
HETEROGENEOUS ARCHITECTURE FOR SPARSE DATA PROCESSING

Shashank Adavally, Alex Weaver, Pranathi Vasireddy,
Krishna Kavi, Gayatri Mehta, Nagendra Gulur

University of North Texas
Denton, Texas, USA

ABSTRACT

Sparse matrices are very common types of information used
in scientific and machine learning applications including deep
neural networks. Sparse data representations lead to storage
efficiencies by avoiding storing zero values. However, sparse
representations incur metadata computational overheads – soft-
ware first needs to find row/column locations of non-zero val-
ues before performing necessary computations. Such metadata
accesses involve indirect memory accesses (of the form a[b[i]]
where a[.] and b[.] are large arrays) and they are cache and
prefetch-unfriendly, resulting in frequent load stalls.

In this paper, we will explore a dedicated hardware for
a memory-side accelerator called Hardware Helper Thread
(HHT) that performs all the necessary index computations
to fetch only the nonzero elements from sparse matrix and
sparse vector and supply those values to the primary core,
creating heterogeneity within a single CPU core. We show
both performance gains and energy savings of HHT for sparse
matrix-dense vector multiplication (SpMV) and sparse matrix-
sparse vector multiplication (SpMSpV). The ASIC HHT shows
average performance gains ranging between 1.7 and 3.5 de-
pending on the sparsity levels, vector-widths used by RISCV
vector instructions and if the Vector (in Matrix-Vector multi-
plication) is sparse or dense. We also show energy savings
of 19% on average when ASIC HHT is used compared to
baseline (for SpMV), and the HHT requires 38.9% of a RISCV
core area.

Index Terms— Sparse matrices, DNN, Hardware Accel-
erators, RISCV

1. INTRODUCTION

With the trend towards embedding intelligence into the edge,
there is a growing need to architect support for compute and
storage-efficient machine learning algorithms on low-power
sensing and handheld devices. These devices are characterized
by simpler cores, and small on-chip memory [1–3]. Achieving
real-time inference capability in these devices requires optimiz-
ing both the storage and computations performed. Leveraging
sparsity (zeroes) in the data and/or weights of deep neural nets
(DNNs) has emerged as a viable technique to achieve these
improvements [4–6].

Sparse matrix-vector multiplications are at the heart of
machine learning, data analysis and scientific applications.
Algorithms such as forward and back-propagation in deep
neural nets [7], graph neural nets [8], Markov clustering [9],
high-dimensional similarity search [10], topological similarity
search [11], clustering coefficients [12], betweenness central-
ity [13], multi-source breadth-first-search [14], label propaga-
tion [15], and solvers of discretized differential equations [16]
employ matrix-vector multiplications involving sparse matri-
ces. Sparsity (the percentage of zeroes in the matrix) can be ex-
ploited to improve performance, as well as reduce storage and
energy requirements. We need to distinguish between sparse
matrix and dense vector multiplication, (denoted as SpMV)
and sparse matrix and sparse vector multiplication(denoted as
SpMSpV). SpMV algorithms only require the column indices
of non-zero elements (in rows) of Matrix to find needed Vec-
tor elements. However, SpMSpV requires the alignment of
non-zero elements of Matrix with non-zero elements of the
Vector.

Various sparse matrix representations have been proposed
and incorporated in scientific and machine learning codes.
These include compressed sparse row (CSR [17]), block
compressed CSR (BCSR [18]), compressed sparse column
(CSC [19]), coordinate list (COO [20]), bit-vectors [5], and
run-length encoding [5]. There are also some newer represen-
tations including hierarchical bit vectors [21] and compression
on top of CSR [22]. Conceptually, compressed representa-
tions store only the non-zero (denoted NZ) values of a matrix
along with metadata to indicate the row and column positions
(i.e., indices) of these values. Matrix codes are written to
a specific format in order to interpret the metadata and to
perform computations only on the NZ values.

It has been documented that accessing and processing
compressed metadata incurs significant overheads [23]. To
perform pairwise multiplications of elements from matching
columns/rows, metadata of one matrix is used to lookup (and
often match) the non-zero elements of another. If the memory
itself (or a small processing unit placed close to memory)
could perform this metadata access and provide only needed
non-zero values to the primary processing element, it saves
the CPU energy and execution cycles. Such a memory system
can provide computation-memory parallelism by overlapping

Heterogeneity in Computing Workshop, held in conjunction with IPDPS 2022, May 30, 2022, Lyon, France



metadata accesses with CPU computation. In this paper, we
describe the design and evaluation of such a memory-side
hardware called Hardware Helper Thread or HHT.

In this work, we make the following contributions.

1. We use a memory-side accelerator, called Hardware
Helper Thread (HHT), to assist primary computational
core in locating non-zero values. We evaluate a dedi-
cated (or ASIC) implementation of HHT.

2. We evaluate HHT for both sparse Matrix - dense Vector
(SpMV) and sparse Matrix - sparse Vector (SpMSpV)
multiplications.

3. We provide detailed design and implementation of our
dedicated hardware HHT for handling CSR represen-
tation.We analyze the silicon area needed, estimated
power consumed and the energy savings achieved by
our HHT augmenting a RISC V core executing SpMV
computations when compared to a baseline RISCV core
executing all computations.

Our work should be contrasted with prefetching works, in-
cluding recent study that describes a programmable prefetcher
[24] which can be programmed to prefetch based applications
access patterns. Our HHT brings only needed data to the
primary core. Our focus in the paper is only on accelerating
index accesses unlike other accelerators that aim to accelerate
entire computational kernels, such as the numerous neural net-
work accelerators that perform all computations involved in
complex networks.

2. MOTIVATION FOR ACCELERATING INDEX
COMPUTATIONS

Consider the SpMValgorithm that multiplies a sparse matrix
M by a dense vector V to produce an output (dense) vector Y .
Figure 1 shows a sample 3 × 3 matrix M using compressed
sparse rows (CSR) representation.

Fig. 1: A 3x3 sparse matrix in CSR and Bit-Vector Formats

In the CSR representation, a cols array holds the column
indices of the non-zero values in each row. A rows array holds
pointers (indices) to the cols array where the row’s non-zero
column indices are stored. The vals array holds the NZ values.

The SpMValgorithm traverses M row by row, obtains the
column indices of the NZ values, and accesses the correspond-
ing indices of the (dense) vector V . An outline of this algo-

rithm implemented for a CSR representation of M is shown in
Algorithm 1.

Algorithm 1 CSR Version of spMV

1: procedure SPMV(M rows, M cols, M vals, n, v)
2: k← 0
3: for i = 0; i < n; i = i+ 1 do
4: nnz← M rows[i+1]−M rows[i]
5: s← 0
6: for j = 0; j < nnz; j = j + 1 do
7: s← s + M vals[k+j] ∗ v[M cols[k+j]]
8: k← k + nnz
9: y[i]← s

Among the memory accesses made by this code, the in-
direct accesses performed by v[cols[.]] are expensive – these
indirect accesses require accessing cols[.] before values of v[.]
can be read. Processor vendors have offered vector gather
instructions (see Intel [25], ARM [26] and RISCV [27]) for
software codes to issue requests to the memory system to
gather elements from an array using array indices supplied in a
vector register. While these indexed vector loads help specify
the gathering operation to the memory system, they do not
provide the memory system enough of a look-ahead: the mem-
ory system can not prefetch data for future requests as it has
no visibility to the future array indices that will be requested.
Given the random nature of the indices accessed, traditional
prefetchers perform poorly. Even with perfect memory ac-
cesses, the indirect accesses increase the dynamic instruction
count of an otherwise efficient nested loop. We label the ac-
cesses to the cols[.] array and subsequent use of these values in
fetching values of v[.] as metadata overhead. A more detailed
analysis of the overhead was included in [23]. If the memory
itself could perform this metadata access in order to access
V [.], then it saves the CPU energy and cycles. Such a memory
system can provide computation-memory parallelism by over-
lapping metadata accesses with CPU computation. This is the
motivation for the design of a heterogeneous CPU-HHT core.

For this publication, our focus is on the use of real-time
machine learning based inference engines to execute on low-
power sensors that are limited by power, storage and compute
capabilities. On the lower end of the compute spectrum, these
microcontroller-based devices (MCUs) comprise simple in-
order cores (such as a core from ARM Cortex-M series or
RISCV RV32) integrated with a small on-chip SRAM, clocked
at no more than a few hundred million cycles per second (see
Fig. 2). Thus, achieving intelligence at the edge requires
highly optimized implementations of various types of ML
inference algorithms.

Heterogeneity in Computing Workshop, held in conjunction with IPDPS 2022, May 30, 2022, Lyon, France



Fig. 2: HHT in Microcontroller Systems

3. DESIGN OF HHT

In our work, we investigate a dedicated ASIC memory-side
accelerator (HHT). We envision our HHT placed either inside
microcontroller memory (typically SRAM based memory) or
very close to the memory. When a microcontoller contains
cache memories, HHT will access the cache for fetching sparse
data.

The HHT is organized into a front-end (FE) and a back-
end (BE). The FE is responsible for CPU-side interactions:
handling configuration writes from the CPU and supplying
data to the CPU in response to buffer load requests: buffer
contains the matching elements of the vector in matrix-vector
algorithms. The BE loads of matrix and vector metadata
(associated with the sparse representation) from the memory
system to enable the FE assemble data buffers in a timely
fashion. The FE and the BE operate in a decoupled manner
synchronized by a control unit that starts or throttles the BE
based on availability of space in the buffers.

3.1. HHT Front-End

The HHT FE is responsible for matrix metadata configuration,
and coordination with the CPU. The FE has to be configured
by software to store matrix metadata into the HHT. This pro-
gramming is performed by writing to a set of memory-mapped
registers (MMRs) in the FE. We list the MMRs needed to sup-
port the SpMV operation using CSR representation of sparse
data.1 Values programmed into these configuration registers
control the address generation and termination logic.

• M Num Rows: Number of rows of sparse matrix M .

• M Rows Base: Base address of CSR rows array of
M .

• M Cols Base: Base address of CSR cols array of M .

• V Base: Base address of dense vector V .

• ElementSizes: Sizes for Rows, Cols, Vals arrays and
Vector.

1We described ASIC HHT for SpMV here. The design can be extended for
SpMSpV using additional metadata and comparing indexes of Matrix columns
with Vector indexes to match non-zero values.

• Start: This bit is set last to trigger the hardware opera-
tion.

For the SpMV operation, the HHT provides indexed gather
support. Values from vector v[.] are gathered using indices
from M Cols to construct buffers. The CPU performs vector
loads of buffered values and multiply-accumulates into the
output vector. Values collected into the buffers are read by
the CPU via the normal load-store interface. In our design,
we assume a vector-wide load-store interface for high-end
embedded devices, but the HHT design can work with scalar
load-store interfaces also.2 The software uses a fixed buffer
address to load from. Whenever the CPU performs a load, the
FE updates its buffer state to determine when the buffer has
been completely drained by the CPU. Whenever one buffer
is drained, the FE switches to the next ready buffer. In this
sense, the FE offers a streaming FIFO interface to the CPU.
If the CPU performs a load when the buffer is not ready, then
the FE stalls the load.

The FE is implemented with N vector-sized buffers where
N is a design-time parameter. N >= 2 permits the HHT to
prefetch and store buffers ahead of time. N = 2 provides
double-buffer arrangement. The FE and BE work the mem-
ory pipeline managed by the control unit. Figure 3 describes
the design of the HHT pipeline operation.

Fig. 3: HHT Pipeline

The first stage of the pipeline issues memory read requests
to obtain contents of the M cols[.] array. It uses the cur-
rent array index stored in the register cur col idx to gener-
ate requests to the next BLEN elements, one element at a
time, where BLEN is the length of the buffer 3. In the next
stage, memory response is stored in a BLEN -sized column-
indices buffer. Values stored in this buffer are used to compute
the addresses of the elements of array V [.]. Given an index
value k and vector element size s, the address is computed
as: V address = V Base + s × k. This computed address
is used to issue a second memory request in stage 4 of the
pipeline. Values read from array V [.] are stored in a CPU-side

2In fact, our design works even better with scalar loads as there is less
pressure on HHT to return a large number of values per loop iteration.

3This corresponds to vector width used by the RISCV vector instructions.

Heterogeneity in Computing Workshop, held in conjunction with IPDPS 2022, May 30, 2022, Lyon, France



buffer. Depending on the number of buffers provisioned, the
control unit tracks which buffer to write to.

The control unit generates signals for all stages of the
pipeline. In particular, the unit tracks which buffer is the read
buffer – the buffer that the CPU will read from and which
buffer is the write buffer – the buffer that the HHT Back-
End will fill. The control unit also tracks buffer empty/full
conditions so as to stall CPU load requests (when no ready
buffer is available), stall the memory request generation to V [.]
(when column indices have not yet been read from memory)
or to skip issuing new memory read requests when all buffers
are full.

3.2. HHT Back-End

The HHT Back-End (BE) fetches metadata and data for the
front-end. The BE uses the next vector of column indices to
generate addresses for elements of v[.] and issue memory read
requests. Address generation is straightforward: knowing the
programmed base address of v[.] (stored in register V Base)
and element size s, for a column index k, the element address
is V Base + k × s. The BE works with the underlying
memory system to issue read requests and to collect responses.
In the high-performance processor integration, the BE issues
requests to the L1D cache. If the request is a L1D miss, then
the usual cache miss processing is carried out to fetch the
contents. In the MCU integration, the BE issues requests to
the on-chip RAM via an on-chip interconnect.

4. EXPERIMENTAL EVALUATION

We evaluate ASIC HHT for embedded processing environ-
ments. We use the Spike [28] simulator representing an em-
bedded CPU core.

System Configuration: Table 1 describes the system configu-
ration used in our experiments. The system includes a 32-bit
RISCV [29] base architecture along with vector, compressed,
atomic, multiply, floating and double precision extensions.
The primary CPU core uses an in-order 3 stage pipeline imple-
mentation. In particular, loads that do not complete in a single
cycle and stall the pipeline. The vector unit is not pipelined.
The memory comprises buffers and RAM.

We configured spike [28] to match our design as described
in Section 3. We incorporated several extensions to the base-
line spike simulator including multi-cycle instruction latency,
RAM memory model and processor wait cycles. Our exten-
sions provide for cycle-accurate simulation environment. We
collected total execution cycles, the number of cycles the CPU
(primary RISCV core) is waiting for HHT to fill buffers and
the number of cycles HHT is waiting for CPU to release free
buffers.
Workloads: To analyze the performance of our accelerator
carefully, we generated synthetic matrices of different sizes
and different sparsity levels. We also analyzed HHT using
several matrices drawn from the Texas A&M Sparse Matrix

Table 1: System Configuration

Processor Values
Core RISCV ISA with 32 bit Floating-point Extensions

Frequency = 1.1 GHz
Vector width (VL) = 8 Elements

Element Size (SEW) = 32 bit
Vector Arithmetic Latency = 4 cycles

ASIC HHT N=2 Buffers
Buffer size = 32B

RAM Size = 1MB

collection [30]. However, due to space limitations, we did
not include those results here. The speedup results are inline
with those for synthetic workloads presented in this paper -
noting that Texas A&M Sparse Matrix data has very high
sparsity levels (greater than 90%). Since the sparsity of DNN
datasets varies from network to network and layer to layer, our
exploration using randomly generated inputs can provide an
estimate of potential performance gains for different DNNs.

5. RESULTS

We show performance gains achieved by HHT over the base-
line that uses a single CPU that performs both index computa-
tions and matrix-vector multiplications. We also present the
fraction of time CPU is waiting for HHT. Our goal is to offload
”work” to HHT, and overlap this work with that of the CPU. In
the ideal case, CPU should not be waiting for HHT. However,
if HHT is assigned larger share of ”work”, CPU is likely to
be idle. Thus, it is necessary to carefully evaluate the amount
of work that is offloaded to HHT to achieve best performance
gains.

We first present the results for sparse Matrix - dense Vector
(SpMV) multiplication, using randomly generated matrices
with varying degrees of sparsity (% of zeros). We will then
present results for sparse Matrix - sparse Vector (SpMSpV)
multiplication, again using randomly generated matrices and
vectors with varying degrees of sparsities. Finally, we will
present results for fully connected layers of several Deep Neu-
ral Net architectures. We expect that the use of random inputs
with different sparsities provide valuable insights on the range
of performance gains achieved with HHT.

5.1. HHT On SpMV and SpMSpV Workloads

HHT On SpMV Workloads: To understand the impact of
sparsity on HHT performance, we evaluated the HHT on syn-
thetic matrices with varying degrees of sparsity. Figure 4
presents the performance improvement achieved by HHT over
the baseline using only CPU on a 512 * 512 matrix with
sparsity varied from 10% to 90% for sparse matrix - dense
Vector (SpMV) multiplication. The primary CPU is a RISCV
core with vector extensions. The figure contains 2 bars for
each sparsity level: labeled Dedicated HHT 1buffer and Dedi-
cated HHT 2buffer, representing the speedup achieved using

Heterogeneity in Computing Workshop, held in conjunction with IPDPS 2022, May 30, 2022, Lyon, France



1.64

1.66

1.68

1.7

1.72

1.74

1.76

10 20 30 40 50 60 70 80 90

S
p

e
e

d
u

p

Sparsity (%)

Dedicated_HHT_1buffer Dedicated_HHT_2buffer

Fig. 4: HHT Speedup For SpMV

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

10 20 30 40 50 60 70 80 90

S
p

e
e

d
u

p

Sparsity (%)

Dedicated_HHT_1buffer_variant1 Dedicated_HHT_2buffer_variant1

Dedicated_HHT_1buffer_variant2 Dedicated_HHT_2buffer_variant2

Fig. 5: HHT Speedup For SpMSpV

an ASIC HHT with 1 and 2 buffers. All results are for the
case where the primary CPU core is using 8-wide vectors and
vector instructions.

It can be seen from the figure, using dedicated hard-
ware, HHT consistently outperforms baseline with an average
speedup of 1.70 (speedups range from 1.67 to 1.72) for
(SpMV). The gains are smaller at higher sparsities. Since
the amount of work that is offloaded to HHT depends on the
sparsity of data – at higher sparsities, HHT is assembling fewer
data items for consumption by the CPU. The performance
gains depend on the amount of work that is offloaded to HHT.
The second set of bars (i.e. labelled as Dedicated HHT 2buffer
in Figure 4) shows the speedup with 2 buffers, which shows an
average speedup of 1.73 over the baseline and speedup ranges
between 1.71 to 1.75. In general double-buffering helps in
reducing the CPU wait times, which will be discussed shortly
in Section 5.2 and improves speedup. However, the minimal
improvement over one buffer is because, the ASIC HHTis
more than adequate to supply data to CPU and CPU will not
be idling waiting for HHT.
HHT On SpMSpV Workloads: Figure 5 shows the perfor-
mance gains achieved by HHT for sparse Matrix - sparse Vec-
tor (SpMSpV) multiplication. In Figure 4, we show the data
for two variants of HHT for SpMSpV. In the first variant, HHT
provides both matrix (row) values and vector values only if the
nonzero values of matrix and vector are aligned. In the second
variant, HHT only provides vector values corresponding to the
location of nonzero matrix values: either a nonzero value if the
corresponding vector location contains a value or zero other-

wise. The figure contains four bars of data, two using a single
buffer and two using two buffers for each of the two variants.
The first two bars (Dedicated HHT 1buffer variant1 and Dedi-
cated HHT 2buffer variant1) represent the speedups using an
ASIC HHT for variant-1 with one and two buffers respectively,
and they show an average speedup of 2.47 times (speedup rang-
ing between 1.48 times to more than 4.0 times). The speedup
increases with sparsity, since at higher sparsities, there are
fewer matching values to supply. As mentioned, in variant-
1 our HHT provides matching pair (or ”aligned values”) of
non-zeros from the sparse Matrix and the sparse Vector; the ap-
plication CPU multiplies the pairs of values and accumulates
the products. Thus, HHT is performing more work than the
CPU as it needs to traverse through (row) indexes of non-zero
values in the Matrix and indices of the non-zero values of the
Vector, and select values if the corresponding indexes match.
ASIC HHT requires more complex hardware. In such situa-
tions, CPU will be idling for longer periods of time, waiting
for HHT - we will describe the amount of time CPU waits
for HHT in Section 5.2. In variant-2 HHT is tasked to only
supply the Vector values (either a non-zero value if there is
non-zero element at the matching index or a zero, otherwise).
The CPU is responsible for fetching non-zero values of the
Matrix, and use the Vector values supplied by HHT to compute
the results - we label these results as variant-2. In Figure 5,
the next two bars (labeled Dedicated HHT 1buffer variant2
and Dedicated HHT 2buffer variant2) represent results where
ASIC HHT only supplies Vector values (with one and two
buffers). As can be observed, at lower sparsities, variant-2
HHT performs much better than baseline (CPU only) and
better than variant-1 HHT. At higher sparsities, greater than
80% sparsities, variant-2 HHT performs worse than variant-1
HHT but better than baseline CPU version. This is because, at
higher sparsities, the CPU is supplied with more zero values
of Vector in variant-2 (when there is no matching Vector ele-
ment corresponding to non-zero Matrix values) and these zero
computations should be considered as wasted computations.4

On average, this version of ASIC HHT performs 3.05 times
better than the baseline (speedup range between 2.5 times and
3.52 times).

5.2. CPU - HHT Overlap

Our goal is to offload computations (or work) related to meta-
data processing (associated with locating row-column indices
of sparse data) to the HHT and overlap this work with multiply-
accumulate operations on CPU side. The performance gains
depend on the amount of work offloaded. If too much work
is offloaded to HHT, CPU may be waiting for HHT. In this
section, we will analyze the fraction of the time CPU is waiting
for HHT (or the amount of time CPU is idling).

4CPU can ignore the zero multiplications to save energy -in the case of
SIMD like vector registers, HHT can provide mask bits to skip unnecessary
multiplications.

Heterogeneity in Computing Workshop, held in conjunction with IPDPS 2022, May 30, 2022, Lyon, France



0%

1%

1%

2%

2%

3%

10 20 30 40 50 60 70 80 90

%
 o

f 
To

ta
l 

C
y

cl
e

s

Sparsity (%)

Dedicated_HHT_1buffer Dedicated_HHT_2buffer

Fig. 6: CPU Wait Cycles For SpMV

0%

10%

20%

30%

40%

50%

60%

70%

80%

10 20 30 40 50 60 70 80 90

%
 o

f 
To

ta
l 

C
y

cl
e

s

Sparsity (%)

Dedicated_HHT_1buffer_1variant Dedicated_HHT_2buffer_1variant

Dedicated_HHT_1buffer_2variant Dedicated_HHT_2buffer_2variant

Fig. 7: CPU Wait Cycles For SpMSpV

Figure 6 shows the fraction of time CPU is idling (waiting
for HHT) for sparse Matrix-dense Vector (SpMV) multipli-
cation. The figure includes two bars for each sparsity level,
and these bars parallel the bars shown in Figure 4. The two
bars represent the fraction of the time CPU is idling when an
ASIC HHT is used with one and two buffers. With an ASIC
HHT, the application CPU rarely waits. This also results in
maximum speedup as shown in Figure 4.

Figure 7 shows the CPU idle times for sparse Matrix -
sparse Vector multiplication (SpMSpV). The four bars for each
sparsity level parallel the four bars shown in Figure 5 (i.e., first
two bars are for ASIC HHT that provides matching non-zero
values of Matrix and Vector with one and two buffers; the
next two bars are for ASIC HHT that only provides non-zero
values of the Vector). When HHT is supplying aligned Matrix
and Vector non-zero values (variant-1), CPU is idling for a
significant fraction of the total execution time. Two buffers
show only minor improvements. When HHT only provides
Vector elements (variant-2) the CPU idle times are significantly
reduced.

5.3. Sensitivity To Vector Widths

Results shown thus far are obtained using RISCV vector in-
structions with vector width of 8. To understand the compute-
memory overlap and the benefit of HHT, we experimented
with different vector widths used in the vector instructions of
RISCV: 1, 4 and 8. We did not consider larger vector widths
as they would require higher memory bandwidth and area –

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

1.85

10 20 30 40 50 60 70 80 90

S
p

e
e

d
u

p

Sparsity (%)

Dedicated_HHT_2buffer_scalar Dedicated_HHT_2buffer_vector4 Dedicated_HHT_2buffer_vector8

Fig. 8: HHT Sensitivity to Vector Width

Fig. 9: HHT on DNN workloads

both are significant constraints in embedded systems.
Figure 8 plots the improvement achieved by HHT over

correspondingly sized vector versions of sparse Matrix - dense
Vector (SpMV) multiplication using CPU-only (baseline). The
figure includes three bars for each sparsity (for a 512*512
sparse matrix) corresponding to three different vector widths,
1(scalar), 4, 8. ASIC HHT maintains high levels of speedup
for all vector widths (Speedup ranges between 1.77 - 1.81
for scalar, 1.51 - 1.62 for vector width of 4, 1.71 - 1.75 for
vector width of 8), indicating that the ASIC HHT with double
buffering can meet the demands of supplying needed values to
CPU.

5.4. HHT on Fully-Connected Layers of DNNs

The fully connected layer of DNNs performs Matrix-Vector
multiplication before the final classification. We leveraged
the quantized weights matrix of this layer from a variety of
networks: MobileNet [31], MobileNetV2 [32], DenseNet [33],
ResNet [34], ResNetV2 [35], and VGG16, & VGG19 [36].
Figure 9 plots the performance improvement achieved by
ASIC HHT over the baseline for these workloads. Baseline
(using CPU only) SpMV codes use the RISCV vector exten-
sions width vector width of 8. The baseline also uses the
vector indexed-load instruction to gather values using indices
specified in a vector register. This instruction is similar to Intel
AVX2 Gather instruction [25].

ASIC HHT achieves speedup over the baseline sparse
version of SpMV anywhere from 1.53 times on DenseNet to
1.92 times on VGG19. The performance improvement running

Heterogeneity in Computing Workshop, held in conjunction with IPDPS 2022, May 30, 2022, Lyon, France



DNN data sets is similar to the synthetic results at different
sparsity and matrix sizes.

5.5. Area, Power and Energy Estimates

In this section, performance estimates of variant-2 HHT are
presented by simulating System Verilog designs of HHT and
Ibex [37] RISCV core 5 using Synopsys Design Compiler and
PrimeTime tools. The area estimates of ASIC HHT is the sum
of the logic gates of the control unit and storage for pipeline
stages, two HHT memory side buffers of size 8, memory-
mapped registers, internal state registers and one CPU side
buffer. We synthesized three different feature sizes (28nm,
16nm and 7nm) using ARM libraries running at three different
clock speeds (10 MHz, 50 MHz and 100 MHz). For this
contribution, we present estimates of the design performing
SpMV using 16 nm feature size running at 50 MHz clock for
both RISCV and HHT. Our HHT is approximately 38.9% the
size of an Ibex core.

Using the design described above for 16 nm at 50 MHz
clock, we calculated energy savings using a 16*16 sparse ma-
trix with 10% sparsity. RISCV core along with HHT requires
314 uW power to perform the index accessing overlapped with
matrix-vector multiplication while the RISCV core alone re-
quires 223 µW power. This is expected because RISCV plus
HHT includes two separate processing elements. However,
due to the compute-memory overlap of execution in RISCV
with HHT, number of cycles required to complete the indexing
and computation decrease compared to baseline RISCV alone.
Thereby on average, the use of HHT results in 19% reduction
in energy consumed for SpMV across different sparsities rang-
ing from 10% to 90%, when compared with baseline. Any
bigger matrices can be broken into 16*16 6 sized matrices on
HHT and supply vector values to RISCV core.

6. RELATED WORKS

Sparse Matrix Accelerators. Accelerating sparse matrix op-
erations has received attention from both the hardware and
software communities. On the hardware side, works propose
hardware acceleration of the entire computation: some of these
works include a CAM-based accelerator [38], accelerator for
very large SpMV [39]. The work in [39] proposes a Two-Step
SpMV algorithm and a memory-based accelerator to acceler-
ate such computations on very large, very sparse graphs. Our
work is different: we aim to solve the memory latency problem
faced by embedded system-based matrix codes. Unlike works
that aim to move the entire computation to a dedicated accel-
erator, our goal is simply to reduce the memory bottleneck
faced by vectorized codes running on traditional cores. Some
researchers explored hardware that expands sparse data into

5https://github.com/lowRISC/ibex
6Due to the limitations of the Synopsys tool available to us, we were unable

to obtain the results for larger matrix size but we are trying to overcome this
limitation.

dense by inserting zeroes [40], [23]. It is believed that at lower
sparsities, such expansion can improve performance since the
expanded data can be executed using vector instructions.

There are several works that attempt to improve the perfor-
mance of sparse matrices for scientific applications. Authors
of [41] proposed a parallel sparse matrix algorithm based on
SUMMA used in BLAS library and parallelized the sparse
matrix multiplication, while we used hardware helper to ex-
tract only non-zero values to CPU. Greathouse [42] proposed
an algorithm, CSR-Stream to compute sparse Matrix - dense
Vector multiplication for smaller rows. They also present a
CSR-Adaptive algorithm which chooses CSR-Stream instead
of traditional CSR, and expands sparse matrices to dense to
enable parallelization. Azad and Buluc [43] proposed a par-
allel sparse Matrix - sparse Vector (SpMSpV) algorithm that
stores the product of sparse Matrix - dense Vector based on
the row indices and later accumulates it, all by using buckets.
Accelerators for Machine Learning. Interest in DNN based ac-
celerators have seen a rise in recent years. There are too many
different hardware/software implementations to include here.
Many are based on specialized accelerators based on either
dataflow or tensor/systolic arrays. Many of these systems lack
flexibility or reconfigurability. A recent paper [44] focuses
on support for flexible sparse matrix and vector multiplica-
tions. Sparse data is represented as bit-vectors and dataflow
like Multiply-Accumulate units are configured based on the
non-zero values in data. Moreau, et.al. [45] propose a pro-
grammable accelerator to optimize the execution for new and
emerging ML applications. The accelerator (VTA) is viewed
as a fetch-load-compute-store pipeline to dispatch instructions
to load (obtain input, weights and bias tensors from DRAM),
compute (GEMM operations) or store (store results of com-
pute in DRAM). Our interest is in the use of general purpose
RISC-like processing units with minimal extensions to the ISA
and hardware complexity.
Processing In Memory and Near Data Processing Approaches.
There have been many studies on near-data processing (or
Processing-In-Memory) logic. More recent works focused on
migrating computations to PIM. Some older reports proposed
migrating memory intensive operations closer to memory in-
cluding memory allocation and garbage collection functions
(see for example [46,47]). In one interesting work, the authors
propose creating memory gestures (or macros) for some com-
mon operations involved in traversing linked lists and avoid
bringing intermediate nodes into processor caches [48].
New Sparse Representations. In a different vein, there have
been proposals on improving compression of sparse matrices
and proposed techniques including hierarchical bit vectors [21]
or compression on top of CSR [22]. There are proposals for
specialized hardware to compress and decompress data for
use by CPU (assuming that the CPU uses conventional SpMV
software) [22]. Others propose hardware to use the new com-
pression formats (such as hierarchical bit maps) for performing
sparse matrix computations [21]. We programmed HHT to

Heterogeneity in Computing Workshop, held in conjunction with IPDPS 2022, May 30, 2022, Lyon, France



handle sparse data represented using SMASH [21] format.
SMASH format requires complicated indexing to locate the
row and column positions of non-zero values of a sparse matrix.
This implies that HHT is performing more work that the CPU,
causing CPU to idle. Moreover, we feel that SMASH format
may not be suitable for embedded systems. Due to space limi-
tations, we did not include details about the performance gains
achieved when HHT is programmed to process hierarchical
bit representation of sparse data as done in SMASH [21].

7. CONCLUSIONS

In this work, we presented a heterogeneous architecture con-
sisting of a memory-side accelerator along with a general
purpose processor to accelerate sparse matrix-vector and con-
volution computations. The accelerator, denoted as Hardware
Helper Thread or HHT, removes the overhead of accessing and
interpreting sparsity metadata from the primary CPU core. We
evaluated using a dedicated or ASIC hardware for HHT. Our
approach should be distinguished from other accelerators that
accelerate the entire computation, not just index computations.

We evaluated the use of our HHT for sparse Matrix-dense
Vector (SpMV), sparse Matrix - sparse Vector (SpMSpV) mul-
tiplications as well as convolution algorithms. The use of HHT
offloads the index computations needed for sparse data rep-
resentation to HHT and these computations are overlapped
with the computations of the primary CPU core. We present
the performance gains achieved by our designs over baseline
implementations of a CPU core that executes all computations.
We used synthetic matrices with different sparsities (i.e., frac-
tion of values that are zeros). The performance gains depend
on the amount of work offloaded to HHT and the amount of
time the primary CPU is waiting (or idling) for HHT to pro-
vide data. The ASIC HHT shows average performance gains
ranging between 1.7 and 3.5 depending on the sparsity levels,
vector-widths used by RISCV vector instructions and if the
Vector (in Matrix-Vector multiplication) is sparse or dense. We
also show an average energy savings of 19% when ASIC HHT
is used compared to baseline (for SpMV).

To provide flexibility of sparse data representations (e.g.,
CSR, COO, Bit vector, SMASH [21]), it may be worth con-
sidering a programmable HHT, using a simple RISCV like
core. Such a HHT core can be even simpler than traditional
32-bit integer RISCV. It can be designed with very few integer
instructions, very few integer registers, very small instruction
and data caches, thus requiring smaller silicon area and con-
suming less energy than a full-fledged primary CPU core. We
are currently exploring the design of such RISCV which can be
programmed to handle many different sparse representations.

Acknowledgements This research is supported in part by
the Semiconductor Research Corporation (SRC) under SRC
AIHW Task 2943. The research is also supported in part by
NSF award #1828105. The authors acknowledge the valu-
able suggestions provided by SRC industry liaisons Mahesh

Mehendale (TI), Chris Tsongas (TI), Jaekyu Lee (ARM) and
Mihai Caraman (NXP).

8. REFERENCES

[1] NXP, “NXP microcontrollers overview,” 2019.

[2] TI, “MSP432P401R, MSP432P401M simplelink mixed-
signal microcontrollers,” 2019.

[3] NXP, “Microprocesssors and microcontrollers,” 2019.

[4] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan
Pedram, Mark Horowitz, and Bill Dally, “Deep compres-
sion and EIE: efficient inference engine on compressed
deep neural network,” in 2016 IEEE Hot Chips 28 Sym-
posium (HCS), Cupertino, CA, USA, August 21-23, 2016.
2016, pp. 1–6, IEEE.

[5] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara,
Antonio Puglielli, Rangharajan Venkatesan, Brucek
Khailany, Joel S. Emer, Stephen W. Keckler, and
William J. Dally, “SCNN: an accelerator for compressed-
sparse convolutional neural networks,” in Proceedings of
the 44th Annual International Symposium on Computer
Architecture, ISCA 2017, Toronto, ON, Canada, June
24-28, 2017. 2017, pp. 27–40, ACM.

[6] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas
Chandra, “Hello edge: Keyword spotting on microcon-
trollers,” CoRR, vol. abs/1711.07128, 2017.

[7] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient
processing of deep neural networks: A tutorial and sur-
vey,” Proceedings of the IEEE, vol. 105, no. 12, pp.
2295–2329, 2017.

[8] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong
Long, Chengqi Zhang, and Philip S. Yu, “A compre-
hensive survey on graph neural networks,” CoRR, vol.
abs/1901.00596, 2019.

[9] Ariful Azad, Georgios Pavlopoulos, Christos Ouzounis,
Nikos Kyrpides, and Aydin Buluç, “Hipmcl: a high-
performance parallel implementation of the markov clus-
tering algorithm for large-scale networks,” Nucleic Acids
Research, vol. 46, pp. 1–11, 01 2018.

[10] Sandeep R. Agrawal, Christopher M. Dee, and Alvin R.
Lebeck, “Exploiting accelerators for efficient high di-
mensional similarity search,” in Proceedings of the 21st
ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2016, Barcelona, Spain,
March 12-16, 2016, 2016, pp. 3:1–3:12.

[11] Guoming He, Haijun Feng, Cuiping Li, and Hong Chen,
“Parallel simrank computation on large graphs with it-
erative aggregation,” in Proceedings of the 16th ACM

Heterogeneity in Computing Workshop, held in conjunction with IPDPS 2022, May 30, 2022, Lyon, France



SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, Washington, DC, USA, July
25-28, 2010, Bharat Rao, Balaji Krishnapuram, An-
drew Tomkins, and Qiang Yang, Eds. 2010, pp. 543–552,
ACM.

[12] Ariful Azad, Aydin Buluç, and John R. Gilbert, “Parallel
triangle counting and enumeration using matrix algebra,”
in 2015 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshop, IPDPS 2015, Hyderabad,
India, May 25-29, 2015. 2015, pp. 804–811, IEEE Com-
puter Society.

[13] Aydin Buluç and John Gilbert, “The combinatorial blas:
Design, implementation, and applications,” IJHPCA, vol.
25, pp. 496–509, 12 2011.

[14] Felix Gremse, Andreas Höfter, Lars Ole Schwen, Fabian
Kiessling, and Uwe Naumann, “Gpu-accelerated sparse
matrix-matrix multiplication by iterative row merging,”
SIAM Journal on Scientific Computing, vol. 37, pp. C54–
C71, 01 2015.

[15] Usha Nandini Raghavan, Réka Albert, and Soundar Ku-
mara, “Near linear time algorithm to detect community
structures in large-scale networks,” Phys. Rev. E, vol. 76,
pp. 036106, Sep 2007.

[16] Kjeld Schaumburg, Jerzy Wasniewski, and Zahari Zlatev,
“The use of sparse matrix technique in the numerical
integration of stiff systems of linear ordinary differential
equations,” Computers & Chemistry, vol. 4, no. 1, pp.
1–12, 1980.

[17] Nathan Bell and Michael Garland, “Implementing sparse
matrix-vector multiplication on throughput-oriented pro-
cessors,” in Proceedings of the ACM/IEEE Conference
on High Performance Computing, SC 2009, November
14-20, 2009, Portland, Oregon, USA. 2009, ACM.

[18] Aydin Buluç, Jeremy T. Fineman, Matteo Frigo, John R.
Gilbert, and Charles E. Leiserson, “Parallel sparse
matrix-vector and matrix-transpose-vector multiplication
using compressed sparse blocks,” in SPAA 2009: Pro-
ceedings of the 21st Annual ACM Symposium on Paral-
lelism in Algorithms and Architectures, Calgary, Alberta,
Canada, August 11-13, 2009, Friedhelm Meyer auf der
Heide and Michael A. Bender, Eds. 2009, pp. 233–244,
ACM.

[19] Aydin Buluç, Samuel Williams, Leonid Oliker, and
James Demmel, “Reduced-bandwidth multithreaded al-
gorithms for sparse matrix-vector multiplication,” in
25th IEEE International Symposium on Parallel and Dis-
tributed Processing, IPDPS 2011, Anchorage, Alaska,
USA, 16-20 May, 2011 - Conference Proceedings. 2011,
pp. 721–733, IEEE.

[20] Aiyoub Farzaneh, Hossein Kheiri, and Mehdi Abbaspour,
“An efficient storage format for large sparse matri-
ces,” Communications de la Faculté des Sciences de
l’Université d’Ankara. Séries A1: Mathematics and
Statistics, vol. 58, 01 2009.

[21] Konstantinos Kanellopoulos, Nandita Vijaykumar,
Christina Giannoula, Roknoddin Azizi, Skanda Koppula,
Nika Mansouri-Ghiasi, Taha Shahroodi, Juan Gómez-
Luna, and Onur Mutlu, “SMASH: co-designing software
compression and hardware-accelerated indexing for ef-
ficient sparse matrix operations,” in Proceedings of the
52nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2019, Columbus, OH, USA,
October 12-16, 2019. 2019, pp. 600–614, ACM.

[22] Arjun Rawal, Yuanwei Fang, and Andrew A. Chien, “Pro-
grammable acceleration for sparse matrices in a data-
movement limited world,” in IEEE International Paral-
lel and Distributed Processing Symposium Workshops,
IPDPSW 2019, Rio de Janeiro, Brazil, May 20-24, 2019.
2019, pp. 47–56, IEEE.

[23] Shashank Adavally, Nagendra Gulur, Krishna Kavi, Alex
Weaver, Pranoy Dutta, and Benjamin Wang, “Express:
Simultaneously achieving storage, execution and energy
efficiencies in moderately sparse matrix computations,”
in The International Symposium on Memory Systems,
2020, pp. 46–60.

[24] Xiangyao Yu, Christopher J Hughes, Nadathur Satish,
and Srinivas Devadas, “Imp: Indirect memory
prefetcher,” in Proceedings of the 48th International
Symposium on Microarchitecture, 2015, pp. 178–190.

[25] Intel, “Overview: Intrinsics for intel® advanced vector
extensions 2 (intel® avx2) instructions,” 2019.

[26] Nigel Stephens, Stuart Biles, Matthias Boettcher, Jacob
Eapen, Mbou Eyole, Giacomo Gabrielli, Matt Horsnell,
Grigorios Magklis, Alejandro Martinez, Nathanaël
Prémillieu, Alastair Reid, Alejandro Rico, and Paul
Walker, “The ARM scalable vector extension,” CoRR,
vol. abs/1803.06185, 2018.

[27] RISCV Foundation, “The RISCV vector extension spec-
ification,” 2020.

[28] Abraham Gonzalez, “The RISC-V ISA Simulator,” 2019.

[29] RISCV Foundation, “RISC-V: The free and open RISC
instruction set architecture,” 2020.

[30] Timothy A. Davis and Yifan Hu, “The university of
florida sparse matrix collection,” ACM Trans. Math.
Softw., vol. 38, no. 1, pp. 1:1–1:25, 2011.

Heterogeneity in Computing Workshop, held in conjunction with IPDPS 2022, May 30, 2022, Lyon, France



[31] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applica-
tions,” CoRR, vol. abs/1704.04861, 2017.

[32] Mark Sandler, Andrew G. Howard, Menglong Zhu, An-
drey Zhmoginov, and Liang-Chieh Chen, “Inverted
residuals and linear bottlenecks: Mobile networks for
classification, detection and segmentation,” CoRR, vol.
abs/1801.04381, 2018.

[33] Gao Huang, Zhuang Liu, and Kilian Q. Weinberger,
“Densely connected convolutional networks,” CoRR, vol.
abs/1608.06993, 2016.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,”
CoRR, vol. abs/1512.03385, 2015.

[35] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Identity mappings in deep residual networks,”
CoRR, vol. abs/1603.05027, 2016.

[36] Karen Simonyan and Andrew Zisserman, “Very deep
convolutional networks for large-scale image recogni-
tion,” in 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Conference Track Proceedings, Yoshua Bengio
and Yann LeCun, Eds., 2015.

[37] lowRISC, “Ibex: An embedded 32 bit risc-v cpu core,”
2017.

[38] Leonid Yavits and Ran Ginosar, “Sparse matrix mul-
tiplication on CAM based accelerator,” CoRR, vol.
abs/1705.09937, 2017.

[39] Fazle Sadi, Joe Sweeney, Tze Meng Low, James C. Hoe,
Larry T. Pileggi, and Franz Franchetti, “Efficient spmv
operation for large and highly sparse matrices using scal-
able multi-way merge parallelization,” in Proceedings of
the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 2019, Columbus, OH, USA,
October 12-16, 2019. 2019, pp. 347–358, ACM.

[40] Adrián Barredo, Jonathan C Beard, and Miquel Moretó,
“Poster: Spidre: Accelerating sparse memory access pat-
terns,” in 2019 28th International Conference on Parallel

Architectures and Compilation Techniques (PACT). IEEE,
2019, pp. 483–484.

[41] Aydin Buluç and John R. Gilbert, “Parallel sparse matrix-
matrix multiplication and indexing: Implementation and
experiments,” SIAM J. Scientific Computing, vol. 34,
2012.

[42] Joseph L. Greathouse and Mayank Daga, “Efficient
sparse matrix-vector multiplication on gpus using the csr
storage format,” in Proceedings of the International Con-
ference for High Performance Computing, Networking,
Storage and Analysis, Piscataway, NJ, USA, 2014, SC
’14, pp. 769–780, IEEE Press.

[43] Ariful Azad and Aydin Buluç, “A work-efficient parallel
sparse matrix-sparse vector multiplication algorithm,” in
2017 IEEE International Parallel and Distributed Pro-
cessing Symposium, IPDPS 2017, Orlando, FL, USA,
May 29 - June 2, 2017. 2017, pp. 688–697, IEEE Com-
puter Society.

[44] E. Qin, A. Samajdar, H. Kwon, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna, “Sigma: A sparse and irregular
gemm accelerator with flexible interconnects for dnn
training,” Feb 2020.

[45] T. Moreau, T. chen, L. Vega, J. Roesch, E. Yan, L. Zheng,
J. Fromm, Z. Jiang, L. Ceze, C. Guestrin, and A. Krishna-
murthy, “A hardware-software blueprint for flexible deep
learning specialization,” IEEE Micro, Sept/Oct 2019.

[46] W.Li, S. Mohanty, and K. Kavi, “Page-based software-
hardware co-design of a dynamic memory allocator,”
IEEE Computer Architecture Letters, vol. 5, July 2006.

[47] M. Rezaei and K. Kavi, “Intelligent memory manager:
Reducing cache pollution due to memory management
functions,” Elsevier Journal of Systems Architecture, vol.
52, no. 2, pp. 207–219, Jan 2006.

[48] L.M. Fox, C.R. Hill, R.K. Cytron, and K.M. Kavi, “Op-
timization of storage-referencing gestures,” in Workshop
on Compilers and Tools for Constrained Embedded Sys-
tems (CTES-2003), held in conjunction with Conference
on Compilers, Architecture and Synthesis for Embedded
Systems (CASES-2003), Oct. 29 2003.

Heterogeneity in Computing Workshop, held in conjunction with IPDPS 2022, May 30, 2022, Lyon, France




