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Abstract— In our prior work we explored the use of a
separate cache for I-structure memories within the
context of dataflow based multithreaded systems. I-
structure memories in dataflow systems are used to
store arrays and other indexed or stream data items
This work showed that using separate (data) cachder
indexed or stream data and scalar data items couliéad
to substantial improvements in terms of cache misseln
addition, such a separation allowed for the desigrof
caches that could be tailored to meet the propertte
exhibited by different data items.

In this paper we explore a similar cache
organization providing architectural support for
distinguishing between memory references that exhit
spatial and temporal locality and mapping them to
separate caches. Since significant amounts
compulsory and conflict misses are avoided, the sizof

for I-structure memories within the context of dima
based multithreaded systems [1]-[3]. I-structuremmees
in dataflow systems are used to store arrays ahdr ot
indexed or stream data items. This work showed ukinty
separate (data) caches for indexed or stream ddtacalar
data items could lead to substantial improvemantgims
of cache misses. In addition, such a separati@wead for
the design of caches that could be tailored to nteet
properties exhibited by different data items.

In this paper we explore a similar cache orgarorati
providing architectural support for distinguishibgtween
memory references that exhibit spatial and temporal
locality and mapping them to separate caches. gleetson
of proper block size or associativity to maximize
performance while staying within the cost are tlaedest
choices in designing cache memories. By partitigrtime

of cache as we propose, our cache system can implement

different  configurations exploiting different cache

each cache (i.e., array and scalar), as well as theparameters more selectively and effectively. Theaa

combined cache capacity can be reduced. According t
the results of our simulations a partitioned 4k sclar
cache with the streams (or arrays) mapped to a 2k
array cache can be more efficient than a 16k unifi
data cache.

I.  INTRODUCTION

cache” is a direct mapped cache with larger bloz&ssto
exploit spatial localities more aggressively byejfetching
multiple neighboring small blocks on a cache miss.
Whereas the “scalar cache” is a 2-way (or 4-way) se
associative cache with smaller block sizes to ékplo
temporal locality. The combination of different blosizes
and associativities together with partitioned cache

on the nature of the locality exhibited by differelata
references, handling all memory references in

the existing problems in cache designs and maxsrikze
gffective cache memory space for any given cactesand

uniform manner - whenever a reference misses, a né@st. Since significant amounts of compulsory aonflet

block is brought into cache at the expense of oépda
another block. Since not all data items exhibithbgpatial
and temporal localities, this simple minded treatie the
references makes the data cache inefficient attiadafo
the two types of localities. Generally, caches eitpl
temporal locality by retaining recently referenatada for a
long time, and spatial locality by fetching mulgpl
neighboring words as a cache block whenever a cacte
occurs. If a data item exhibits no temporal logalitringing
it into the cache is useless. Likewise if no spddicality is
exhibited by data items, bringing an entire caclack
leads to wastage. Thus traditional treatment ofieamisses
not only causes unnecessary movement of data hetlvee
various levels of the memory hierarchy, it may lead
premature displacement of blocks that are likeljoéore-
referenced (i.e., cache pollution). This can becormagy
costly if the newly loaded data tends to be nongiamal. In
any case the result is an unnecessary increasssratios,
memory access times and memory bandwidths.

In our prior work we explored the use of a sepacatghe

misses are avoided, the size of each cache (iray and

scalar), as well as the combined cache capacityieenbe

reduced. According to the results of our simulaticam

partitioned 4k scalar cache with streams (or ajrmapped

to a 2 k array cache can be more efficient thar6ak 1
unified data cache.

The rest of the paper is organized as follows. iGe@
discusses related issues and performance metrio®ie
detail to motivate the reader. Section 3 providesuaey
and analysis of related research. Section 4 describ
benchmarks and experimental set up used in out&tah
while, section 5 presents the results. The mairctlasions
are drawn in section 6 with a brief synopsis of tiire
work.

Il. CACHE, ITS DATA, PARAMETERS AND DEFICIENCIES

Although caching dates back to Von Neumann's dassi
1946 paper that laid the foundation for modern ficat
computing, it became vital in the performance of a
processor since the beginning of 1990’s as thebgapeen



the processor cycle and memory latency times iseda the program displays only a small percentage ofasca

dramatically. Caches are typically placed betwedarge,
relatively slow and inexpensive source of informat{the
lower level of memory) and a much faster consunfi¢hat
information, the processor. The success of cachmaaries
has been explained by the property of localityeférence
[4], which is a property exhibited by most programs
cache exploits this property to improve the effexiccess

references (in case of scientific applications)very few
arrays or streams we feel that it is better to segarate
scalar and stream caches. In the following submestive
will talk about issues in general cache design.

A. Cache block size
The selection of block size depends on both treniat

time to data and reducing the cost of accessingn maand bandwidth of the lower-level memory [5]. Itpisssible

memory. The property of locality has two aspe&sjgdoral
and spatial. Temporal locality implies that, oncl@ation
is referenced, there is a high probability thatwitl be
referenced again soon, and less likely to do sthagime
passes; spatial locality implies that when an ucdion or
datum is accessed it is very likely that nearbyritdions
or data will be accessed soon. Since cache buieently
used segments of information, the property of libcal
implies that needed information is also likely ®found in
the cache.

As the CPU speed has outstripped the rest of thiersy

to achieve higher memory bandwidths on modern
memories that are supported by wider buses, mailtipl
banks, more pins, integrated circuit propertie D&AMSs

(for example on-chip memory), the newer Rambus and
Synchronous DRAM [6]. However, high memory latemnsy
still an issue that must be addressed. Although lEtency
and high bandwidth both encourage larger blockssiiece

the cache gets many more bytes per miss for a small
increase in miss penalty, not all applications bamefit
from larger blocks. Increasing block size to redube
impact of memory latency also implies prefetchirigiata

problem keeps growing, some deficiencies of corivaat
caching are becoming evident. Existing cache omgioin
suffers from the inability to distinguish differetypes of
localities and non-selectively cache all data nattien
making any attempt to take special advantage ofoitedity
type. This causes unnecessary movement of datagathen
levels of the memory hierarchy, significant inteeigce
between unrelated data inside the cache, removal

the applications using streams. On the other hand
applications that exhibit very little spatial butregter
temporal localities (as exhibited by scalar datamig)
cannot benefit from preteching or larger cache kdodn
fact, for scalar references, it is better to hawvalker cache
block sizes and more cache lines to eliminate ainfl
misses and even capacity misses when smaller caches
ted [5]. Our work is motivated by the observativat it is

potentially useful data causing cache pollution anBOt Possible to design a single cache that workss fwe
unnecessary increases in miss ratio, memory aduomss different types of localities and data types. Wepmse
and memory bandwidth. The references can be easipltiple data caches designed with different bleies to

divided into two groups according to the typesaufalities

exhibited by the program -- the scalar and streame

(strided) references. Conventional cache technicames
acceptable for general-purpose scalar referencishigh
temporal locality. But the picture is totally opjiesfor
stream references, which do not reuse data soaftem
enough to derive much benefit from caching. Sincaya
and streams exhibit only spatial localities anddhta sizes
are often too large for caches, computations withasns
and array access patterns cause mostly compulsesem
(rather than conflict misses) and perform extrenmsgrly
in terms of cache behavior. In order to solve prisblem,

meet the needs of the different data types.

%, Cachecapacity

Increasing cache size will obviously reduce capacit
misses; however as cache size increases, a capaisiy
will become a conflict miss [5]. On the other hahdhe
number of capacity misses is small, increasingctigacity
of the cache will not benefit the application. Jouet. al.
[7] reported that increasing cache capacity actuall
increases cold-start or compulsory misses and tmésses
are more likely to be sequential in nature. This
particularly the case with stream data types. Tfars

is

our proposed architecture groups the memory acsesse stream references it is noF necessary to havega lzache.
scalar or array references according to their ishier A larger cache can benefit appllcgtlons that acsegeral
locality and each group subsequently mapped to sets of data, _bu_t not for applications that acee&ng_le
dedicated cache partition, equipped with architettu stream _[7]. Similar results have been reported fedia
constructs built to exploit that particular locglitype. In  Processing workloads [8].

this system, since the scalar references and stam C. Associativity

references are no longer negatively affecting eattier,
cache interference, thrashing and pollution prokslemil
be diminished, delivering better performance. Nalyo
both caches would be designed more optimally adegrd
to their specific needs, it will simplify some othgeneral
issues and concerns in cache design, such as
associativity, cache block size or cache capaéiten if

For a cache of given size, its set-associativitgticsated
by a number of criteria, which include implemerdgattcost,
access time (both on hit and miss) and miss rateecD
mapped caches are simpler, easier to design andreeq
less silicon area, than set associative caches. ri&e
mgadvantage of a direct mapped cache is the higHict



miss rate. Because of lack of associativity, cohfthisses

prefetching of the missed block along with sucoessi

typically account for 40% of all direct-mapped cachblocks that will be stored in the buffer ratherrthihe cache

misses [7]. Conversely for caches with higher dssivity
the main advantage is lower miss rate, but theynawee
expensive and incur longer access times on hit.gblaé of

to avoid cache pollution(premature displacementiaify).
The Stream buffer will not only mitigate traditidna
problems with larger cache lines and extensiveepehing,

a computer architect is to maximize performancelevhiit is more effective than other investigated pretiet
staying within the cost and power constraints. Areno techniques [9]. The biggest problem with Streanfdsuis

desirable cache design would reduce the conflissmate
to the same extent as a set associative cacheathhe
same time it would maintain the critical hit accessh of
the direct mapped cache. Because of the lack gbdeah
locality, the stream references will cause more masory
misses than conflict misses and direct mapping lvélithe
better option for an array cache. Whereas for lascache,
increasing associativity will lead to a reductidnconflict
misses and exploitation of temporal locality.

D. Streams

In this paper we focus on the class of computattbas
involve access to stream references. Streams querséal,
structured data or collection of successive eleseiith a

the it needs to be flushed at the detection ofreomyspatial
data. Jouppi's investigation did not explore thee&n
Buffer only for data with spatial localities (suchs
streams), the buffer was used for all data items.
Subsequently, two different approaches have emethed
first approach retains Jouppi's original idea and
supplements the regular cache with a small bufter f
prefetching all data items regardless of the natafe
locality exhibited by the data; the second approacteal
cache partitioning to exploit different data lotiab
exhibited by different data types. Partitioningthé cache
can be either static or dynamic.

The most extensive and prominent work belongintinéo
first trend is done by Mckee et. 46]. They designed a

known, fixed displacement (called stride) betweer)y,c (stream memory controller), which is a combibrat

elements. Streams are traversed linearly - dueiagl these
return successive elements, and during write tlaesept
successive elements and store them sequentialpically
the elements are operated on iteratively. And teeents
are used once or very few times during the traler3dus
streams exhibit high degree of spatial localityhwitery
little temporal locality. Another characteristic itheir
transparent and completely predictable referendéenpa
Stream accesses are typically generated in loopghé\
beginning of the loop, only by knowing the base radd
(the address of the first element in the streamnjesand
the length of the stream, the entire referenceepattf this
specific type of structure can be predicted. Exanphf
computations using streams include veci@cientific)
computations, string processing, multimedia appbce,

of a small buffer and an intelligent scheduling tufar
supporting the regular cache. When the programrerate
loop that accesses one or more streams, compihergeed
code provides the scheduling unit with the baseesdgs,
the number of elements, and the strides for argasis
accessed in the loop body. The Memory Scheduling Un
(MSU) uses this information to reorder the requsstshat
even though the processor still issues requedtet&tream
Buffer Unit (SBU) in the natural order, the ordarvhich
associated requests are made to memory will magithia
use of its bandwidth. Since the stream accessdenuer
affects the cache, the cache can be designed mtneadly
for the remaining requests. Palacharla et. al. fit®posed
to use multiple stream buffers to replace the leigpadary
cache.

compression and decompression, —encryption,  signalganchez et. al. [11] have proposed a dual dataecach
processing, image processing, text searching, aNé\ D \ynich is composed of two modules, temporal module

sequence matching.

which is a fully associative buffer, built to exjlqust

~ Since caches that rely on temporal locality argmporal locality and spatial module, which is aedi
ineffective for streams, memory bandwidth is rap'dlmapped cache targeted to exploit spatial localife

becoming limiting for these streaming computationhbe
presence of higher spatial locality of the streasneases
makes them a better candidate for prefetching bgeasing

former module has only 16 very short blocks (eatibigs)
and the later has larger blocks (32 bytes per blokkthe
compile time memory instructions are tagged as &ypa

the block size. Since most modern DRAM component@ata that do not exhibit any type of locality)asgl, or
support modes thanake it possible to perform some accesgmporal For missesoth modules are checked in parallel

sequences faster than others, the predictabilithebtream

accesses makes it possible to reorder them to efégrb

memory performance [6].

Ill. RELATED WORKS

to find the required data. References tagged aadsypre
sent to CPU directly, rather than bringing theno ioache.
If a reference with a spatial or temporal tag ngsseboth
modules, a new block is brought into the moduldciaigd
by the tag. Previously they proposed a similar igecture

Complementing the cache with a small extra modale {12], where instead of compile time annotationse th

exploit temporal and spatial localities was firsbosed by
Jouppi [7]. The Stream buffer is a fully associeti¥IFO
buffer with 4 or 5 entries designed to support thect
mapped cache through prefetching. A miss will ireltive

memory references were tagged at execution tinreg e

additional hardware unit callddcality prediction table
Tomasko et. al. [13] reported on a preliminary

experimental evaluation of an architecture with asefe



array and scalar caches to observe the potentidfitieto set, to co-exist in the cache simultaneously, witeie the
design a cache organization to a specific typ@ddlity. In  number of block entries in the Assist buffer. Sircdy a
their experiment they assumed a model where thgingg uni-directional communication exists between thesati
of data as array or scalar to be allocated in agriteeoother mapped unit and the Assist buffer; no swapping betw
caches would be done statically by compiler andntbelel  the two units is allowed.
does not assume any extensive analysis of refesettce The NTS (Non-Temporal Streaming) Cache proposed by
determine the nature of the locality of accesshemtit River et. al. [18] dynamically detects temporal &Rd non-
allocates the data only on the basis of the dape tytemporal (NT) data and cache them separately. Th8 N
declaration. The main difference between their warkl Cache consists of a data storing unit (DSU) whighai
the one reported here is not using different caméijons conventional direct mapped cache supplemented with
for exploiting associativity and implementing diat small fully-associative buffer (NT buffer) and a mo
sizes of array and scalar caches temporal detection unit (NTDU), which is a hardwéie

STS (Split Temporal/Spatial) cache proposed bgap structure attached to the main cache in order t
Milutinovic et. al. [14] is a little different than other monitor the reuse behavior of the blocks. Cachelbkize
proposed split caches. Since for “temporal” datxdiichy is uniform across the direct-mapped cache primaghe,
is needed (to reduce miss penalty for subsequesdes)i the buffer units and the next level of memory. The
but fetching the entire block is unnecessary, dmapbral strategies adopted in the NTS cache for detectimgy a
part is organized as a two level hierarchy with ewedd caching temporal and non-temporal references arg ve
block size. The spatial part is one-level with f@&2-bit similar to those implemented in HP-7200 Assist @ach
words with a hardware implemented prefetchingl6]-[17]. Since the NTS cache did not handle the
mechanism. The STS cache has four variants STS32,STcompulsory misses, Rivers et. al. [18] evaluateplcaup of
STS4a STS4b, each with same sized temporal modile loaching strategies that integrate various comimnatiof
larger spatial modules. Both modules are 4-way st&mporal locality based caching and tagged prefegch
associative with LRU replacement. Initially all ddtlocks Lee et. al. [19]-[20] have proposed a cache sysi@iad
are regarded as “spatial’; a data block may be gdwhio STAS (Selective Temporal and Aggressive Spatiathea
“temporal” and re-allocated through optimization ofAlthough they claimed to have two separate cacloes f
relevant parameters (using different counters tdéeale temporal and spatial references with different klsizes,
locality) during profiling or during runtime by mes of a the module for spatial locality is actually a bufi@ther
monitoring hardware unit. than a cache. In this system on every memory acbetis

In order to avoid the problem of determining countemodules are accessed simultaneously. If a missreciu
thresholds present in STS method and also the gmobf both places the block is brought to the spatialfasuf
complicated memory hierarchies for each moduldjowever a write back of dirty block in spatial kerfitannot
Milutinovic et. al. [15] proposed a simple method ooccur directly - the dirty block is always placedtie direct
detecting useful spatial locality which is testedy bmapped cache before being replaced. Later they have
incorporating it into a new split cache design,lezhlthe extended the STAS cache into another cache steuSivil
Split Spatial/Non-Spatial cache (SS/INS). For datgct (Selective Mode Intelligent) cache which consistshoee
different types of locality the design used a flagsed parts: a direct mapped cache with a small blook, sizfully
method, requiring fewer cache bits than counteassociative spatial buffer with large block sized aa
implementation of STS. For exploiting the localithe hardware prefetching unit.
system has two separate modules with same assdgiati In the arena of media/lembedded processors, static o
and equal hierarchy. Prefetching is used if spaility is dynamic cache partitionings are even more popllasal
too large to be exploited by larger cache block. et. al. [21] have proposed minimax cache whichah8k 2-

The HP-7200 Assist Cache [16]-[17] design tries tavay set associative cache for non scalar data whie
avoid both cache conflict and cache pollution doe tscalar data are directed to a 512 byte fully assivel
prefetching. The primary direct-mapped cache isptEii  minicache. The system also has a secondary cachéan
with a small fully-associative buffer (the Assistifter), block size is the same across the buffer and cadhiet's
with a one cycle lookup in both units. The direapped StrongARM SA-1110 [22], a low-power processor for
primary cache and the buffer units are designel adual embedded system, has a 8k data cache with 32-way se
sized blocks. Until a block is identified as temgoif it is  associativity and 512 byte fully associative miatalcache
requested either by a cache miss or a prefetcthltduk is to enhance caching performance when dealing with
first loaded into the Assist buffer. It is promotedo the temporal references. This system does not contdin2a
direct-mapped unit only when it exhibits temporause. cache.
Spatial-only data, especially array data, may byphe Ranganathan et. al. [8], Petrov et. al. [23] anchyna
direct-mapped cache entirely, moving back to membory others have proposed reconfigurable caches for eteloe
FIFO fashion from the Assist buffer. In this systensystems with dynamic cache partitioning. In their
dynamic associativity is provided by allowing up M1 customizable partitioned cache, Petrov et. al. hased
conflicting blocks which belong to the same direwtpped same block size and associativity for the partgtiomhe



reconfigurable cache proposed by Ranganathan et. a

allows the cache array to be divided dynamicalty itwo TABLE |

or more partitions that can be utilized by the essor for DESCRIPTIONS OF BENCHMARKS USED IN THE EXPERIMENT

various purposes. Benchmark  Function Total references % of % of
To contrast our approach with the designs sumntiize Array Scalar

reference  referenc

179.art Image 1244504516 26.92 73.08
Recognition/

his section, we propose a very simple design byigimgy
two separate caches, named array and scalar, wit

individual design parameters optimized to meet nbeds Neural

of different data types. The scalar cache will eipl Networks

temporal locality for some data items, while thexgrcache 183.equake  Seismic 93304349658  18.63 81.37
will be used to exploit spatial locality exhibitdxy other \,eri\ézgaﬂon

types of data items. Among the approaches mentione: Simulation

above, SMC, Dual data cache, Assist cache, NTS,SSTA ~ 188.ammp Computation 2338560511 14.38 85.62
SMI are using multiple stream buffers to supplemidet al Chemistry

single data cache whereas STS, SS/NS, Array/Scala

minimax cache, StrongARM are real split cache 177.mesa 3-D 129910909077  6.58 93.42
architectures. Our simple design principles of eaaliows S[;g:‘;cs

one to build correspondingly simple hardware cdlgro
We believe that rather than using a multiple stefIFO
buffer it is more practical to use a cheaper, fasiell-
established architectural construct like cache. Théid not modify them to make efficient use of smlche
performance of the split caches can be improved wi{such as reordering array references or including
compile time analysis and direct memory accesses ppefetching hints). We traced complete program rand
appropriate cache. did not limit only to array and in-loop referencdgon-

Our architecture permits the use of different bistes array references, especially scalar and stack blaga
and different associativities within a single CP®sign. contribute most to temporal reuse and are the wiatims
STS cache, SSINS cache, Array/Scalar cache systeens of cache pollution (premature replacement by array
the same associativity with different block siz&ctim  references). Hence excluding them from traces walt
caches, Assist cache, the NTS cache system, thenaxn provide the true picture of program’s memory refieee
cache, Intel StrongARM SA-1110 use differenthehavior. The number of instructions executed bghea
associativities but the same block size. None @&seh application varied from 1 billion to 129 billions.
designs permit both different blocks sizes and edéffit ) . _
associativies in a truly split cache model. Foremn B Simulation Environment
references with spatial locality which causes more We used trace driven simulation as our evaluation
Compu|sory misseS, we use direct mapped array oaithe meth0d0|ogy. The executables of the benchmarks are
larger block sizes to benefit from prefetching. Boalar instrumented using ATOM, a performance measurement
references which causes more conflict misses weauge tool [25]. ATOM instrumentation routine producesnew
way set associative cache with smaller block siard executable file a.out.atom. When this file is exedun the

more blocks in cache to avoid the high conflict ang@me manner and same input as the original progaam,

thrashing effect of direct mapped caches. highly compressed trace file of every load and estor
reference made by the program is produced whifadigo
I\V. EVALUATION METHODOLOGY the analysis routine of ATOM to simulatdifferent cache

organizations for split array and scalar cache g¢negate
miss rate and other relevant statistics for theym. In an
actual implementation of split caches, compile time
analyses can be used to tag stream data so tlyatdahebe
directed to array cache, separate from scalar cache

A. Benchmarks In an attempt to evaluate the optimal configuratbthe

The cache architecture proposed in this paper bas b split cache, a variety of array and scalar cachessiblock
evaluated for the following SPECfp2000 benchmasgks, Sizes and associativity were examined. We simuldtesk
ammp, mesa and equake [24]. Each of the program Gache sizes for array cache (1k, 2k and 4k) and dache
written in C. We used gcc compiler version 2.3. Thé&izes for scalar cache (4k, 8k, 16k, 32k and 64k lzlock
percentages of array and scalar references in thi@es ranging from 32 bytes to 128 bytes for bothyaand
benchmarks are shown in Table 1. From the tahtaritbe scalar caches. We have chosen two common approaches
seen that the percentage of array references rdngmada
low of 6.58% in mesa to a high of 26.92% in artshbuld ! We simulated caches directly inside ATOM analysistead of

: collecting address traces and then using a sepzaael® simulator such as
be mentioned that we used the exact benchmark ares ;. - °

In order to evaluate our ideas we developed a sitoul
environment. In this section, we briefly describee t
characteristics of our benchmark codes and thelation
environment.




the direct mapped cache and 2-way set associatighec
for both array and scalar cache. For 2-way setcitbaty

shown in figure 2, for benchmark mesa, increasitagk
size actually causes an increase in miss ratelaingisults

we used both least recently used (LRU) and randohave been found for the other three benchmarkscéien

replacement policies. We also simulated a conveatio
cache with corresponding configurations for congaani

V. RESULTS

of our experiments. By changing the block sizeshea
capacity and associativity, attempt is made to inbthe
best configurations for array and scalar cache® miéxt
three subsections present the selection of a qzentzeneter
in the same order as these parameters were dekdribe
section 2. Finally we compare the effective miste raf
split-cache against that of conventional unifiedhsa (for
both stream and scalar data types), which supporview
that a complete separation of array and scalar idees
can be a key to boosting cache performance.

A. Selection of Block size

Approaches to exploit both types of locality in rified
data cache contradicts each other because in @ $ized
cache increasing block size will result in decreasember

0.5
o 04 1] @ 32 bytes block
K 03 size
2 m 64 bytes block
s size
= 02
S 1128 bytes block
g 014 size
)
oM
1 2 3 4
art equake ammp mesa

Fig. 1.Changes in miss rate with increase in bkiz& of 4k array cache

of lines. Hence in a single data cache, it is rassjble to

achieve a balance between these two forms of a&xess
Figure 1 shows the decrease in miss rate with &sing

block sizes in a 4k-array cache. Whereas for scalehe as

0.08
0.06
0.04
0.02

1 2 3
Blocksizel6Blocksize32Blocksize 64

Cache Miss Rate

our proposed architecture we will take advantagdaih
techniques-- by using larger cache blocks for aoaghes
and smaller block sizes for scalar cache.

B. Selection of Cache size

As mentioned in section 2.2, an important criterfon
selecting cache size is the frequency of capadiges. We
expect that when separate scalar and array cachesed,

0.2
()
T 0.15
o O 16k scalar cache
(]
.é’ 0.1 W 32k scalar cache
o 064k scalar cache
-‘C% 0.05 m
© 5. ‘ [

1 2 3 4
art equake ammp mesa
Fig. 3. Changes in cache miss rate with increase in caizkeo$ scale

cache

the scalar cache can be very small (say 4K levediige
the number of capacity misses is small with scalata
items. As figure 3 shows for scalar cache almost no

improvement is achieved even after doubling or
quadrupling the cache size. For this reason wedddcio
0.3

g 025 []

@ 0.2 @ lk array cache

9]

-é’ 0.15 - W 2k array cache

o 014 O 4k array cache

§ 0.05 -

0
1 2 3 4
art equake ammp mesa

Fig. 4. Changes inache miss rate with increase in cache size of
cache

use a small 4k or 8k scalar cache.

Figure 4 shows that for array cache increasing each
size with increasing block size reduces the migs. laut
we did not repeat our experiments with larger anaghes
than 4k because it has already been demonstraaédoth
stream references miss rate increases with cazhe g
[8], unless even larger block sizes are used.

Fig. 2. Increase in cache miss rate with incread®dck size of scalar cache

for benchmark 177.me



C. Selection of associativity

Several experiments are performed to determine the

optimum associativity for each cache type and thehe
miss rates for each benchmark are plotted. Fronrdidp

0.07

2 0.06 - -
s 0.05 EDirct mapped
a == cache
‘€ 0.04
2 0.03 + W 2-way set
S 002 L associative
QL cache
o 0.01 -

o

1 2 3 4
art equake ammp mesa

Fig. 5. Changes in cache miss rate for array cache witfferdif
associativity

we can see that for array cache, except benchmadam

increasing associativity will not be worth its cost
This observation is consistent with our

expectations. In our test suite, the percentageaphfcity

misses is very low and after removing streamedeefses,

0.25
[4]
T 02
o O Direct Mapped
@ 0.15 -
E 0.1 W 2-Way Set
5 Associative
8 0.05 -

0 4
1 2 3 4
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Fig. 6. Changes in cache miss rate for scalar eawlith differen
associativity

for our scalar cache, conflict misses are the maimcern.
Whereas the lack of capacity misses first directedo use
a small scalar cache, this decision and the higbaflict

initial

0.25
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n: Cache
2 0.15 -
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Fig. 7. Reduction in effective miss rate with separateyaarad scalar caches

order to find the effective miss rate we have udesl
following formula,

Effective miss rate = Array miss rate * (Number dfrray
references/Number of total references) + Scalarsmate * (Number of
Scalar references/Number of total references)

Figure 7 shows the effectiveness of cache spliticrgss
the benchmark suite. The split array and scalaheac
demonstrate uniform superiority over the convergion
unified data cache design across all of the bendisn&or
4k 32 bytes scalar cache and 2k 128 bytes arraljecac
43.41%, 24.14%, 11.76% and 43.33% improvement is
achieved over a 16k 64 bytes unified scalar caoheift,
equake, ammp and mesa benchmarks respectively.

VI. CONCLUSION

In this paper we have presented the initial evalnatf a
split array and scalar data cache. Existing cackearny
architectures exploit locality of reference in batita and
instruction address streams. Separation of cachetisa
new idea. Modern processors rely on split cache
architecture, at least on the first cache levethwseparate
instruction and data caches. The locality withie thata
address stream is also not uniform. Hence it seems
worthwhile to exploit the two types of localities data
intensive applications, specifically in large-scat@entific
computations. Several papers have been published on
separate data caches. The main difference betwssn t
work and those is the complete independence oftvioe
caches in terms of block size and associativity. Ndge

miss rate then convinced us to select 2-way Sgfnjated a direct mapped array cache with lardeckb

associativity, for the scalar cache. It is obvifnasn figure
6 that for scalar cache increasing associativifyroves the
performance.

D. Comparison of split array and scalar data caetith
conventional unified data cache

After the evaluation of optimal configurations fboth
array and scalar caches, weighted effective miss fiar

size for stream references exhibiting spatial libgain
order to permit prefetching and reduce the compulso
misses. Whereas our 2-way set associative scaldreca
with more number of smaller blocks overcomes the
structural drawbacks of direct mapped cache likgh hi
conflict and thrashing effects to hold blocks longad
exploit the reuse behavior of temporal locality. eTh

array and scalar caches of all four benchmarks afghievements of these goals has been confirmed by

compared against the miss rate of unified 16k dathe. In

extensive experimental results using SPEC 2000



benchmarks. Since this benefit may be very effectiv [
increasing cache performance, which is expectedetan [
important limitation in future, we believe that oaplit

cache architecture will

find its way into the fugur

17]

18]

microprocessors and the muItiprocessor/multicomputélg]

systems.
In a related research [26]-[30], we have beefz0]
investigating  techniques for off-loading memory

management and other memory intensive operations to
separate hardware logic either embedded within ANDR [21] O.S. Unsal, I. Koren, C.M. Krishna, C.A. M “The Minimax

or in the memory controller.

When such intelligent

memories are available, they can also be designatlize
split data caches more effectively.
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