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Abstract 

 
In this paper we present a simple model that 
combines the failure to meet deadlines with 
hardware/software failures in computing the 
reliability of a real-time system. We define the 
performability as the probability of meeting deadlines 
by real-time tasks in the presence of hardware and 
software failures. Deadline driven schedules rely on 
worst-case task execution time. This may be 
necessary for hard real-time systems where missed 
deadlines can be very costly. For soft real-time 
systems (where a missed deadline is not 
catastrophic), using worst case task execution times 
leads to very inefficient use of processing resources. 
This is particularly true when worst case execution 
occurs very infrequently. Our performability analysis 
permits task schedules to slide (that is, require more 
time than predicted). The amount of slack allowed by 
the task deadlines can be varied to achieve a desired 
performability. We are developing a tool that 
empirically calculates the performability for a task 
system with specified task profiles and reliability 
system components. 
 
Key Words: Real-Time Deadlines, Task Execution 
Profiles, Reliability, Software Fault-tolerance, 
Hardware fault-tolerance. 
 

1. Introduction 

Real-time systems are characterized as those where 
the correctness of applications depends not only on 

the  correctness of the logical computation being 
performed, but also on the time at which the results 
are produced. The implication is that in real-time 
systems, failures should include hardware failures, 
software failures, communication failures, and failure 
to meet deadlines. In this paper, we propose a simple 
model to compute the system reliability that 
incorporates the inability to meet deadlines. The 
model is primarily motivated by our feeling that in 
many real-time applications the reliability goals are 
not clearly defined or understood. Consider for 
example, the following statements. 
 
1. The survivability of the space-craft computing 

system should be at least 10 years. 
2. The system should have a failure rate of 10-9 per 

hour during a 10 hour mission.  

In the first statement, it is not clear if the system 
should survive the stated 10 years with all the 
capabilities it started with, or only some critical 
capabilities should survive. In the second statement, 
it is not clear if the system failures include missed 
deadlines.  

Some real-time systems (often known as hard real-
time systems) do not tolerate any missed deadlines. 
This requires that the task scheduling be based on 
worst-case (and accurate) task execution time 
estimates. This leads to inefficient utilization of 
resources, particularly when tasks normally require 
much less time to complete execution than the worst 
case estimates, and the worst case behavior is very 
rare. In soft real-time systems, where some missed 
deadlines can be tolerated, it is not necessary to use 



worst case execution time estimates. The probability 
that all tasks in the system complete by a specified 
deadline can be increased by allowing a small 
amount of slack times (i.e., temporal redundancy 
[Siewiorek 92]). The slack time is to tolerate the 
failure of some tasks completing within their 
assigned execution times. Thus trade-off between the 
guarantee that all tasks meet their deadlines and the 
cost of such guarantees (in terms of excessive amount 
of processing capabilities) can be made. 

Moreover, since any real-time system must also 
account for the failure of hardware, software and 
communication failures, the task deadlines must 
account for the possibility of reexecuting some tasks 
(as in active redundancy techniques [Siewiorek 92], 
and recovery block approaches [Kim 89]), task 
migrations, and delays in starting some tasks. Our 
model permits the inclusion of hardware, software 
and communication failures. 

2. Performability Model 

The term performability was first introduced by 
Meyer [Meyer 79] to combine performance and 
reliability analyses in fault-tolerance systems. 
Informally, performability can be defined as the 
probability that a system performs at different levels 
of "accomplishment". Markov processes have been 
used to estimate the probability that a system is in 
one of several "capacity" states in [Gay 79]. Chou 
and Abraham [Chou 80] provided an availability 
model for gracefully degraded systems with critically 
shared resources. However, these models do not 
include the failure to meet deadline in their 
computations.  

In this paper we define performability of real-time 
systems as the probability that the set of tasks 
comprising the real-time system complete their 
execution successfully by  the deadline defined with 
the system1. The failure of a task to successfully 
complete may be because of the following reasons. 
 

a). For a  particular instance the input data 
required longer execution time. 
b). Due to failures, the task has to be re-executed, 
migrated and restarted.  

                                                
1It should be noted that our definition 
permits the inclusion of accomplishment 
levels and  graceful degredations. 

c). The task is delayed (hence missed the 
deadline) due to the failure of a preceding task to 
successfully complete. 

To introduce our model, let us first ignore hardware, 
software and communication failures, and assume a 
single processing system, where all the tasks 
comprising the real-time system must be executed in 
sequence. Our model will be extended to permit 
multiple processing elements and hardware/software 
failures. In this paper we will not deal with the 
algorithms for scheduling tasks on the available 
processors, or with the techniques to tolerate 
hardware and software failures (e.g., how tasks are 
migrated on processor failures, how remaining task 
are rescheduled on available processors, if tasks are 
retried when (software) failures are detected). The 
reader is referred to [Stankovic 88] for scheduling 
algorithms for real-time systems.  We assume that the 
given task schedule is optimal and designed to meet 
the deadlines under normal circumstances based on 
estimated execution times.  

Let us assume that a mission consists of a set of tasks 
J= {Ji | i = 1 to n}. Each task is required to finish by a 
deadline Di (the mission deadline is D= Dn, where Jn 
is the final task in the system). We assume that tasks 
take different amounts of time to complete their 
execution for different input data, and the actual 
execution time for a specific run is described by  a 
probability distribution Ei (Figure. 1)2.  

                                                
2Researchers are actively developing 
methods for estimating execution time of 
tasks and designing languages that permit 
predictable execution times for tasks. For 
example, task execution times can be 
estimated from instruction counts, and 
maximum number of loop iterations. See for 
example [Stoyenko 92] for a survey of real-
time languages. These approaches are 
within the scope of our model. In addition, 
our model permits imperfect execution time 
estimates. Figure 1 can be viewed as an 
empirical derivation of task execution times 
based on actual executions. Or it can be 
derived based on instruction counts, and 
various number of loop iteration counts.  
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Figure . 1. Task Execution Profile 

Such a task profile can be used in arriving at an 
execution time estimate. In hard real-time systems, 
one may use Tmax as the execution time estimates. 
In less stringent cases, one may use the p percentile 
execution time (i.e., the task will complete execution 
with probability p). Let us denote this estimated 
execution time for task Ji as ti time units. Typically, 
these execution time estimates are used in scheduling 
the tasks on available processors. Task deadlines Di 
along with task execution time estimates ti are used 
by the scheduling algorithm (e.g., least-laxity-first, 
earliest deadline first) [Stankovic 88].   

Let PDi be the probability that task Ji will complete 
successfully during its deadline Di. Then, the 
probability that the system (i.e., all tasks) will 
successfully complete by the system deadline D is 
defined as the performability of the system  

 P =  Π PDi 

The probability PDi
3 of a task is based on meeting 

deadlines. A deadline may be missed either because 
the task execution time exceeds the deadline, or 
because of a failure (either hardware, software or 
communications). The factor due to execution time 
can be obtained from the distribution Ei. Traditional 

                                                
3Note that pi is the probability that task Ji 
completes within the estimated execution 
time ti, while PDi is the probability that the 
task completes within the deadline Di that 
may permit retries, as described in section 
2.1. 

derivations for modeling hardware and software 
failures can be used to compute their contributions to 
the tasks' failure to meet deadlines. 

2.1. Significance of Active and Passive 
Redundancies.  

A fault-tolerant computing system can be defined as 
a system that executes its responsibilities correctly 
even in the presence of defects [Siewiorek 92]. 
Redundancy is the primary method of achieving 
fault-tolerance. Redundancy can be active or passive. 
Triple Modular Redundancy is an example of passive 
redundancy, since the faults are passively masked by 
the majority voter. Dual redundant systems are 
examples of active redundancy, since faults must be 
detected and a corrective action must be taken. The 
corrective action may be in the form of reexecuting 
the task on a new pair of processing units. Passive 
redundancy (e.g., N-version programming), where 
the replicated units are loosely synchronized, can aid 
in improving the probability of meeting deadlines, 
since it is only necessary for a majority of the tasks to 
complete within the deadline (and the remaining 
tasks can be aborted). One such system 
implementation is MAX/COSMOS designed at JPL 
[COSMOS 93]. This, however, presents difficulties 
in implementation because of the lack of 
synchronization among replicated tasks.  

Temporal redundancy where the system is permitted 
with extra time for repeating faulty tasks is another 
way of tolerating failures. However, even if the task 
executes successfully the second time, if the second 
execution is not completed by the deadline, it should 
be treated as a failure. A simple Bernoulli like 
expressions can be used to estimate the number of 
times a task should be retried (and hence the extra 
time needed for the retires). Let qi = (1-pi) be the 
probability that task Ji fails to complete within the 
execution estimate ti, then the probability that the 
task will meet the deadline, based on retries is given 
by 

Pi= (qi)j∑
j=0

k-1
*(pi) where k* ti ≤Di 

In other words, if the deadline permits k-1 retries, the 
reliability of the task is equal to the probability that it 
completes successfully in 1, 2, .., k attempts. Such an 



evaluation is useful in deciding between redundancy 
and retries depending on the deadlines.  

2.1.1. An Example: 

Consider the following task graph  (Figure 2). 
The estimated execution times (i.e., ti ) are shown. 
With one processor, the estimated total time for the 5 
tasks is 110. Consider the case when the system of 
jobs is allowed to complete in 120 time units (that is, 
10 time units more than the combined estimated 
times). This specification permits one retry of tasks 
J3 or J4. The possible schedules are: 
 
No failures; all tasks execute within their assigned 
times ti . 
J1 J2 J3 J4 J5  Time to complete = 110  
J5 has failed and reexecuted. 
J1 J2 J3 J4 J5 J5 Time to complete = 120  
J3 has failed and reexecuted. 
J1 J2 J3 J3 J4 J5 Time to complete = 120  
 

t1 = 20

t2=50

t3=10

t5=10

t4=20

Figure 2 

The performability (probability that the mission will 
be accomplished in 120 time units) is given by     p1 
* p2 * [p3 + (1-p3 )*p3 ] * p4 * [p5 + (1-p5 )*p5 ] 

Consider the same example where the deadline is 
extended to 130 time units. This would permit one 
retry each tasks J1 and J4 and up to 2 retries of J3 or 

J5 (or a combinations). The only task that can't be 
retried is the task J2. Based on the new deadline of 
130 time unit the system reliability can be computed 
using the following set of equations. 
 
No failures (hence no retries): 
p1 * p2 *p3  * p4 * p5  
One retry of task J1 or J4 . 
 [(1-p1 )*p1]* p2 *p3  * p4 * p5  
 p1* p2 *p3  * [(1-p4 )*p4]* p5  
2 retries J3 or J5 or 1 retry of J3 and one retry of J5 

 p1* p2 * [(1-p3 ) + (1-p3 )2]* p3  
 * p4 * p5  
 p1* p2 *p3 * p4 [(1-p5 ) + (1-p5  

 )2]* P5 
 p1* p2 * [(1-p3 ) ]* p3 * p4 *  
 [(1-p5 ) ] *p5   

Table 1 show how the performability is increased by 
allowing slack (or temporal redundancy) in the 
deadline. In these computations we assumed identical 
completion probabilities with all tasks (viz., pi), and 
these probabilities are listed in the first column. 
Efficiency (Eff) is a measure of temporal redundancy 
due to the slack in the deadline.  

2.1.2. Two Processors.  

Consider the same example with two processors. 
Since task J1 must be executed first, during its 
execution, we either let one processor idle or use 
redundant execution of task to achieve higher 
reliability. Then we can use one processor to execute 
J2 while the other processor executes  J3  and J5 . 
Since J2 takes 50 time units, we can permit failure of 
J3 and J5 with retries (either 3 retries of J3, 3 retries 
of J5, 1 retry of J3 and 2 retries of J5, or 2 retries of 
J3 and 1 retry of J5). Finally, we can use redundant 
execution of J4. Note that the redundant execution is 
either to tolerate hardware/software failures, or to 
overcome execution unpredictability due to the 
presence of pipelines, cache memories, etc. In other 
words, we hope that one of the two redundant 
executions will meet the deadline. 



It takes a total of 90 time units to complete the tasks 
on 2 processors. Let us assume that this is also the 
mission deadline (no temporal redundancy is 
permitted). Table 1 shows the performability values 
for one processor case (as indicated earlier) and two 
processor case.  The efficiency in two processor case 
is computed based on the idle times experienced by 
either of the processors.  

The table shows that one processor with a small 
temporal redundancy of 20 time unites (i.e., deadline 

of 130 time units) achieves better performability than 
that can be achieved with two processors. As the 
tasks become more predictable, (i.e., the probability 
that a task completes execution within its estimated 
time approaches 1.0), the differences in the system 
reliability between the approaches is not significant. 
However, the use of two processors may have other 
benefits. For one thing, the mission time is reduced to 
90 time units and the physical redundancy (whenever 
possible) can tolerate hardware and software failures. 

 
 

Deadline = 120
Eff = 0.917

Deadline = 130
Eff = 0.846

Two Processors

Deadline = 90
Eff = 0.611

 0.9!    !!!!!!!0.5905!!!!!!!!!!! 0.7145!!!!! !!!!!0.8444!!!!!!!!!!!! !0.7346

 0.95!!!!!!    0.7738 !!!!!!!!!!0.8531!!!!!!!!!!! 0.9343!!!!!!!!!!!!!!0.8958

 0.99!!        0.9510!!!!!!!!!!!0.9701!!!!!!!!!! !0.9893!!!!!!!!!!!!!!0.9704

      No
Redundancy

Eff = 1.0

Probability
Of Task
Completion

One Processor with Slack Time
       (Temporal Redundancy)

Deadline
    110 pi

 
Table 1.  

__________________________________________________________________________________________ 

2.2. Significance of Scheduling and Multi-tasking. 

If tasks have completely deterministic and 
predictable behavior, it may be possible to obtain a 
static schedule that guarantees deadline in a 
multiprocessor system. Scheduling may or may not 
permit task preemption. Failures in processing 
resources may require alternate task schedules and 
task migration. When task behavior is not completely 
predictable, we may allow slack time in deadlines to 
absorb delays in task execution. In a multiprocessing 
and multitasking systems, since a task cannot start 
until all its predecessors (in terms of dependencies) 

have completed, the ability of a task to meet its 
deadline depends on that of its predecessor tasks.  

 This can be modeled by the following formulation. 

PDi (= prob. that task Ji will meet its  deadline 
Di ) =  

(Probability that task Ji completes successfully 
on one try) *  
(Prob. that predecessor tasks complete by Di - 
ti) 
+ (Prob. that task Ji completes in two tries) * 



(Prob. that predecessor tasks complete by Di - 
2 * ti) 
+ ..... 

The above computation is applied recursively to all 
tasks. We may need to include communication 
failures and time-out protocols. When preemptive 
scheduling techniques are used, the performability 
computation needs to represent how task preemption 
leads to delays in task completion.  

2.3. Continuous Time Model. 

In the analysis so far, we have used discrete 
probabilities for task completion, and assumed that 
when a task fails to meet its deadline, the task must 
be re-executed. In most cases, a task may exceed its 
allocated time only by a small amount. In many 
applications, it is acceptable to let the task complete 
its execution (and exceed the allocated time), hoping 
that the slide in the schedules will be allowed by the 
slack in the system deadline.  

To model a task slipping its deadline, we need to use 
a continuous probability distribution Ei for task 
execution profile (see Figure 1). If a task has a 
minimum and maximum execution times specified, 
the distribution will be scaled appropriately. We have 
observed that for a majority of real-time tasks in 
general, and for spacecraft tasks in particular, the task 
execution profile (Figure 1) can be approximated by 
a truncated exponential. Our model, however, is not 
dependent on the distribution; only, the analysis 
complexity is dependent on the distribution.  

2.3.1. The Distribution Ei:  

Typically, a task Ji is specified with a minimum and 
maximum execution times, Tmini and Tmaxi. 
Depending on the behavior of the task, the actual 
execution time, for a given execution of task Ji can be 
viewed as an outcome from a probability distribution 
ranging between the Tmini  and Tmaxi. Figure 1 
shows such a behavior.  

Consider two tasks J1 and J2 where J1 must be 
completed before J2 can be started. Assume that the 
deadlines for the two tasks to complete are D1 and 
D2. We can  allow J1 to execute only until D2 - 

Tmin2 ; otherwise J2 cannot complete by D2. The 
system performability can be obtained from the 
following convolution.  

E1(τ)dτ 

Tmin1

τ
E2(t) dt

τ+Tmin2

D

Wher e τ ≤ D-Tmin2 and

τ ≤ Tmax1 

 

The above formulation can be extended to any 
sequence of tasks. When independent tasks execute 
in parallel (on a multiprocessing system), the above 
convolution becomes a simple product.  

2.3.2. An Example: 

Consider the same task graph (Figure 2) used in the 
previous example. To simplify the illustration, we 
will assume a uniform distribution for each task 
completion probabilities. Let us start with the 
following values. For each task, the probability that 
the task completes by their assigned times ti = pi. Let 
us use following values for Tmini and Tmaxi . 

 

 
______________________________ 
 
Task Tmini  Tmaxi  ti 
 
J1 15 25 20 
J2 45 55 50 
J3 5 15 10 
J4 15 25 20 
J5 5 15 10 
 
Deadline 
 85 135 110 
______________________________ 

If pi for each task (based on ti) is 0.9, the probability 
that all tasks will complete by the deadline of 110 



time units is given by  0.5905. On the other hand, if 
we extend the deadline to 120 units, and let tasks 
execute to completion (even if they exceed their 
assigned times, ti), the probability of meeting the 
deadline is 0.729. This is computed as follows. All 
tasks are allocated at least the estimated execution 
times (i.e., ti ). The remaining slack time of 10 time 
units is given to tasks J1 and J2 ( 5 time units each). 
Thus these tasks are guaranteed to complete, since we 
allocate them their Tmaxi. We call this a greedy 
method. 
 
Performability =  
 P1(=1.0)  * P2(=1.0) *P3  * P4 * P5  

  = P3  * P4 * P5  

Alternatively, the 10 units of slack time can be 
distributed evenly among the tasks (i.e., each task can 
be allocated an additional 2 time units). We call this a 
fair-method. The following table shows the results 
obtained. 

It should be noted that if the deadline is extended to 
135 time units, then all tasks are guaranteed to 
complete, giving a probability of 1.0 for meeting the 
deadline (135 time units permits worst case execution 
for each task).  

 

Deadline = 120
Eff = 0.917

Deadline = 130
Eff = 0.846

 0.9!    !!!!!!!0.5905!!!!!!!!!!! 0.729               0.9!!!!!!!!!!!!!!!!!0.7339!!!!!!!!!!!!!0.9039

 0.95!!!!!!    0.7738 !!!!!!!!!!!0.8575!!!!!!!!!!!!!0.95!!!!!!!!!!!!!!!!0.8587!!!!!!!!!!!!!0.951

 0.99!!        0.9510!!!!!!!!!!!0.9703!!!!!!!!!!!!!!!0.99!!!!!!!!!!!!!!!0.9704!!!!!!!!!!!!0.99004

      No
Redundancy

Eff = 1.0

Probability
Of Task
Completion

Deadline
    110 

Greedy Method Fair Method

Deadline = 120
Eff = 0.917

Deadline = 130
Eff = 0.846

pi

 
 

Table 2 
_________________________________________________________________________________________ 

2.4. Significance of Failures. 

In above examples, we have not incorporated any 
failures (hardware, software or communication 
failures). Our method permits the incorporation of 
failure distributions. Consider the following task 
profile shown in Figure 3 which is similar to Figure 
1. The shaded area shows the significance of failures. 
The difference between the two task profile curves 
(with and without failures) widens near Tmaxi, since 
as a task takes longer, the probability of failures 

increases. The probability that a task meets its 
deadline can now be obtained from the failure profile 
of Figure 3.  
 
In a multiple processor system, hardware and 
software failures may require migration of tasks. The 
actual mechanism used to tolerate failures is beyond 
the scope of our model. For example, in ATAMM 
[Som 93], several alternate schedules (known as 
operating points) are precomputed for various system 
configurations (such as, different number of 
processors to account for processor failures that 
reduce the number of processors and repairs that 



increase the number of processors). The tool is 
designed for periodic tasks, and a new operating 
point (hence a new schedule) is selected when the 
number of available processors changes. We plan to 
interface with ATAMM tool so that the 
performability for different number of processors and 
different amounts of slack in deadlines can be 
computed.  

 

1.0

Pmin

Tmin Tmax

Failure Free

With Failures

X X
 

Figure 3 
 

2.5. Application to Periodic Real-Time Tasks. 

In many of real-time applications (e.g., spacecraft) tasks 
are repeated based on certain periodicity. In such systems, 
the task schedules are based on cycles, frames and 
subframes. A cycle consists of a fixed number frames. 
Each frame consists of a variable number of subframes. A 
subframe refers to the execution of a task. There may be 
different sets of tasks scheduled in different frames, but 
the set of tasks scheduled during a cycle is repeated.  A 
task may be scheduled more than once in a cycle, but 
never more than once in a frame.  If a task misses its 
deadline, one of the following actions are possible. 

 
a). Preempt the task, and hope that the task will 
execute correctly on its next schedule. Dependent 
tasks will use data output from a previous execution. 
Here the trade-off is between accuracy and timeliness 
of the mission.  

 
b). Permit the task to continue, and hope that the set of 
tasks constituting a mission will still meet the 
deadline. This is often possible, since the mission 
contains some low priority tasks which can be delayed 
(or not scheduled).   

Our approach permits both techniques for dealing with 
missed deadlines. Since the mission consists of a fixed 
number of cycles, the performability of the mission 
should be based on the overall mission time.  

2.6. A Performability Prediction Tool.  

It is possible to apply traditional stochastic processes 
to obtain an analytical solution to the performability 
of a soft real-time system that incorporates 
hardware/software failures and the failure to meet 
deadline. We, however, feel that it will be useful to a 
real-time systems designer to provide a tool that 
obtains empirical data by simulating the various task 
execution times, and injects hardware or software 
failures. Such a tool can be used to determine the 
temporal redundancy needed to achieve a desired 
performability. We have completed a simple version 
of such a tool. At present we permit uniprocessor 
systems. We are in the process of extending the tool 
to multiprocessor systems (both shared memory and 
message-passing). 

When the tool is complete, we envision the following 
environment. The input consists of a task graph 
(depicting task dependencies), an execution profile 
for each task, target architecture (i.e., number of 
processors, interconnection, shared vs distributed 
memory), schedule of tasks on the target architecture 
(described in the form of a Gant chart), mission 
deadlines, communication delays (if any), failure 
distributions (for hardware, software and 
communication subsystems). The user can utilize 
graphical interfaces (e.g., X or Motif) to specify the 
input and/or choose from a library of pre-determined 
configurations. Figure 4 shows a typical window. The 
user can select from a variety of fault-tolerance 
mechanisms and scheduling methods to deal with 
failures. The user can select from a variety of 
probability distributions for the task profiles and 
failures.  

______________________________________________________________________________________ 
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Figure 4. 

______________________________________________________________________________________ 
 

The system will generate performability predictions 
empirically. Using event driven simulations, the 
performability predictions for various amounts of 
slack times (temporal redundancy) will be displayed. 
At user option, other statistics such as processor 
utilization will be provided. The output can be 
displayed as bar charts, graphs or tables.  

At present, the tool has no graphical interface. The 
input is fed from another tool that calculates task 
schedules based on a variety of heuristics ([Shirazi 
93]). The task graph (and the task schedules) are 
described as an extended adjacency list. The outputs 
display the performability of the system for various 
amounts of slack time in the deadline.  

3. Summary and Conclusions  

In this paper we have described a simple model that can 
be used to evaluate the probability that a real-time system 
meets its deadline in the presence of failures and 
imperfect execution time estimates (viz., performability). 
Our model can be used to estimate the time-redundancy 
(slack time) needed in the overall mission deadline in 
order to achieve a desired performability. The analysis 
can also be used to evaluate the trade-off between 
physical redundancy (such as Triple-Modular-
Redundancy and N-Version Programming) and active 
redundancy (such as roll-back and recovery, re-try) - that 
is, a trade-off between performance and reliability. As 
failures occur, the ability of the system to support the 

critical tasks (and meet deadlines) can also be evaluated 
(viz., graceful degradation) from our model. 

We are currently developing a user-friendly tool that uses 
even-driven simulation to empirically derive the 
performability of real-time systems consisting of 
concurrent tasks executing on multiple processors. When 
fully developed the tool will permit all of the analyses 
mentioned in the previous paragraph. Our tool relies on 
users to obtain optimal schedules, and estimates of task 
execution times (i.e., task execution profiles).  
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