
RELIABILITY ANALYSIS OF CSP SPECIFICATIONS USING

PETRI NETS AND MARKOV PROCESSES

Krishna M. Kavi, Frederick T. Sheldon, Behrooz Shirazi
University of Texas at Arlington

and
Ali R. Hurson

Pennsylvania State University

ABSTRACT

In our research we are developing methodologies and
tools to permit stochastic analyses of CSP-based system
specifications. In this regard, we have been developing
morphisms between CSP-based models and Petri net-based
stochastic models. This process has given us insight for
further refinements to the original CSP specifications (i.e.,
identify potential failure processes and recovery actions).
In order to create systems that meet user needs in terms of
cost, functionality, performance and reliability, it is
essential to relate the parameters needed for reliability
analysis to the user level specification.

Keywords: Formal specification, CSP, Petri Nets,
Reliability analysis, Markov models.

1. INTRODUCTION

Computers are increasingly used in every day life in
today's society. These systems are monitoring and
controlling complex and safety critical systems. It has
been conjectured that formal mathematically precise
methods should be used to design such systems. Among
the benefits from using formal frameworks, we include
[Ostroff 92]:

• In the process of formalizing informal
requirements, ambiguities, omissions, and
contradictions will often be discovered.

• A formal framework may lead to hierarchical
semi-automated system development methods.

• A formal model can be verified for correctness by
mathematical methods (rather than by exhaustive
testing).

• A formally verified subsystem can be
incorporated into a larger system with greater
confidence that it will behave as specified.

• Different designs can be evaluated and compared.
• A clear specification of interactions among

various subsystems may provide implementation
insights for avoiding performance pitfalls.

“When it comes to the implementation of
specifications formally, one does not do it by writing
programs and then trying to prove that they meet the
specifications. Instead, one constructs correct programs in
small steps - each step taking the specification and
producing something that is bit closer to the final
program” [Hall 90]. At the other extreme, some formal
specification and verification methods strive for "fool-
proof" or "error-free" designs. A proof is only a
demonstration that one formal statement follows from
another, and the validity of a statement depends on the
validity of the statement from which it is derived.
Complex systems are placed in environments that are
difficult to model accurately. Thus, it is not feasible (at
least not cost-effective) to prove the correctness of a
designed system in real environments. One must be
satisfied by designing systems that will exhibit a high
degree of dependability. Thus, future systems will be
designed to tolerate unpredictable conditions and operate
safely in the presence of hardware or software failures.

The research in formal specification and verification of
complex systems has often ignored the specification of
stochastic properties of the system. The normal practice is
to derive designs and implementations of systems from
formal specifications. Designers concurrently develop
stochastic models of the target systems for the purpose of
reliability and performance analyses. While detailed
analyses require a clear understanding of the
implementation (hardware/software failure modes, failure
distributions, service distributions, workload, etc.), it is
our belief that the cost of providing a desired level of
reliability and performance can be related to user level
specifications, even if only in terms of upper and lower
bounds. It is also our belief that as specifications are
refined into detailed designs and actual implementations,
the reliability and performance requirements can also be
refined to reveal the trade-offs in design alternatives.

Stochastic Petri-nets have been used to analyze
complex distributed processing systems in terms of
performance and reliability. Numerous tools have been
developed for stochastic analysis of Petri nets (e.g., GSPN
[Marsan 89], GreatSPN [Chiola 89], SPNP [Ciardo 89]).
Petri nets however, are not very suitable for reasoning
about the functional correctness of a system.

We have developed an initial set of rules for translating
CSP (Communicating Sequential Processes) specifications
into Petri nets [Kavi 93]. In this paper we will
demonstrate, by using a simple example, (1) how CSP
specifications can be converted into Petri nets, (2) how
Petri nets can be embellished with failure modes, (3) how
these failure modes can be converted into CSP processes so
that the feasibility of certain failure modes can be examined
by the user, and (4) how Petri nets can be analyzed for
reliability (using user level information on failure rates).

2. FORMALISMS FOR SPECIFICATION
AND ANALYSIS

Since CSP and other specification models are
compositional, the usefulness of an analysis is improved
by partitioning large systems into smaller subsystems
whose reliability can then be approximated judiciously,
giving greater comprehensibility and thereby reducing the
analysis complexity. It is hoped that the insights gained
will lead to a set of tools for the specification of functional
and stochastic properties, as well as mechanical proofs and
analyses for correctness, reliability and performance
measures.

2.1 Communicating Sequential Processes. The
CSP model was developed by Hoare and later extended by
Olderog ([Hoare 85], [Olderog 86]). A program in CSP
consists of n > 1 communicating processes; this is
normally represented using the parallel composition
operator (||), which is associative: P = {P1 || P2 ||||
Pn}.

A process's actions are visible by means of its
communications with other processes or the environment.
The set of symbols representing the visible actions
comprise the alphabet (S) for the process. Processes
communicate synchronously by sending and receiving
messages: the sending and receiving actions (or events) are
indicated using the input (?) and output (!) actions. Pi?x is
the action of receiving a value sent by process Pi into
variable x. Pj! <expression> describes the action of
sending the value of the expression to Pj. Synchronization
is accomplished by using complementary input and output
commands in the two communicating processes.
Communication can be made selective by providing guards,
where one of the alternative communication actions with a
satisfied guard is selected. A guarded command has the
general syntax of the form <guard> → <command list>.
A command list is a set of commands defining a sequence
of actions, alternative actions based on either deterministic
or non-deterministic choice, recursive actions, or a STOP
action. Stop terminates (or deadlocks) a process. The
following summarizes CSP syntax:

P ::= STOP | (a → P) | (P\b) | (P Q)

| (P Q) | (P b Q) | (P; Q) | (μx • P)

In CSP, capitalized names are used for process names,
and lower case characters are used to denote visible actions.
Here, (a → P) means, action 'a' followed by P, (P\b) is the

same as P except action b is hidden, (P Q) represents a

non-deterministic choice between P and Q, (P Q)

represents a deterministic choice between P and Q, (P bQ)

shows concurrent processes P and Q that synchronize on
action b, (P; Q) a sequence between P and Q, (μx • P) is
used for recursion.

2.1.1 THE CSP FOR A RAIL-ROAD CROSSING. In this
example, a Rail-Road intersection is specified. The gate
closes when a train arrives at the intersection and remains
closed until the train leaves the intersection. Although the
problem statement can be extended to handle multiple
trains, only one train is specified here.

TRAIN =
 (IN_TRANSIT);
 (GATE ! a → AT_INTERSECTION);
 (GATE ! d → TRAIN)
GATE =

(TRAIN ? a → CLOSE);
(TRAIN ? d → OPEN→ GATE)

RAIL_ROAD_CROSSING =

TRAIN {a,d} GATE

This specification shows two concurrent processes, the
TRAIN and the GATE communicating via two activities,
"a" and "d." The TRAIN outputs "a" (arriving) to the
GATE as it approaches the intersection; proceeds through
the intersection and outputs a "d" (departing) to the GATE
as it leaves the intersection and continues to behave as a
TRAIN. The GATE process receives an "a" from the
TRAIN, closes the gate, waits for an input of "d" from the
TRAIN before opening the gate and then behaves like a
GATE. A few comments about the CSP specification are
in order. The original CSP does not permit specification
of time with actions, although some recent extensions to
CSP permit the association of time with actions. Because
CSP uses point-to-point communication it is awkward to
describe the case where the GATE process accepts inputs
from multiple TRAIN processes. Careful scrutiny reveals
that the TRAIN process could enter the intersection
(AT_INTERSECTION) before the gate closes which leads
to unsafe behavior. Likewise, the train may depart while
the gate is still closed which can be viewed as a fail-safe
behavior. The Petri net equivalent reveals these flaws more
readily (see Figures 1 and 2).

2.2 Stochastic Petri Nets. The Petri net was
originally due to Carl Petri. In its simplest form, a Petri
net is a directed bipartite graph, where the two types of
nodes are known as places (shown as circles) and
transitions (shown as bars). Places normally represent

events while transitions represent actions. A transition is
enabled if all its inputs contain at least one token (shown
as dark circles inside places). Completion of the action
defined by a transition causes a token to be assigned to each
of its output places. When a place is the input to more
than one transition, only one of the transitions is enabled
based on a non-deterministic choice. The state of a Petri
net is indicated by the number and location of tokens in
places (known as a marking), and as transitions are enabled,
the state of the Petri net moves from marking to marking.
The complete set of markings of a Petri net can be obtained
using reachability algorithms. When a Petri net is
restricted to contain at most one token in a place (or a
finite number of tokens, say k), such a Petri net is known
as a safe net (or k-safe).

These initial concepts have been extended to permit
probabilistic choices on the outputs of a place, inhibitor
arcs to transitions (i.e., a transition is enabled in the
absence of a token at its input place and such arcs can
model zero testing), as well as the association of time and
distributions with either places or transitions. See [Murata
89] for an excellent survey of Petri nets. We will rely on
the stochastic Petri nets that permit the association of
various probability distributions with transitions to model
performance and reliability of the system. A stochastic
Petri net (SPN) is a Petri net where each transition is
associated with a random variable that expresses the delay
from the enabling to the firing of the transition. When
multiple transitions are enabled, the transition with a
minimum delay fires first. When the random variable is
exponential, the markings of the stochastic Petri net are
isomorphic to the states of a finite Markov chain. The
transition rate from state Mi to Mj = qij is given by qij =
λi1 + λi2 + . . .+λim where λik is the delay in firing a
transition tk which takes the Petri net from marking Mi to
Mj (when more than one transition can cause the transition
from Mi to Mj). The performance and reliability analyses
of the system represented by the Petri net can be achieved
by using an equivalent Markov process.

2.3 Mapping of CSP-Level Specifications into
Petri Nets. We have developed an initial set of rules for
translating CSP specifications into Petri nets [Kavi 93].
The translation relies on the fact that CSP specifications
are based on processes moving form one action to another.
The activities which enable the actions of processes can be
viewed as the events which are represented by places in a
Petri net, while the actions are viewed as transitions in
Petri nets. The translations between the CSP and Petri net
models have not been formally verified to be isomorphic.
However, we have developed rules which show the
associated Petri net structure for the majority of CSP
process structures and compositions. The Petri net
equivalent of a CSP specification need not be unique,
because of the need to introduce dummy places or
transitions to maintain its bipartite nature. Intuitively, it
is possible to reduce different Petri net equivalents into a
canonical form. We plan to develop the necessary rules for

producing canonical Petri net representations of CSP
specifications.

Our goal is to demonstrate the feasibility of translating
between CSP and Petri nets so that stochastic properties
can be specified at the CSP level, and analyzed using
stochastic Petri nets. Some example translations between
CSP specifications and Petri nets are shown in the
Appendix. Using these, we have converted the CSP
example of the Rail-Road Crossing.

2.3.1 PETRI NET FOR THE RAIL-ROAD CROSSING
EXAMPLE. The Rail-Road crossing presents a safety
critical system where two tasks that operate independently
must communicate in order to coordinate closing the gate
when the train nears the crossing. The gate must remain
closed until the train passes though. The Petri net is
shown in Figure 1.

As stated earlier (¶2.1.1), a careful scrutiny reveals that
the TRAIN process could enter the intersection before the
gate closes, exposing the system to unsafe behavior. This
potential flaw becomes immediately visible from the Petri
net shown in Figure 1. If we assume that the gate always
opens and closes sooner than the time it takes the train to
reach the crossing, the Petri net can be viewed as hazard
free.

Obviously some mechanism is needed to ensure that
the train will not proceed unless the gate is closed. One
way to redesign the system is to force the TRAIN process
to wait until the GATE process completes CLOSEing the
gate which will avoid such unsafe behavior. The Petri net
of Figure 2 shows the additional synchronization (and its
corresponding CSP) that is necessary to ensure the system
will operate in such a manner.

In Figure 2, a failure of the communication related
actions may lead to a deadlock (the train will halt), but
synchronization between the TRAIN and GATE eliminates
the possibility of trains passing through the intersection
un-guarded by an open gate. Failure to OPEN the gate is
not safety critical, yet should be avoided to prevent
congestion of the associated infrastructure. It may be
possible to use Reward nets (and performability analyses)
to associate a cost with such delays in opening of the gate.

3. SPECIFICATION OF STOCHASTIC
PROPERTIES

One of the major objectives of our research is to
provide assistance to the user in specifying not only
functionality but also reliability, performance and
execution deadlines. In this paper we show how this is
facilitated by the translation of CSP specifications into
Stochastic Petri nets. One important benefit, as we have
already shown, is how the Petri net (PN) equivalent of the
Rail-Road crossing elucidated the need for additional
synchronization to avoid a safety-critical failure.

TRAIN GATE

P1

P3

P4

P7

P9

P10

IN_TRANSIT

AT_INTER -
SECTION

P5

P6

! a

! d

CLOSE

OPEN

? a

? d

TRAIN = (IN_TRANSIT);
(GATE ! a → AT_INTERSECTION);
(GATE ! d → TRAIN)

GATE = (TRAIN ? a → CLOSE);
(TRAIN ? d → OPEN → GATE)

RAIL_ROAD_CROSSING = TRAIN {a,d} GATE

Train sends message
that it will be arriving
at the intersection.

Train sends message
that it is departing
from the intersection.

t1

t2

t3

t4

t5

t6

t7

t8

P8P2

Figure 1 Rail-Road Crossing with a Potential Hazard (unsafe PN Specification).

TRAIN = (IN_TRANSIT);
(GATE ! a → GATE ? ok → AT_INTERSECTION);
(GATE ! d → TRAIN)

GATE = (TRAIN ? a → CLOSE → TRAIN ! ok);
(TRAIN ? d → OPEN → GATE)

SAFER_RAIL_ROAD_CROSSING = TRAIN {a,ok,d} GATE

TRAIN GATE

P1

P2

P3

P9

IN_TRANSIT

AT_INTER -
SECTION

P6

P7

! a

! d

CLOSE

OPEN

? a

? ok

P12P4

P10

P11

P5 P13

P8

? ok

? d
Train sends message
that it will be
departing from the
intersection.

Train sends
message
that it will be
arriving at
the
intersection.

Gate sends message that it has
completely closed (train cannot
proceed into the
intersec-
tion until
this occurs).

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

Figure 2 Rail-Road Crossing with a Hazard Eliminated.

3.1 Failure Modes for the Rail-Road Crossing.
Using the Petri net of Figure 1, we will assume that all
transitions can fail. It should be noted however, that the
Petri net of Figure 1 is unsafe, but for the purpose of the
example here, we assume the Petri net to be safe (i.e.,
permit at most one token at a place). The Markings are
shown in Figure 3. Note that PCF and PNF are places not
identified in the Petri net but are used to designate critical
and non-critical failure events respectively.

Markings M5 and M6 are critical markings resulting
from slow firing of transitions (?a [t5]) and (Close [t6])
because it is possible for the train to enter the intersection
before the gate has properly (or completely) closed.
Similarly markings M11 and M12 occur due to a slow
firing of transitions (?d [t7]) and (Open [t8]) because it is
possible for the train to depart from the intersection and not
have the gate properly (or completely) open, although these
markings do not lead to a safety critical condition. Figure
4 shows the Markov process based on the stochastic Petri
net. For analysis purposes, we will generally group
failures into safety-critical (CF) and non-(safety-)critical
(NF). A failure in sending or receiving the approaching
("a") message and the closing of the gate are safety-critical.
The CSP specification (and the corresponding Petri net) can
be augmented to show how such failures should be handled.
For example, the communication failures can be handled
using time-out and re-transmit techniques. The failure of
the gate closing action can be handled by sounding a loud
alarm to alert pedestrians and traffic.

3.2 Stochastic Analysis. Using conventional
techniques or stochastic Petri net tools (e.g., SPNP),
discrete and continuous analyses can be performed. For the
purpose of this presentation, we have used Mathematica®
to compute reliability of the rail-road crossing example
with different failure rates (or probabilities) and service
rates (e.g., speed of the train, rate at which the gate
mechanism operates). The values used in this paper (and
hence the results of the analysis) are only for illustrating
the approach. It is not our intention to attach significance
to the failure rates, MTTFs obtained, or the probability of
detected and undetected failures. These analyses are useful
in exploring different fault-handling mechanisms and the
cost of providing fault tolerance. For example, more
elaborate fault-handling and fault-recovery mechanisms
could be used to tolerate or prevent safety critical failures,
while less attention may be paid to non-safety critical
failures (see runs 2, 3, and 4 in Figures 5-6). Failure to
open the gate may anger people waiting at the crossing but
such failures can be handled inexpensively by providing a
mechanism to manually open the gate. On the other hand,
failure to close the gate is more severe, so traffic at the
crossing should be alerted reliably and automatically.

3.2.1 DISCRETE A NALYSIS. Table 1 presents the
probability assignments for our test runs of the Rail-Road
crossing example. Table 2 shows the results of the
stochastic analysis. In all runs we assume that the

mechanical failures have higher probabilities of failure than
transmission failures. In order to reduce the probability of
critical failures, in runs 2, 3, and 4 we assume that fault-
tolerant mechanisms are utilized to improve the gate
closing mechanism's reliability (as compared to the gate
opening mechanism which is a non-critical failure) by the
factors of 100, 3, and 5 respectively. This achieved a
reduction in the probability of critical failures by the
factors of 17.5, 1.24, and 1.75. Such an analysis of the
improvements in the probability of critical failures can be
used in deciding what level of fault tolerance is necessary.

3.2.2 CONTINUOUS ANALYSIS. The results of our
continuous analysis are shown in Figure 5. We have also
investigated the trade-offs between the rate of train arrivals
(μ1), the speed of the train (μ3), the rate of the gate
mechanism (μ6, μ8) and the failure rates associated with the
signal transmission (λ2, λ4, λ5, λ7) and the mechanical
failures (gate mechanism, λ6, λ8). These results are shown
in Table 2. Since we assume that signal transmissions are
more reliable than the gate's mechanical mechanism, we
notice that the reliability of signal transmission does not
significantly impact the MTTF. Thus, the mechanical
failures of the gate and the rate of gate closing (opening)
are greater contributors to the reliability (or unreliability)
of system. An interesting result of this analysis is that
when the train speed is such that it arrives at the
intersection sooner than the gate has had time to close,
then an improvement in the mechanical reliability will not
improve the system's reliability. This supports our
statements about the need for additional synchronization
between the TRAIN and the GATE processes (Figure 2).

 4. SUMMARY AND FUTURE WORK

Our objective in this paper is to show how CSP
specifications can be translated into Stochastic Petri nets
for the purpose of reliability and performance analyses.
Such translations will give insight into the failure modes,
and how fault handling mechanisms can be described as a
part of the CSP specifications. We believe that our
approach will provide the needed feedback to a designer so
that judicious cost-benefit analysis in providing fault-
tolerance can be made. In this paper we have illustrated
this approach by using a simple example. The failure
probabilities used in the examples (hence the results of the
analysis) are for illustrating our approach, no other
significance should be attached. Our only intention is to
show the complete process of specification and analysis.
We hope to develop a tool for automatically translating
CSP specifications into Petri nets in order to use stochastic
Petri net tools for the purpose of analysis.

Acknowledgments: Special thanks are extended to
Sherman Reed of the Electrical Engineering Department at
UTA and Patrica Howell at NASA Langley Research
Center ofr their help with Mathematica®.

Markings:
 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 PCF PNF Description of marking (i.e., state of the system)

M1: (1 0 0 0 0 0 1 0 0 0 0 0) Train gone, gate open
M2: (0 1 0 0 0 0 1 0 0 0 0 0) Train in transit, gate open
M3: (0 0 1 0 1 0 1 0 0 0 0 0) Train sends approaching msg, gate open
M4: (0 0 1 0 0 0 0 1 0 0 0 0) Train approaching, msg rcv'd and gate closing
M5: (0 0 1 0 0 0 0 0 1 0 0 0) Train approaching/waiting, gate closed
M6*: (0 0 0 1 1 0 1 0 0 0 0 0) Train at intersection, approaching msg not rcv'd
M7*: (0 0 0 1 0 0 0 1 0 0 0 0) Train at intersection, msg rcv'd and gate closing
M8: (0 0 0 1 0 0 0 0 1 0 0 0) Train at intersection, gate closed
M9: (1 0 0 0 0 1 0 0 1 0 0 0) Train sends departing msg, gate closed
M10: (1 0 0 0 0 0 0 0 0 1 0 0) Train gone, gate received msg and is opening
M11**: (0 1 0 0 0 1 0 0 1 0 0 0) Train in transit, but gate hasn't received msg
M12**: (0 1 0 0 0 0 0 0 0 1 0 0) Train in transit, gate received msg and is opening
*Critical condition: Train at intersection but gate is still open **Non-critical condition: Train departed intersection but the gate is still closed

TRAIN GATE

P1

P3

P4

P7

P9

P10

IN_TRANSIT

AT_INTER -
SECTION

P5

P6

! a

! d

CLOSE

OPEN

? a

? d

Train sends message
that it will be arriving
at the intersection.

Train sends message
that it is departing
from the intersection.

t1

t2

t3

t4

t5

t6

t7

t8

P8P2

There are several
possible failure
modes: (1)
communication
failure [t 2, t4, t5

and t 7], (2)

mechanical failure
[t 6 and t8], and (3)

timing failure
(where train
arrives at
intersection before
the gate has had
enough time to
close [ignored
here]).

Figure 3 Markings (M1 - 12) Based on the Hazardous Rail-Road Crossing PN Specification.

{M2(λ2), M3(λ5), M4(λ6), M6(λ5), M7(λ6)} → MCF

{M8(λ4), M9(λ7), M10(λ8), M11(λ7), M12(λ8)} → MNC

Communication failure transitions: {t 5, t7, t4, t2}
Mechanical failure in transitions: {t 6, t8}
Absorb transitions: {t 1, t3}

Indicates a time critical transition
(failure may result from delayed transition).

M1
μ1 μ2

μ3

μ4

μ5

μ6
M2 M3 M4 M5 M8 M9 M10 MNC

M6 M7

MCF M12

M11

μ5 μ3

μ6

μ7 λ8

λ4λ6

λ8

λ7

λ7μ1

μ8

μ8

λ6λ5

λ5λ2

closingrcv msg

opening

rcv msg

Stuck
closed

Stuck open

msg lost

msg
lost μ7

Mechanical
Failure

Mechanical
Failure

Absorbing Failure State
(NC - non-critical, CF - Critical).

Msg Lost =>
communication failure

Figure 4 Markov Chain for Rail-Road crossing based on unsafe PN Specification.

Table 1 Discrete Analysis: Probability Assignments

P2

P3

P4

State
Transition
Probabilities:

P1

P6

P7

P8

P5

MNCMCF

1.0

1.0 e -4

1.0

1.0 e -4

1.0 e -2

1.0 e -4

1.0 e -4

1.0 e -2

1.0

1.0 e -5

1.0

1.0 e -5

1.0 e -5

1.0 e -5

1.0 e -5

1.0 e -3

Run 1 Run 4
MNCMCF

Run 2 Run 3

1.0

1.0 e -4

1.0

1.0 e -4

1.0 e -2

1.0 e -4

1.0 e -4

3.0 e -2

1.0

1.0 e -5

1.0

1.0 e -5

1.0 e -3

1.0 e -5

1.0 e -5

5.0 e -3

Transition Description:

Probability of transmission failure

Probability of transmission failure

Probability of gate closure failure

Probability of gate open failure

Table 2 Discrete Analysis: MTTF, Critical and Non-critical Failure Probabilities.

MTTFRun Number

Run 1

Run 4

Run 2
Run 3

392.20474

7619.24626

159.50404

1138.50228

MNCMCF

0.5026

0.0286

0.4033

0.2862

0.4974

0.9714

0.5967

0.7138

Sy
st

em
R

el
ia

bi
lit

y

Time in Seconds

μ1=0.0001;
μ3=0.01
μ2=μ4=μ5=μ7 = 1
μ6=μ8 =0.01

λ2=λ4=λ5=λ7=0.00001
λ6=λ8=0.001

Figure 5 Continuous Analysis: System Reliability as a Function of Operational Time

5. REFERENCES

[Chiola 89] G. Chiola. "A software package for the
analysis of generalized stochastic Petri net models,"
IEEE Proceedings: Third Int'l Wkshp on Petri Nets
and Performance Models, Kyoto Japan, pp. 136-143,
Dec. 1989.

[Ciardo 89] G. Ciardo, J. Muppala and K.S. Trivedi.
"SPNP: Stochastic Petri Net Package," I E E E

Proceedings: third Int'l Wkshp on Petri Nets and
Performance Models, Kyoto Japan, pp. 142-151, Dec.
1989.

[Hall 90] A. Hall. "Seven myths of formal methods," IEEE
Software, Sept. 1990, pp. 11-20.

[Hoare 85] C.A.R. Hoare. Communicating sequential
processes, Prentice-Hall Int'l, Englewood Cliffs, NJ,
1985.

[Kavi 93] K.M. Kavi, and B.P. Buckles. "Formal methods
for the specification and analysis of concurrent
systems" Tutorial Notes, 1993 International
Conference on Parallel Processing, Lake Charles, IL.,
Aug. 20, 1993.

[Marsan 89] M. A. Marsan, S. Donatelli and F. Neri.
"GSPN models of multiserver multiqueue systems,"
IEEE Proc.: Third Int'l Wkshp on Petri Nets and
Performance Models, Kyoto Japan, pp. 19-28, Dec.
1989.

[Murata 89] T. Murata. "Petri nets: properties, analysis and
applications," Proceedings of the IEEE, pp. 541-580,
April 1989.

[Olderog 86] Olderog, E.R. TCSP - Theory of
communicating sequential processes, LNCS-255,
Springer Verlag, 1986.

[Ostroff 92] Ostroff, J.S. "Formal methods for the
specification and design of real-time safety critical
systems," The Journal of Systems and Software, pp.
33-60, April 1992.

[Trivedi 82] Trivedi, K.S., Probability and Statistics with
reliability, queuing and computer science
applications, Prentice-Hall, Englewood, NJ, 1982.

TABLE 3 Continuous Analysis: Sensitivity Analysis Showing Service and Failure Rate Assignments

μ1 = 0.0001 λ2 = λ4 = λ5
= λ7= 0.00001

 MTTF μ1 = 0.0001 λ2 = λ4 = λ5
= λ7= 0.00001

 MTTF

μ2= 0.01 ; μ6 = 0.01 λ6 = λ8 = 0.001 5622 μ2= 0.0001 ; μ6 = 0.01 λ6 = λ8 = 0.001 10107

 λ6 = λ8 = 0.0001 5201 λ6 = λ8 = 0.0001 10151

 λ6 = λ8 = 0.0001 5156 λ6 = λ8 = 0.0001 10549

μ2= 0.01 ; μ6 = 0.001 λ6 = λ8 = 0.001 6096 μ2= μ6= 0.001 λ6 = λ8 = 0.001 9002

 λ6 = λ8 = 0.0001 6477 λ6 = λ8 = 0.0001 6925

 λ6 = λ8 = 0.0001 8642 λ6 = λ8 = 0.0001 6546

μ2= 0.01 ; μ6 = 0.0001 λ6 = λ8 = 0.001 10912 μ2= 0.0001 ; μ6 = 0.001 λ6 = λ8 = 0.001 10993

 λ6 = λ8 = 0.0001 14042 λ6 = λ8 = 0.0001 14402

 λ6 = λ8 = 0.0001 15029 λ6 = λ8 = 0.0001 15477

μ2= 0.001 ; μ6 = 0.01 λ6 = λ8 = 0.001 6069 μ2= 0.001 ; μ6 = 0.0001 λ6 = λ8 = 0.001 12602

 λ6 = λ8 = 0.0001 5651 λ6 = λ8 = 0.0001 11404

 λ6 = λ8 = 0.0001 5606. λ6 = λ8 = 0.0001 11046

APPENDIX CSP TO PETRI NET TRANSLATIONS

b c

a

a

cb

a → (b c) and (b c) → aa → (b c) and (b c) → a

b c

ab

a

c

(a → b → c) \ b)

τ a

c

STOPa b

a b

a

b

a → b
a b

a b

STOP

b

μX.(b → X)
μX.(b c → X)

cb

(a →b →c) ||{b}

 (d →b →e)

b

a d

c e

a b

(a b) ||{a,b} (a b)

d τ

b

ca

d ((a →b)
 (c →b))

{b}

a b

from
environ-
ment

from
environ-
ment

(a b)

a

ba

b

b

a

b

(a →b →c)
 (d →b →e)) \ b)

a d

c e

τ

μX.(a → X b)
{b}

P Qa b

b

ca

or
ac

b

P ||{A} Q:

a bc

b

here both
events b are
equivalent

P ||{A} Q:

P ||{A} Q; P = μX.(a →X b →X); Q = μY.(a →b →Y c →Y); A = {a,b}

