we 
will talk about issues in general cache design.  

A. Cache block size 

The selection of block size depends on both the latency 
and bandwidth of the lower-level memory [5]. It is possible 
to achieve higher memory bandwidths on modern 
memories that are supported by wider buses, multiple 
banks, more pins, integrated circuit properties of DRAMs 
(for example on-chip memory), the newer Rambus and 
Synchronous DRAM [6]. However, high memory latency is 
still an issue that must be addressed. Although high latency 
and high bandwidth both encourage larger block sizes since 
the cache gets many more bytes per miss for a small 
increase in miss penalty, not all applications can benefit 
from larger blocks. Increasing block size to reduce the 
impact of memory latency also implies prefetching of data 
for applications exhibiting greater spatial localities, such as 
the applications using streams. On the other hand 
applications that exhibit very little spatial but greater 
temporal localities (as exhibited by scalar data items) 
cannot benefit from preteching or larger cache blocks. In 
fact, for scalar references, it is better to have smaller cache 
block sizes and more cache lines to eliminate conflict 
misses and even capacity misses when smaller caches are 
used [5]. Our work is motivated by the observation that it is 
not possible to design a single cache that works well for 
different types of localities and data types. We propose 
multiple data caches designed with different block sizes to 
meet the needs of the different data types.  

B. Cache capacity 
Increasing cache size will obviously reduce capacity 

misses; however as cache size increases, a capacity miss 
will become a conflict miss [5]. On the other hand if the 
number of capacity misses is small, increasing the capacity 
of the cache will not benefit the application. Jouppi et. al. 
[7] reported that increasing cache capacity actually 
increases cold-start or compulsory misses and these misses 
are more likely to be sequential in nature. This is 
particularly the case with stream data types. Thus for 
stream references it is not necessary to have a large cache. 
A larger cache can benefit applications that access several 
sets of data, but not for applications that access a single 
stream [7]. Similar results have been reported for media 
processing workloads [8]. 

C. Associativity 

For a cache of given size, its set-associativity is dictated 
by a number of criteria, which include implementation cost, 
access time (both on hit and miss) and miss rate. Direct 
mapped caches are simpler, easier to design and require 
less silicon area, than set associative caches. The main 
disadvantage of a direct mapped cache is the high conflict 



 
 

 

miss rate. Because of lack of associativity, conflict misses 
typically account for 40% of all direct-mapped cache 
misses [7]. Conversely for caches with higher associativity 
the main advantage is lower miss rate, but they are more 
expensive and incur longer access times on hit. The goal of 
a computer architect is to maximize performance while 
staying within the cost and power constraints. A more 
desirable cache design would reduce the conflict miss rate 
to the same extent as a set associative cache, but at the 
same time it would maintain the critical hit access path of 
the direct mapped cache. Because of the lack of temporal 
locality, the stream references will cause more compulsory 
misses than conflict misses and direct mapping will be the 
better option for an array cache. Whereas for a scalar cache, 
increasing associativity will lead to a reduction of conflict 
misses and exploitation of temporal locality.  

D. Streams 

In this paper we focus on the class of computations that 
involve access to stream references. Streams are sequential, 
structured data or collection of successive elements with a 
known, fixed displacement (called stride) between 
elements. Streams are traversed linearly - during read these 
return successive elements, and during write these accept 
successive elements and store them sequentially. Typically 
the elements are operated on iteratively. And the elements 
are used once or very few times during the traversals. Thus 
streams exhibit high degree of spatial locality with very 
little temporal locality. Another characteristic is their 
transparent and completely predictable reference pattern. 
Stream accesses are typically generated in loops. At the 
beginning of the loop, only by knowing the base address 
(the address of the first element in the stream), stride and 
the length of the stream, the entire reference pattern of this 
specific type of structure can be predicted. Examples of 
computations using streams include vector (scientific) 
computations, string processing, multimedia applications, 
compression and decompression, encryption, signal 
processing, image processing, text searching, and DNA 
sequence matching. 

 Since caches that rely on temporal locality are 
ineffective for streams, memory bandwidth is rapidly 
becoming limiting for these streaming computations. The 
presence of higher spatial locality of the stream accesses 
makes them a better candidate for prefetching by increasing 
the block size. Since most modern DRAM components 
support modes that make it possible to perform some access 
sequences faster than others, the predictability of the stream 
accesses makes it possible to reorder them to get better 
memory performance [6]. 

III. RELATED WORKS 

Complementing the cache with a small extra module to 
exploit temporal and spatial localities was first proposed by 
Jouppi [7]. The Stream buffer is a fully associative, FIFO 
buffer with 4 or 5 entries designed to support the direct 
mapped cache through prefetching. A miss will induce the 

prefetching of the missed block along with successive 
blocks that will be stored in the buffer rather than the cache 
to avoid cache pollution(premature displacement of data). 
The Stream buffer will not only mitigate traditional 
problems with larger cache lines and extensive prefetching, 
it is more effective than other investigated prefetch 
techniques [9]. The biggest problem with Stream buffer is 
the it needs to be flushed at the detection of any non-spatial 
data. Jouppi’s investigation did not explore the Stream 
Buffer only for data with spatial localities (such as 
streams), the buffer was used for all data items. 
Subsequently, two different approaches have emerged; the 
first approach retains Jouppi’s original idea and 
supplements the regular cache with a small buffer for 
prefetching all data items regardless of the nature of 
locality exhibited by the data; the second approach is real 
cache partitioning to exploit different data localities 
exhibited by different data types. Partitioning of the cache 
can be either static or dynamic.  

The most extensive and prominent work belonging to the 
first trend is done by Mckee et. al. [6]. They designed a 
SMC (stream memory controller), which is a combination 
of a small buffer and an intelligent scheduling unit for 
supporting the regular cache. When the program enters a 
loop that accesses one or more streams, compiler-generated 
code provides the scheduling unit with the base addresses, 
the number of elements, and the strides for any streams 
accessed in the loop body. The Memory Scheduling Unit 
(MSU) uses this information to reorder the requests so that 
even though the processor still issues requests to the Stream 
Buffer Unit (SBU) in the natural order, the order in which 
associated requests are made to memory will maximize the 
use of its bandwidth. Since the stream accesses no longer 
affects the cache, the cache can be designed more optimally 
for the remaining requests. Palacharla et. al. [10] proposed 
to use multiple stream buffers to replace the big secondary 
cache.  

Sanchez et. al. [11] have proposed a dual data cache, 
which is composed of two modules, temporal module 
which is a fully associative buffer, built to exploit just 
temporal locality and spatial module, which is a direct 
mapped cache targeted to exploit spatial locality. The 
former module has only 16 very short blocks (each 64-bits) 
and the later has larger blocks (32 bytes per block). At the 
compile time memory instructions are tagged as bypass 
(data that do not exhibit any type of locality), spatial, or 
temporal. For misses both modules are checked in parallel 
to find the required data. References tagged as bypass are 
sent to CPU directly, rather than bringing them into cache. 
If a reference with a spatial or temporal tag misses in both 
modules, a new block is brought into the module indicated 
by the tag. Previously they proposed a similar architecture 
[12], where instead of compile time annotations, the 
memory references were tagged at execution time using an 
additional hardware unit called locality prediction table. 

Tomasko et. al. [13] reported on a preliminary 
experimental evaluation of an architecture with separate 



 
 

 

array and scalar caches to observe the potential benefits to 
design a cache organization to a specific type of locality. In 
their experiment they assumed a model where the tagging 
of data as array or scalar to be allocated in one or the other 
caches would be done statically by compiler and the model 
does not assume any extensive analysis of references to 
determine the nature of the locality of access; rather it 
allocates the data only on the basis of the data type 
declaration. The main difference between their work and 
the one reported here is not using different configurations 
for exploiting associativity and implementing different 
sizes of array and scalar caches  

STS (Split Temporal/Spatial) cache proposed by 
Milutinovic et. al. [14] is a little different than other 
proposed split caches. Since for “temporal” data hierarchy 
is needed (to reduce miss penalty for subsequent misses) 
but fetching the entire block is unnecessary, the temporal 
part is organized as a two level hierarchy with one word 
block size. The spatial part is one-level with four 32-bit 
words with a hardware implemented prefetching 
mechanism. The STS cache has four variants STS1, STS2, 
STS4a STS4b, each with same sized temporal module but 
larger spatial modules. Both modules are 4-way set 
associative with LRU replacement. Initially all data blocks 
are regarded as “spatial”; a data block may be changed to 
“temporal” and re-allocated through optimization of 
relevant parameters (using different counters to detect 
locality) during profiling or during runtime by means of a 
monitoring hardware unit. 

In order to avoid the problem of determining counter 
thresholds present in STS method and also the problem of 
complicated memory hierarchies for each module, 
Milutinovic et. al. [15] proposed a simple method of 
detecting useful spatial locality which is tested by 
incorporating it into a new split cache design, called the 
Split Spatial/Non-Spatial cache (SS/NS). For detecting 
different types of locality the design used a flag based 
method, requiring fewer cache bits than counter 
implementation of STS. For exploiting the locality the 
system has two separate modules with same associativity 
and equal hierarchy. Prefetching is used if spatial locality is 
too large to be exploited by larger cache block. 

The HP-7200 Assist Cache [16]-[17] design tries to 
avoid both cache conflict and cache pollution due to 
prefetching. The primary direct-mapped cache is coupled 
with a small fully-associative buffer (the Assist buffer), 
with a one cycle lookup in both units. The direct-mapped 
primary cache and the buffer units are designed with equal 
sized blocks. Until a block is identified as temporal, if it is 
requested either by a cache miss or a prefetch, the block is 
first loaded into the Assist buffer. It is promoted into the 
direct-mapped unit only when it exhibits temporal reuse. 
Spatial-only data, especially array data, may bypass the 
direct-mapped cache entirely, moving back to memory in 
FIFO fashion from the Assist buffer. In this system 
dynamic associativity is provided by allowing up to N+1 
conflicting blocks which belong to the same direct-mapped 

set, to co-exist in the cache simultaneously, where N is the 
number of block entries in the Assist buffer. Since only a 
uni-directional communication exists between the direct-
mapped unit and the Assist buffer; no swapping between 
the two units is allowed. 

The NTS (Non-Temporal Streaming) Cache proposed by 
River et. al. [18] dynamically detects temporal (T) and non-
temporal (NT) data and cache them separately. The NTS 
Cache consists of a data storing unit (DSU) which is a 
conventional direct mapped cache supplemented with a 
small fully-associative buffer (NT buffer) and a non-
temporal detection unit (NTDU), which is a hardware bit-
map structure attached to the main cache in order to 
monitor the reuse behavior of the blocks. Cache block size 
is uniform across the direct-mapped cache primary cache, 
the buffer units and the next level of memory. The 
strategies adopted in the NTS cache for detecting and 
caching temporal and non-temporal references are very 
similar to those implemented in HP-7200 Assist Cache 
[16]-[17]. Since the NTS cache did not handle the 
compulsory misses, Rivers et. al. [18] evaluated a group of 
caching strategies that integrate various combinations of 
temporal locality based caching and tagged prefetching.  

Lee et. al. [19]-[20] have proposed a cache system called 
STAS (Selective Temporal and Aggressive Spatial) cache. 
Although they claimed to have two separate caches for 
temporal and spatial references with different block sizes, 
the module for spatial locality is actually a buffer rather 
than a cache. In this system on every memory access, both 
modules are accessed simultaneously. If a miss occurs at 
both places the block is brought to the spatial buffer. 
However a write back of dirty block in spatial buffer cannot 
occur directly - the dirty block is always placed in the direct 
mapped cache before being replaced. Later they have 
extended the STAS cache into another cache structure SMI 
(Selective Mode Intelligent) cache which consists of three 
parts: a direct mapped cache with a small block size, a fully 
associative spatial buffer with large block size and a 
hardware prefetching unit. 

In the arena of media/embedded processors, static or 
dynamic cache partitionings are even more popular. Unsal 
et. al. [21] have proposed minimax cache which has a 8k 2-
way set associative cache for non scalar data while the 
scalar data are directed to a 512 byte fully associative 
minicache. The system also has a secondary cache and the 
block size is the same across the buffer and caches. Intel’s 
StrongARM SA-1110 [22], a low-power processor for 
embedded system, has a 8k data cache with 32-way set 
associativity and 512 byte fully associative mini data cache 
to enhance caching performance when dealing with 
temporal references. This system does not contain a L-2 
cache.  

Ranganathan et. al. [8], Petrov et. al. [23] and many 
others have proposed reconfigurable caches for embedded 
systems with dynamic cache partitioning. In their 
customizable partitioned cache, Petrov et. al. have used 
same block size and associativity for the partitions. The 



 
 

 

reconfigurable cache proposed by Ranganathan et. al. 
allows the cache array to be divided dynamically into two 
or more partitions that can be utilized by the processor for 
various purposes.  

To contrast our approach with the designs summarized in 
his section, we propose a very simple design by providing 
two separate caches, named array and scalar, with 
individual design parameters optimized to meet the needs 
of different data types. The scalar cache will exploit 
temporal locality for some data items, while the array cache 
will be used to exploit spatial locality exhibited by other 
types of data items. Among the approaches mentioned 
above, SMC, Dual data cache, Assist cache, NTS, STAS, 
SMI are using multiple stream buffers to supplement the 
single data cache whereas STS, SS/NS, Array/Scalar, 
minimax cache, StrongARM are real split cache 
architectures. Our simple design principles of cache allows 
one to build correspondingly simple hardware controller. 
We believe that rather than using a multiple streamed FIFO 
buffer it is more practical to use a cheaper, faster, well-
established architectural construct like cache. The 
performance of the split caches can be improved with 
compile time analysis and direct memory accesses to 
appropriate cache. 

Our architecture permits the use of different block sizes 
and different associativities within a single CPU design. 
STS cache, SS/NS cache, Array/Scalar cache systems use 
the same associativity with different block sizes. Victim 
caches, Assist cache, the NTS cache system, the minimax 
cache, Intel StrongARM SA-1110 use different 
associativities but the same block size. None of these 
designs permit both different blocks sizes and different 
associativies in a truly split cache model. For stream 
references with spatial locality which causes more 
compulsory misses, we use direct mapped array cache with 
larger block sizes to benefit from prefetching. For scalar 
references which causes more conflict misses we use a 2-
way set associative cache with smaller block sizes and 
more blocks in cache to avoid the high conflict and 
thrashing effect of direct mapped caches. 

IV. EVALUATION METHODOLOGY  

In order to evaluate our ideas we developed a simulation 
environment. In this section, we briefly describe the 
characteristics of our benchmark codes and the simulation 
environment. 

A. Benchmarks 

The cache architecture proposed in this paper has been 
evaluated for the following SPECfp2000 benchmarks, art, 
ammp, mesa and equake [24]. Each of the program is 
written in C. We used gcc compiler version 2.3. The 
percentages of array and scalar references in the 
benchmarks are shown in Table 1. From the table it can be 
seen that the percentage of array references ranged from a 
low of 6.58% in mesa to a high of 26.92% in art. It should 
be mentioned that we used the exact benchmark codes and 

did not modify them to make efficient use of split cache 
(such as reordering array references or including 
prefetching hints). We traced complete program runs and 
did not limit only to array and in-loop references. Non-
array references, especially scalar and stack variables 
contribute most to temporal reuse and are the main victims 
of cache pollution (premature replacement by array 
references). Hence excluding them from traces will not 
provide the true picture of program’s memory reference 
behavior. The number of instructions executed by each 
application varied from 1 billion to 129 billions. 

B. Simulation Environment 

We used trace driven simulation as our evaluation 
methodology. The executables of the benchmarks are 
instrumented using ATOM, a performance measurement 
tool [25]. ATOM instrumentation routine produces a new 
executable file a.out.atom. When this file is executed in the 
same manner and same input as the original program, a 
highly compressed trace file of every load and store 
reference made by the program is produced which is fed to 
the analysis routine of ATOM to simulate1 different cache 
organizations for split array and scalar cache to generate 
miss rate and other relevant statistics for the program. In an 
actual implementation of split caches, compile time 
analyses can be used to tag stream data so that they can be 
directed to array cache, separate from scalar cache.  

In an attempt to evaluate the optimal configuration of the 
split cache, a variety of array and scalar cache sizes, block 
sizes and associativity were examined. We simulated three 
cache sizes for array cache (1k, 2k and 4k) and four cache 
sizes for scalar cache (4k, 8k, 16k, 32k and 64k) and block 
sizes ranging from 32 bytes to 128 bytes for both array and 
scalar caches. We have chosen two common approaches, 
                                                 

1 We simulated caches directly inside ATOM analysis instead of 
collecting address traces and then using a separate cache simulator such as 
the Dinero V. 

 
TABLE I 

 
DESCRIPTIONS OF BENCHMARKS USED IN THE EXPERIMENT 

Benchmark Function Total references % of 
Array 
reference 

% of 
Scalar 
reference

179.art Image 
Recognition/
Neural 
Networks 

1244504516 26.92 73.08 

183.equake Seismic 
Wave 
Propagation 
Simulation 

93304349658 18.63 81.37 

188.ammp Computation
al Chemistry 

2338560511 14.38 85.62 

177.mesa 3-D 
Graphics 
Library 

129910909077 6.58 93.42 

 
 

 



 
 

 

the direct mapped cache and 2-way set associative cache 
for both array and scalar cache. For 2-way set associativity 
we used both least recently used (LRU) and random 
replacement policies. We also simulated a conventional 
cache with corresponding configurations for comparison.  

 

V. RESULTS  

 
 of our experiments. By changing the block size, cache 

capacity and associativity, attempt is made to obtain the 
best configurations for array and scalar caches. The next 
three subsections present the selection of a cache parameter 
in the same order as these parameters were described in 
section 2. Finally we compare the effective miss rate of 
split-cache against that of conventional unified cache (for 
both stream and scalar data types), which support our view 
that a complete separation of array and scalar data items 
can be a key to boosting cache performance.  

A. Selection of Block size 

Approaches to exploit both types of locality in a unified 
data cache contradicts each other because in a fixed sized 
cache increasing block size will result in decreased number 

of lines. Hence in a single data cache, it is not possible to 
achieve a balance between these two forms of accesses.  

Figure 1 shows the decrease in miss rate with increasing 
block sizes in a 4k-array cache. Whereas for scalar cache as 

shown in figure 2, for benchmark mesa, increasing block 
size actually causes an increase in miss rate. Similar results 
have been found for the other three benchmarks. Hence in 
our proposed architecture we will take advantage of both 
techniques-- by using larger cache blocks for array caches 
and smaller block sizes for scalar cache. 

B. Selection of Cache size 

As mentioned in section 2.2, an important criterion for 
selecting cache size is the frequency of capacity misses. We 
expect that when separate scalar and array caches are used, 

the scalar cache can be very small (say 4K level 1) since 
the number of capacity misses is small with scalar data 
items. As figure 3 shows for scalar cache almost no 
improvement is achieved even after doubling or 
quadrupling the cache size. For this reason we decided to 

use a small 4k or 8k scalar cache. 
Figure 4 shows that for array cache increasing cache 

size with increasing block size reduces the miss rate. But 
we did not repeat our experiments with larger array caches 
than 4k because it has already been demonstrated that for 
stream references miss rate increases with cache size [7]-
[8], unless even larger block sizes are used. 
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Fig. 1.Changes in miss rate with increase in block size of 4k array cache 
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Fig. 4. Changes in cache miss rate with increase in cache size of array 
cache  
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Fig. 2. Increase in cache miss rate with increase in block size of scalar cache 
for benchmark 177.mesa 
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Fig. 3. Changes in cache miss rate with increase in cache size of scalar 
cache 
  



 
 

 

C.  Selection of associativity 

Several experiments are performed to determine the 
optimum associativity for each cache type and the cache 
miss rates for each benchmark are plotted. From figure 5 

we can see that for array cache, except benchmark mesa, 
increasing associativity will not be worth its cost. 

This observation is consistent with our initial 
expectations. In our test suite, the percentage of capacity 
misses is very low and after removing streamed references, 

for our scalar cache, conflict misses are the main concern. 
Whereas the lack of capacity misses first directed us to use 
a small scalar cache, this decision and the higher conflict 
miss rate then convinced us to select 2-way set 
associativity, for the scalar cache. It is obvious from figure 
6 that for scalar cache increasing associativity improves the 
performance. 

D. Comparison of split array and scalar data cache with 
conventional unified data cache 

After the evaluation of optimal configurations for both 
array and scalar caches, weighted effective miss rate for 
array and scalar caches of all four benchmarks are 
compared against the miss rate of unified 16k data cache. In 

order to find the effective miss rate we have used the 
following formula, 

 
Effective miss rate = Array miss rate * (Number of Array 
references/Number of total references) + Scalar miss rate * (Number of 
Scalar references/Number of total references) 

 
Figure 7 shows the effectiveness of cache splitting across 

the benchmark suite. The split array and scalar cache 
demonstrate uniform superiority over the conventional 
unified data cache design across all of the benchmarks. For 
4k 32 bytes scalar cache and 2k 128 bytes array cache 
43.41%, 24.14%, 11.76% and 43.33% improvement is 
achieved over a 16k 64 bytes unified scalar cache for art, 
equake, ammp and mesa benchmarks respectively. 

VI. CONCLUSION 

In this paper we have presented the initial evaluation of a 
split array and scalar data cache. Existing cache memory 
architectures exploit locality of reference in both data and 
instruction address streams. Separation of cache is not a 
new idea. Modern processors rely on split cache 
architecture, at least on the first cache level, with separate 
instruction and data caches. The locality within the data 
address stream is also not uniform. Hence it seems 
worthwhile to exploit the two types of localities in data 
intensive applications, specifically in large-scale scientific 
computations. Several papers have been published on 
separate data caches. The main difference between this 
work and those is the complete independence of the two 
caches in terms of block size and associativity. We have 
simulated a direct mapped array cache with larger block 
size for stream references exhibiting spatial locality in 
order to permit prefetching and reduce the compulsory 
misses. Whereas our 2-way set associative scalar cache 
with more number of smaller blocks overcomes the 
structural drawbacks of direct mapped cache like high 
conflict and thrashing effects to hold blocks longer and 
exploit the reuse behavior of temporal locality. The 
achievements of these goals has been confirmed by 
extensive experimental results using SPEC 2000 
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Fig. 6. Changes in cache miss rate for scalar cache with different 
associativity  
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Fig. 5. Changes in cache miss rate for array cache with different 
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Fig. 7. Reduction in effective miss rate with separate array and scalar caches 
  



 
 

 

benchmarks. Since this benefit may be very effective in 
increasing cache performance, which is expected to be an 
important limitation in future, we believe that our split 
cache architecture will find its way into the future 
microprocessors and the multiprocessor/multicomputer 
systems. 

In a related research [26]-[30], we have been 
investigating techniques for off-loading memory 
management and other memory intensive operations to 
separate hardware logic either embedded within a DRAM 
or in the memory controller. When such intelligent 
memories are available, they can also be designed to utilize 
split data caches more effectively. 

REFERENCES 
[1]     J. Arul, K.M. Kavi and S. Hanief, "Cache Performance of Scheduled 

Dataflow Architecture", Proc. of the 4th International Conference 
on Algorithms and Architectures for Parallel Processing 
(ICA3PP2000), Hong Kong, Dec. 11-14, 2000. 

[2]   K. M. Kavi, A.R. Hurson, P. Patadia, E. Abraham and P. 
Shanmugam. "Design of cache memories for multi-threaded 
dataflow architecture", Proceedings of the 22nd Intl. Symp. on 
Computer Architecture (ISCA-22), June 1995, St. Margherita 
Ligure, Italy, pp. 253-264 

[3]    K.M. Kavi and A.R. Hurson. "Performance of cache memories in 
dataflow architectures", Euromicoro Journal on Systems 
Architecture, Vol. 44, No. 9-10, June 1998, pp 657-674. 

[4]    A.J. Smith, Cache Memories, ACM Computing Surveys 14 (1982) 
473-530.  

[5]   J. L. Hennessy and D. A. Patterson, Computer Architecture A 
Quantitative Approach, Morgan Kaufmann Publishers, Third 
Edition 2003, pp 423-430. 

[6]    S. A. McKee, R. H. Klenke, K. L. Wright, KL, W. A. Wulf, M.H 
Salinas, J. H. Aylor, A. P. Barson, “Smarter Memory: Improving 
Bandwidth for Streamed References,” in IEEE Computer. July 
1998. p. 54-63. 

[7]  N. P. Jouppi, “Improving Direct-Mapped Cache Performance by the 
Addition of a Small Fully Associative Cache and Prefetch Buffers,” 
In proceedings of the 17th ISCA, May 1990, pp. 364-373. 

[8]   P. Ranganathan, S. V.Adve, and N. P. Jouppi, “Reconfigurable 
caches and their application to Media processing,” Proceedings of 
the 27th International Symposium on Computer Architecture, June 
2000, pp. 214-224. 

[9]  J. L. Baer and T. F. Chen, “An effective on –chip preloading 
scheme to reduce data access penalty. ”In Proceedings of the 
Supercomputing’91,  pp. 176-186, 1991. 

[10]   S. Palacharla and R. E Kessler. “Evaluating Stream Buffers as a 
Secondary Cache Replacement,” In Proceedings of the 21th 
International Symposium on Computer Architecture, Chicago, IL, 
Apr. 1994, pp. 24--33. 

[11]   F. J. Sanchez, A. Gonzalez, and M. Valero, Software Management 
of Selective and Dual Data Caches, IEEE TCCA NEWSLETTERS, 
March 97, pp. 3-10. 

[12]   C. Gonzalez, A. Aliagas, and M. Mateo, “Data Cache with Multiple 
Caching Strategies Tuned to different Types of Locality,” In 
proceedings of International Conference on Supercomputing '95, 
July 1995, pp. 338-347.  

[13]  M. Tomasko, S. Hadjiyiannis, and WA Najjar, Experimental 
Evaluation of Array Caches, IEEE TCCA Newslatters, March 97, 
pp. 11-16. 

[14]  V. Milutinovic, M. Tomasevic, B. Markovic, and M. Tremblay, “The 
Split Temporal/Spatial Cache: Initial Performance Analysis,” 
SCIzzL-5, Mar. 1996. 

[15]  V.Milutinovic, M. Prvulovic, D. Marinov, Z. Dimitrijevic, “The Split 
Spatial/Non-Spatial Cache:A Performance and Complexity 
Evaluation”, in Newsletter of Technical Committee on Computer 
Architecture, IEEE Computer Society, July 1999. 

[16]   G. Kurpanek, K. Chan, J. Zheng, E. DeLano and W. Bryg, PA7200: 
A PA-RISC Processor with Integrated High Performance MP Bus 
Interface, COMPCON Digest of Papers, Feb 1994, pp. 375-382. 

[17] E. Rashid, A CMOS RISC CPU with On-Chip Parallel Cache, 
ISSCC Digest of Papers, Feb 1994, pp. 210-211. 

[18]   J.A. Rivers and E.S. Davidson, “Reducing Conflicts in Direct-
Mapped Caches with a Temporality based Design, Proc. 1996 
International Conference on Parallel Processing, August 1996. 

[19]  J. H. Lee, J. S. Lee, and S. D. Kim, “A new cache architecture 
based on temporal and spatial locality,” Journal of Systems 
Architecture, Vol. 46, pp. 1451-1467, Sep. 2000. 

[20]   J. H. Lee, G. H. Park, K. W. Lee, T. D. Han, and S. D. Kim, “A 
Power Efficient Cache Structure for Embedded Processors Based 
on the Dual Cache Structure,” In proceedings of the ACM 
LCTES’2000, June 2000. 

[21]  O.S. Unsal, I. Koren, C.M. Krishna, C.A. Moritz, “The Minimax 
Cache: An Energy-Efficient Framework for Media Processors,” 8th 
International Symposium on High-Performance Computer 
Architecture, HPCA8, Cambridge, MA, February 2002, pp. 131-
140. 

[22]  Intel StrongARM SA-1110 Microprocessor Brief Datasheet, April 
2000. 

[23]   P. Petrov, A. Orailoglu, "Towards Effective Embedded Processors 
in Codesigns: Customizable Partitioned Caches", in International 
Symposium on Hardware/Software Codesign (CODES), pp. 79-84, 
April, 2001. 

[24]  L. Henning. "SPEC CPU2000: Measuring CPU Performance in the 
New Millennium", IEEE Computer, 33(7), pp. 28-35, July 2000. 

[25]   A. Eustance and A. Srivastava. "ATOM: A flexible interface for 
building high performance program analysis tools", Western 
Research Laboratory, TN-44, 1994. 

[26]   S.M. Donahue, M.P. Hampton, M. Deters, J.M. Nye, R.K. Cytron 
and K.M. Kavi. “Storage Allocation for real-time, embedded 
systems”, Proceedings of the First International Workshop on 
Embedded Software (EMSOFT 2001) (October 2001), Springer 
Verlag, pp 131-147 

[27]  S.M. Donahue, M.P. Hampton, R. Cytron, M. Franklin and K.M. 
Kavi. “Hardware support for fast and bounded time storage 
allocation”, Proceedings of the Workshop on Memory Processor 
Interfaces (WMPI), in conjunction with the International 
Symposium on Computer Architecture, May 2002, Anchorage, 
Alaska 

 [28]  L.M. Fox, C.R. Hill, R.K. Cytron and K.M. Kavi. “Optimization of 
storage-referencing gestures”, Proceedings of the Workshop on 
Compilers and Tools for Constrained Embedded Systems (CTES-
2003), held in conjunction with Conference on Compilers, 
Architecture and Synthesis for Embedded Systems (CASES-2003), 
Oct. 29, 2003, San Jose, CA. 

[29]  M.Rezaei and K.M. Kavi. “Utilization of Separate Caches to 
Eliminate Cache Pollution Caused By Memory Management 
Functions”, Proceedings of the 16th International Conference on 
Parallel and Distributed Computing Systems (PDCS-2003, 
sponsored by the International Society for Computers and their 
Applications, ISCA), Aug. 3-15, 2003, Reno, Nevada, USA. 

[30]  M. Rezaei. “Intelligent memory manager: Towards improving the 
locality behavior of allocation intensive applications”, PhD 
Dissertation, University of North Texas, May 2004. 

 
 
 


