
Preprint from Proc. of the 1994 Hawaii International Conference on System Sciences (HICSS-27), Jan. 1994

A Performability Model for Soft Real-Time Systems

Krishna M. Kavi
Hee Yong Youn

and
Behrooz Shirazi,

University of Texas at Arlington

Abstract

In this paper we present a simple model that
combines the failure to meet deadlines with
hardware/software failures in computing the
reliability of a real-time system. We define the
performability as the probability of meeting deadlines
by real-time tasks in the presence of hardware and
software failures. Deadline driven schedules rely on
worst-case task execution time. This may be
necessary for hard real-time systems where missed
deadlines can be very costly. For soft real-time
systems (where a missed deadline is not
catastrophic), using worst case task execution times
leads to very inefficient use of processing resources.
This is particularly true when worst case execution
occurs very infrequently. Our performability analysis
permits task schedules to slide (that is, require more
time than predicted). The amount of slack allowed by
the task deadlines can be varied to achieve a desired
performability. We are developing a tool that
empirically calculates the performability for a task
system with specified task profiles and reliability
system components.

Key Words: Real-Time Deadlines, Task Execution
Profiles, Reliability, Software Fault-tolerance,
Hardware fault-tolerance.

1. Introduction

Real-time systems are characterized as those where
the correctness of applications depends not only on

the correctness of the logical computation being
performed, but also on the time at which the results
are produced. The implication is that in real-time
systems, failures should include hardware failures,
software failures, communication failures, and failure
to meet deadlines. In this paper, we propose a simple
model to compute the system reliability that
incorporates the inability to meet deadlines. The
model is primarily motivated by our feeling that in
many real-time applications the reliability goals are
not clearly defined or understood. Consider for
example, the following statements.

1. The survivability of the space-craft computing

system should be at least 10 years.
2. The system should have a failure rate of 10-9 per

hour during a 10 hour mission.

In the first statement, it is not clear if the system
should survive the stated 10 years with all the
capabilities it started with, or only some critical
capabilities should survive. In the second statement,
it is not clear if the system failures include missed
deadlines.

Some real-time systems (often known as hard real-
time systems) do not tolerate any missed deadlines.
This requires that the task scheduling be based on
worst-case (and accurate) task execution time
estimates. This leads to inefficient utilization of
resources, particularly when tasks normally require
much less time to complete execution than the worst
case estimates, and the worst case behavior is very
rare. In soft real-time systems, where some missed
deadlines can be tolerated, it is not necessary to use

worst case execution time estimates. The probability
that all tasks in the system complete by a specified
deadline can be increased by allowing a small
amount of slack times (i.e., temporal redundancy
[Siewiorek 92]). The slack time is to tolerate the
failure of some tasks completing within their
assigned execution times. Thus trade-off between the
guarantee that all tasks meet their deadlines and the
cost of such guarantees (in terms of excessive amount
of processing capabilities) can be made.

Moreover, since any real-time system must also
account for the failure of hardware, software and
communication failures, the task deadlines must
account for the possibility of reexecuting some tasks
(as in active redundancy techniques [Siewiorek 92],
and recovery block approaches [Kim 89]), task
migrations, and delays in starting some tasks. Our
model permits the inclusion of hardware, software
and communication failures.

2. Performability Model

The term performability was first introduced by
Meyer [Meyer 79] to combine performance and
reliability analyses in fault-tolerance systems.
Informally, performability can be defined as the
probability that a system performs at different levels
of "accomplishment". Markov processes have been
used to estimate the probability that a system is in
one of several "capacity" states in [Gay 79]. Chou
and Abraham [Chou 80] provided an availability
model for gracefully degraded systems with critically
shared resources. However, these models do not
include the failure to meet deadline in their
computations.

In this paper we define performability of real-time
systems as the probability that the set of tasks
comprising the real-time system complete their
execution successfully by the deadline defined with
the system1. The failure of a task to successfully
complete may be because of the following reasons.

a). For a particular instance the input data
required longer execution time.
b). Due to failures, the task has to be re-executed,
migrated and restarted.

1It should be noted that our definition
permits the inclusion of accomplishment
levels and graceful degredations.

c). The task is delayed (hence missed the
deadline) due to the failure of a preceding task to
successfully complete.

To introduce our model, let us first ignore hardware,
software and communication failures, and assume a
single processing system, where all the tasks
comprising the real-time system must be executed in
sequence. Our model will be extended to permit
multiple processing elements and hardware/software
failures. In this paper we will not deal with the
algorithms for scheduling tasks on the available
processors, or with the techniques to tolerate
hardware and software failures (e.g., how tasks are
migrated on processor failures, how remaining task
are rescheduled on available processors, if tasks are
retried when (software) failures are detected). The
reader is referred to [Stankovic 88] for scheduling
algorithms for real-time systems. We assume that the
given task schedule is optimal and designed to meet
the deadlines under normal circumstances based on
estimated execution times.

Let us assume that a mission consists of a set of tasks
J= {Ji | i = 1 to n}. Each task is required to finish by a
deadline Di (the mission deadline is D= Dn, where Jn
is the final task in the system). We assume that tasks
take different amounts of time to complete their
execution for different input data, and the actual
execution time for a specific run is described by a
probability distribution Ei (Figure. 1)2.

2Researchers are actively developing
methods for estimating execution time of
tasks and designing languages that permit
predictable execution times for tasks. For
example, task execution times can be
estimated from instruction counts, and
maximum number of loop iterations. See for
example [Stoyenko 92] for a survey of real-
time languages. These approaches are
within the scope of our model. In addition,
our model permits imperfect execution time
estimates. Figure 1 can be viewed as an
empirical derivation of task execution times
based on actual executions. Or it can be
derived based on instruction counts, and
various number of loop iteration counts.

Completion
Probabilities

1.0

Tmin Tmaxti

Xp
i

Pmin

Figure . 1. Task Execution Profile

Such a task profile can be used in arriving at an
execution time estimate. In hard real-time systems,
one may use Tmax as the execution time estimates.
In less stringent cases, one may use the p percentile
execution time (i.e., the task will complete execution
with probability p). Let us denote this estimated
execution time for task Ji as ti time units. Typically,
these execution time estimates are used in scheduling
the tasks on available processors. Task deadlines Di
along with task execution time estimates ti are used
by the scheduling algorithm (e.g., least-laxity-first,
earliest deadline first) [Stankovic 88].

Let PDi be the probability that task Ji will complete
successfully during its deadline Di. Then, the
probability that the system (i.e., all tasks) will
successfully complete by the system deadline D is
defined as the performability of the system

 P = Π PDi

The probability PDi
3 of a task is based on meeting

deadlines. A deadline may be missed either because
the task execution time exceeds the deadline, or
because of a failure (either hardware, software or
communications). The factor due to execution time
can be obtained from the distribution Ei. Traditional

3Note that pi is the probability that task Ji
completes within the estimated execution
time ti, while PDi is the probability that the
task completes within the deadline Di that
may permit retries, as described in section
2.1.

derivations for modeling hardware and software
failures can be used to compute their contributions to
the tasks' failure to meet deadlines.

2.1. Significance of Active and Passive
Redundancies.

A fault-tolerant computing system can be defined as
a system that executes its responsibilities correctly
even in the presence of defects [Siewiorek 92].
Redundancy is the primary method of achieving
fault-tolerance. Redundancy can be active or passive.
Triple Modular Redundancy is an example of passive
redundancy, since the faults are passively masked by
the majority voter. Dual redundant systems are
examples of active redundancy, since faults must be
detected and a corrective action must be taken. The
corrective action may be in the form of reexecuting
the task on a new pair of processing units. Passive
redundancy (e.g., N-version programming), where
the replicated units are loosely synchronized, can aid
in improving the probability of meeting deadlines,
since it is only necessary for a majority of the tasks to
complete within the deadline (and the remaining
tasks can be aborted). One such system
implementation is MAX/COSMOS designed at JPL
[COSMOS 93]. This, however, presents difficulties
in implementation because of the lack of
synchronization among replicated tasks.

Temporal redundancy where the system is permitted
with extra time for repeating faulty tasks is another
way of tolerating failures. However, even if the task
executes successfully the second time, if the second
execution is not completed by the deadline, it should
be treated as a failure. A simple Bernoulli like
expressions can be used to estimate the number of
times a task should be retried (and hence the extra
time needed for the retires). Let qi = (1-pi) be the
probability that task Ji fails to complete within the
execution estimate ti, then the probability that the
task will meet the deadline, based on retries is given
by

Pi= (qi)j∑
j=0

k-1
(pi) where k ti ≤Di

In other words, if the deadline permits k-1 retries, the
reliability of the task is equal to the probability that it
completes successfully in 1, 2, .., k attempts. Such an

evaluation is useful in deciding between redundancy
and retries depending on the deadlines.

2.1.1. An Example:

Consider the following task graph (Figure 2).
The estimated execution times (i.e., ti) are shown.
With one processor, the estimated total time for the 5
tasks is 110. Consider the case when the system of
jobs is allowed to complete in 120 time units (that is,
10 time units more than the combined estimated
times). This specification permits one retry of tasks
J3 or J4. The possible schedules are:

No failures; all tasks execute within their assigned
times ti .
J1 J2 J3 J4 J5 Time to complete = 110
J5 has failed and reexecuted.
J1 J2 J3 J4 J5 J5 Time to complete = 120
J3 has failed and reexecuted.
J1 J2 J3 J3 J4 J5 Time to complete = 120

t1 = 20

t2=50

t3=10

t5=10

t4=20

Figure 2

The performability (probability that the mission will
be accomplished in 120 time units) is given by p1
* p2 * [p3 + (1-p3)*p3] * p4 * [p5 + (1-p5)*p5]

Consider the same example where the deadline is
extended to 130 time units. This would permit one
retry each tasks J1 and J4 and up to 2 retries of J3 or

J5 (or a combinations). The only task that can't be
retried is the task J2. Based on the new deadline of
130 time unit the system reliability can be computed
using the following set of equations.

No failures (hence no retries):
p1 * p2 *p3 * p4 * p5
One retry of task J1 or J4 .
 [(1-p1)*p1]* p2 *p3 * p4 * p5
 p1* p2 *p3 * [(1-p4)*p4]* p5
2 retries J3 or J5 or 1 retry of J3 and one retry of J5

 p1* p2 * [(1-p3) + (1-p3)2]* p3
 * p4 * p5
 p1* p2 *p3 * p4 [(1-p5) + (1-p5

)2]* P5
 p1* p2 * [(1-p3)]* p3 * p4 *
 [(1-p5)] *p5

Table 1 show how the performability is increased by
allowing slack (or temporal redundancy) in the
deadline. In these computations we assumed identical
completion probabilities with all tasks (viz., pi), and
these probabilities are listed in the first column.
Efficiency (Eff) is a measure of temporal redundancy
due to the slack in the deadline.

2.1.2. Two Processors.

Consider the same example with two processors.
Since task J1 must be executed first, during its
execution, we either let one processor idle or use
redundant execution of task to achieve higher
reliability. Then we can use one processor to execute
J2 while the other processor executes J3 and J5 .
Since J2 takes 50 time units, we can permit failure of
J3 and J5 with retries (either 3 retries of J3, 3 retries
of J5, 1 retry of J3 and 2 retries of J5, or 2 retries of
J3 and 1 retry of J5). Finally, we can use redundant
execution of J4. Note that the redundant execution is
either to tolerate hardware/software failures, or to
overcome execution unpredictability due to the
presence of pipelines, cache memories, etc. In other
words, we hope that one of the two redundant
executions will meet the deadline.

It takes a total of 90 time units to complete the tasks
on 2 processors. Let us assume that this is also the
mission deadline (no temporal redundancy is
permitted). Table 1 shows the performability values
for one processor case (as indicated earlier) and two
processor case. The efficiency in two processor case
is computed based on the idle times experienced by
either of the processors.

The table shows that one processor with a small
temporal redundancy of 20 time unites (i.e., deadline

of 130 time units) achieves better performability than
that can be achieved with two processors. As the
tasks become more predictable, (i.e., the probability
that a task completes execution within its estimated
time approaches 1.0), the differences in the system
reliability between the approaches is not significant.
However, the use of two processors may have other
benefits. For one thing, the mission time is reduced to
90 time units and the physical redundancy (whenever
possible) can tolerate hardware and software failures.

Deadline = 120
Eff = 0.917

Deadline = 130
Eff = 0.846

Two Processors

Deadline = 90
Eff = 0.611

 0.9! !!!!!!!0.5905!!!!!!!!!!! 0.7145!!!!! !!!!!0.8444!!!!!!!!!!!! !0.7346

 0.95!!!!!! 0.7738 !!!!!!!!!!0.8531!!!!!!!!!!! 0.9343!!!!!!!!!!!!!!0.8958

 0.99!! 0.9510!!!!!!!!!!!0.9701!!!!!!!!!! !0.9893!!!!!!!!!!!!!!0.9704

 No
Redundancy

Eff = 1.0

Probability
Of Task
Completion

One Processor with Slack Time
 (Temporal Redundancy)

Deadline
 110 pi

Table 1.

__

2.2. Significance of Scheduling and Multi-tasking.

If tasks have completely deterministic and
predictable behavior, it may be possible to obtain a
static schedule that guarantees deadline in a
multiprocessor system. Scheduling may or may not
permit task preemption. Failures in processing
resources may require alternate task schedules and
task migration. When task behavior is not completely
predictable, we may allow slack time in deadlines to
absorb delays in task execution. In a multiprocessing
and multitasking systems, since a task cannot start
until all its predecessors (in terms of dependencies)

have completed, the ability of a task to meet its
deadline depends on that of its predecessor tasks.

 This can be modeled by the following formulation.

PDi (= prob. that task Ji will meet its deadline
Di) =

(Probability that task Ji completes successfully
on one try) *
(Prob. that predecessor tasks complete by Di -
ti)
+ (Prob. that task Ji completes in two tries) *

(Prob. that predecessor tasks complete by Di -
2 * ti)
+

The above computation is applied recursively to all
tasks. We may need to include communication
failures and time-out protocols. When preemptive
scheduling techniques are used, the performability
computation needs to represent how task preemption
leads to delays in task completion.

2.3. Continuous Time Model.

In the analysis so far, we have used discrete
probabilities for task completion, and assumed that
when a task fails to meet its deadline, the task must
be re-executed. In most cases, a task may exceed its
allocated time only by a small amount. In many
applications, it is acceptable to let the task complete
its execution (and exceed the allocated time), hoping
that the slide in the schedules will be allowed by the
slack in the system deadline.

To model a task slipping its deadline, we need to use
a continuous probability distribution Ei for task
execution profile (see Figure 1). If a task has a
minimum and maximum execution times specified,
the distribution will be scaled appropriately. We have
observed that for a majority of real-time tasks in
general, and for spacecraft tasks in particular, the task
execution profile (Figure 1) can be approximated by
a truncated exponential. Our model, however, is not
dependent on the distribution; only, the analysis
complexity is dependent on the distribution.

2.3.1. The Distribution Ei:

Typically, a task Ji is specified with a minimum and
maximum execution times, Tmini and Tmaxi.
Depending on the behavior of the task, the actual
execution time, for a given execution of task Ji can be
viewed as an outcome from a probability distribution
ranging between the Tmini and Tmaxi. Figure 1
shows such a behavior.

Consider two tasks J1 and J2 where J1 must be
completed before J2 can be started. Assume that the
deadlines for the two tasks to complete are D1 and
D2. We can allow J1 to execute only until D2 -

Tmin2 ; otherwise J2 cannot complete by D2. The
system performability can be obtained from the
following convolution.

E1(τ)dτ

Tmin1

τ
E2(t) dt

τ+Tmin2

D

Wher e τ ≤ D-Tmin2 and

τ ≤ Tmax1

The above formulation can be extended to any
sequence of tasks. When independent tasks execute
in parallel (on a multiprocessing system), the above
convolution becomes a simple product.

2.3.2. An Example:

Consider the same task graph (Figure 2) used in the
previous example. To simplify the illustration, we
will assume a uniform distribution for each task
completion probabilities. Let us start with the
following values. For each task, the probability that
the task completes by their assigned times ti = pi. Let
us use following values for Tmini and Tmaxi .

Task Tmini Tmaxi ti

J1 15 25 20
J2 45 55 50
J3 5 15 10
J4 15 25 20
J5 5 15 10

Deadline
 85 135 110

If pi for each task (based on ti) is 0.9, the probability
that all tasks will complete by the deadline of 110

time units is given by 0.5905. On the other hand, if
we extend the deadline to 120 units, and let tasks
execute to completion (even if they exceed their
assigned times, ti), the probability of meeting the
deadline is 0.729. This is computed as follows. All
tasks are allocated at least the estimated execution
times (i.e., ti). The remaining slack time of 10 time
units is given to tasks J1 and J2 (5 time units each).
Thus these tasks are guaranteed to complete, since we
allocate them their Tmaxi. We call this a greedy
method.

Performability =
 P1(=1.0) * P2(=1.0) *P3 * P4 * P5

 = P3 * P4 * P5

Alternatively, the 10 units of slack time can be
distributed evenly among the tasks (i.e., each task can
be allocated an additional 2 time units). We call this a
fair-method. The following table shows the results
obtained.

It should be noted that if the deadline is extended to
135 time units, then all tasks are guaranteed to
complete, giving a probability of 1.0 for meeting the
deadline (135 time units permits worst case execution
for each task).

Deadline = 120
Eff = 0.917

Deadline = 130
Eff = 0.846

 0.9! !!!!!!!0.5905!!!!!!!!!!! 0.729 0.9!!!!!!!!!!!!!!!!!0.7339!!!!!!!!!!!!!0.9039

 0.95!!!!!! 0.7738 !!!!!!!!!!!0.8575!!!!!!!!!!!!!0.95!!!!!!!!!!!!!!!!0.8587!!!!!!!!!!!!!0.951

 0.99!! 0.9510!!!!!!!!!!!0.9703!!!!!!!!!!!!!!!0.99!!!!!!!!!!!!!!!0.9704!!!!!!!!!!!!0.99004

 No
Redundancy

Eff = 1.0

Probability
Of Task
Completion

Deadline
 110

Greedy Method Fair Method

Deadline = 120
Eff = 0.917

Deadline = 130
Eff = 0.846

pi

Table 2

2.4. Significance of Failures.

In above examples, we have not incorporated any
failures (hardware, software or communication
failures). Our method permits the incorporation of
failure distributions. Consider the following task
profile shown in Figure 3 which is similar to Figure
1. The shaded area shows the significance of failures.
The difference between the two task profile curves
(with and without failures) widens near Tmaxi, since
as a task takes longer, the probability of failures

increases. The probability that a task meets its
deadline can now be obtained from the failure profile
of Figure 3.

In a multiple processor system, hardware and
software failures may require migration of tasks. The
actual mechanism used to tolerate failures is beyond
the scope of our model. For example, in ATAMM
[Som 93], several alternate schedules (known as
operating points) are precomputed for various system
configurations (such as, different number of
processors to account for processor failures that
reduce the number of processors and repairs that

increase the number of processors). The tool is
designed for periodic tasks, and a new operating
point (hence a new schedule) is selected when the
number of available processors changes. We plan to
interface with ATAMM tool so that the
performability for different number of processors and
different amounts of slack in deadlines can be
computed.

1.0

Pmin

Tmin Tmax

Failure Free

With Failures

X X

Figure 3

2.5. Application to Periodic Real-Time Tasks.

In many of real-time applications (e.g., spacecraft) tasks
are repeated based on certain periodicity. In such systems,
the task schedules are based on cycles, frames and
subframes. A cycle consists of a fixed number frames.
Each frame consists of a variable number of subframes. A
subframe refers to the execution of a task. There may be
different sets of tasks scheduled in different frames, but
the set of tasks scheduled during a cycle is repeated. A
task may be scheduled more than once in a cycle, but
never more than once in a frame. If a task misses its
deadline, one of the following actions are possible.

a). Preempt the task, and hope that the task will
execute correctly on its next schedule. Dependent
tasks will use data output from a previous execution.
Here the trade-off is between accuracy and timeliness
of the mission.

b). Permit the task to continue, and hope that the set of
tasks constituting a mission will still meet the
deadline. This is often possible, since the mission
contains some low priority tasks which can be delayed
(or not scheduled).

Our approach permits both techniques for dealing with
missed deadlines. Since the mission consists of a fixed
number of cycles, the performability of the mission
should be based on the overall mission time.

2.6. A Performability Prediction Tool.

It is possible to apply traditional stochastic processes
to obtain an analytical solution to the performability
of a soft real-time system that incorporates
hardware/software failures and the failure to meet
deadline. We, however, feel that it will be useful to a
real-time systems designer to provide a tool that
obtains empirical data by simulating the various task
execution times, and injects hardware or software
failures. Such a tool can be used to determine the
temporal redundancy needed to achieve a desired
performability. We have completed a simple version
of such a tool. At present we permit uniprocessor
systems. We are in the process of extending the tool
to multiprocessor systems (both shared memory and
message-passing).

When the tool is complete, we envision the following
environment. The input consists of a task graph
(depicting task dependencies), an execution profile
for each task, target architecture (i.e., number of
processors, interconnection, shared vs distributed
memory), schedule of tasks on the target architecture
(described in the form of a Gant chart), mission
deadlines, communication delays (if any), failure
distributions (for hardware, software and
communication subsystems). The user can utilize
graphical interfaces (e.g., X or Motif) to specify the
input and/or choose from a library of pre-determined
configurations. Figure 4 shows a typical window. The
user can select from a variety of fault-tolerance
mechanisms and scheduling methods to deal with
failures. The user can select from a variety of
probability distributions for the task profiles and
failures.

__

J
1

File Task Profile Task Schedule

J
2

Distr
Tmin
Tmax

Figure 4.

__

The system will generate performability predictions
empirically. Using event driven simulations, the
performability predictions for various amounts of
slack times (temporal redundancy) will be displayed.
At user option, other statistics such as processor
utilization will be provided. The output can be
displayed as bar charts, graphs or tables.

At present, the tool has no graphical interface. The
input is fed from another tool that calculates task
schedules based on a variety of heuristics ([Shirazi
93]). The task graph (and the task schedules) are
described as an extended adjacency list. The outputs
display the performability of the system for various
amounts of slack time in the deadline.

3. Summary and Conclusions

In this paper we have described a simple model that can
be used to evaluate the probability that a real-time system
meets its deadline in the presence of failures and
imperfect execution time estimates (viz., performability).
Our model can be used to estimate the time-redundancy
(slack time) needed in the overall mission deadline in
order to achieve a desired performability. The analysis
can also be used to evaluate the trade-off between
physical redundancy (such as Triple-Modular-
Redundancy and N-Version Programming) and active
redundancy (such as roll-back and recovery, re-try) - that
is, a trade-off between performance and reliability. As
failures occur, the ability of the system to support the

critical tasks (and meet deadlines) can also be evaluated
(viz., graceful degradation) from our model.

We are currently developing a user-friendly tool that uses
even-driven simulation to empirically derive the
performability of real-time systems consisting of
concurrent tasks executing on multiple processors. When
fully developed the tool will permit all of the analyses
mentioned in the previous paragraph. Our tool relies on
users to obtain optimal schedules, and estimates of task
execution times (i.e., task execution profiles).

4. References

[Chou 80] T.C.K. Chou and J.A. Abraham.

"Performance/Availability model of shared
resource mulitprocessors", IEEE
Transactions on Reliability, R-29, April, pp.
70-74.

[COSMOS 93] B.F. Lewis et. al. "COSMOS

Multicomputer operating system and
development environment: Functional
Specification", NASA-JPL Memo.

[Gay 79] F.A. Gay and M.L. Ketelsen. "Performance

evaluation for gracefully degrading
systems", Digest of 9th International
Symposium on Fault-Tolerant Computing,
Madison, WI, pp. 51-58.

[Kim 89] K.H. Kim and S.M. Yang. "Performance

impacts of lookahead execution in the

conversation scheme", IEEE Transactions
on Computers, Aug. 1989, pp 1188-1202.

[Meyer 79] J.F. Meyer, D.G. Furchgott and L.T. Wu.

"Performability evaluation of the SIFT
Computer", IEEE Transactions on
Computers, C-29, pp. 501-509.

[Shirazi 93] B. Shirazi, K.M. Kavi, A.R. Hurson and

P. Biswas. "PARSA: A parallel program
scheduling and assessment environment",
Proc of 1993 International Conference on
Parallel Processing, August 16-20, 1993

[Som 93] S. Som, R.R. Mielke and J.W. Stoughton.

"Prediction of performance and processor
requirements in real-time dataflow
architectures", to appear in IEEE
Transactions on Parallel and Distributed
Systems.

[Siewiorek 92] D.P. Siewiorek and R.S. Swarz.

Reliable Computer Systems: Design and
Evaluation, 2nd Edition, Digital Press,
Bedford, MA.

[Stankovic 88] J.A. Stankovic and K. Ramamritham.

Tutorial on Hard Real-Time Systems, IEEE
CS Press.

[Stoyenko 92] A.D. Stoyenko. "The Evolution and

State-of-the-Art of Real-Time Languages",
The Journal of Systems and Software, April
, pp. 61-84

[Trivedi 82] K.S. Trivedi. Probability & Statistics

with Reliability, Queuing, and Computer
Science Applications, Prentice-Hall,
Englewood Cliffs, NJ.

