
IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 22, NO. 2, JULY-DECEMBER 2023 97

Guard Cache: Creating Noisy Side-Channels

Fernando Mosquera , Student Member, IEEE, Krishna Kavi , Senior Member, IEEE,
Gayatri Mehta , Senior Member, IEEE, and Lizy John , Fellow, IEEE

Abstract—Microarchitectural innovations such as deep cache
hierarchies, out-of-order execution, branch prediction and spec-
ulative execution have made possible the design of processors that
meet ever-increasing demands for performance. However, these
innovations have inadvertently introduced vulnerabilities, which
are exploited by side-channel attacks and attacks relying on spec-
ulative executions. Mitigating the attacks while preserving the
performance has been a challenge. In this letter we present an
approach to obfuscate cache timing, making it more difficult for
side-channel attacks to succeed. We create false cache hits using
a small Guard Cache with randomization, and false cache misses
by randomly evicting cache lines. We show that our false hits and
false misses cause very minimal performance penalties and our
obfuscation can make it difficult for common side-channel attacks
such as Prime &Probe, Flush &Reload or Evict &Time to succeed.

Index Terms—Cache side-Channel attacks, evict &time,
flush &reload, guard cache, miss cache, obfuscating cache access
timing, prime &probe, victim cache.

I. INTRODUCTION

M ICROARCHITECTURAL innovations such as deep
cache hierarchies, out-of-order execution, branch predic-

tion and speculative execution have made possible the design of
processors that meet ever-increasing demands for performance.
However, these innovations have inadvertently introduced vul-
nerabilities, which are exploited by side-channel attacks and
attacks relying on speculative executions. Among the earliest
attacks discovered is a side-channel to information stored in
cache memories by observing memory access times, which in
turn reveal if an access (to an address) is a hit or a miss in cache.
An attacker can use this side-channel to observe the memory
addresses accessed by a victim and deduce additional informa-
tion such as keys used by encryption codes such as AES [1],
[2]. While there have been numerous vulnerabilities caused by
out-of-order and speculative execution, we will not address them
in this work and only focus on cache side-channel attacks such
as Evict &Time [3], Prime &Probe [3], [4], Flush &Reload [5].

We describe techniques to obfuscate cache side-channels by
causing false hits and false misses. A false hit may appear as if

Manuscript received 2 March 2023; revised 4 May 2023; accepted 18 June
2023. Date of publication 27 June 2023; date of current version 23 August
2023. This work was supported in part by the NSF under Grant 1828105.
(Corresponding Author: Fernando Mosquera.)

Fernando Mosquera and Krishna Kavi are with the Department of Computer
Science and Engineering, University of North Texas, Denton, TX 76205 USA
(e-mail: Fernando.Mosquera@my.unt.edu; krishna.kavi@unt.edu).

Gayatri Mehta is with the Department of Electrical Engineering, University
of North Texas, Denton, TX 76205 USA (e-mail: gayatri.mehta@unt.edu).

Lizy John is with the Department of Electrical and Computer Engineering,
University of Texas, Austin, TX 78712 USA (e-mail: ljohn@ece.utexas.edu).

Digital Object Identifier 10.1109/LCA.2023.3289710

the requested data is a hit in the primary (L1-D or L2) cache,
when the attacker is expecting a miss. This is achieved by using a
Guard Cache, which has similarities to Victim Caches and Miss
Caches [6]. Given that Guard Cache access times are comparable
to primary (L1-D or L2)) caches, the missing data found in the
Guard Cache appears as if it was actually in the primary cache.
Our Guard Cache behaves both as Victim and Miss Caches, and
the frequency with which it is used as a Victim or Miss cache
can be randomly varied. False misses are created by randomly
evicting data from primary cache memories.

The main contribution of our work is the different ways in
which cache access times are obfuscated which are itemized
below. While there are other randomization techniques proposed
to prevent side-channel attacks, they focused on randomiza-
tion of a single aspect of a system, such as cache addressing,
cache partitioning, life-times associated with cached data or
use of interfering threads to create random cache accesses.
A long-term observation can potentially reveal the patterns of
randomization used by these techniques. We randomize several
aspects of caches and the combinations themselves can be ran-
domly changed, making it significantly more difficult to observe
any meaningful patterns. The degree of randomization can also
be varied to change the level of obfuscation with concomitant
impact on performance.
� Not every data item evicted from the primary cache into

the Guard Cache. The probability with which an evicted
item is stored in the Guard cache can be varied, making
it difficult for the attacker to discover the existence or the
size of the the Guard Cache.

� Missing data is not always brought into the primary cache,
but stored in the Guard and no data is evicted from the
primary cache. The probability of using the Guard cache
as a victim cache or miss cache can be varied.

� The probability with which data in the primary caches are
evicted, causing false misses, can be varied. While higher
probability of evictions may offer greater obfuscation,
it may also cause higher performance losses. It may be
possible to incrementally raise the eviction probabilities
when an attack is detected.

In the rest of the paper we will describe our techniques,
demonstrate that they prevent some well-known attacks, and
evaluate the impact of our techniques on execution performance
as well as complexity of the additional hardware needed.

II. CREATING FALSE HITS AND FALSE MISSES

Cache side-channel attacks rely on measuring memory access
times to determine if an access to a specific cache line (or set) is a
hit or a miss: a miss causes longer access times. This observation

1556-6056 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of North Texas. Downloaded on August 24,2023 at 15:27:30 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6083-6147
https://orcid.org/0000-0002-0876-166X
https://orcid.org/0000-0001-7754-1874
https://orcid.org/0000-0002-8747-5214
mailto:Fernando.Mosquera@my.unt.edu
mailto:krishna.kavi@unt.edu
mailto:gayatri.mehta@unt.edu
mailto:ljohn@ece.utexas.edu

98 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 22, NO. 2, JULY-DECEMBER 2023

Fig. 1. Flowchart of the Guard Cache.

can be used by an attacker to obtain information regarding which
memory addresses a victim accessed, and possibly retrieve data
from those addresses. We use Guard Caches to create false hits.
Unlike other works that use victim caches either always, or only
to load speculative accesses as in ReViCe [7], we use Guard
Caches in different ways to create noisy side channels and make
it very difficult for the attacker to discover the existence of the
Guard Cache. Guard Caches can be used throughout the memory
hierarchy (L1-I, L1-D, L2 and LLC).

Fig. 1 shows the working of the Guard Cache in the memory
hierarchy. The arrow labeled “1” shows the case when the Guard
cache is not used. Arrow labeled “2” indicates when a data item
evicted from a Primary Cache (L1, L2 or LLC) is stored in
the Guard cache (used as a victim cache). Arrow labeled “3”
indicates the case when the missing data is brought into the
Guard cache (used as miss cache) and not into the Primary
Cache. We rely on random replacement policy when entries in
the Guard Cache need to be replaced.

We also create false misses by randomly evicting cache lines.
On every cache access we select a cache line randomly and evict
that cache line from the Primary Cache (but do not place it in the
Guard Cache): this is indicated by the arrow labeled “4” in Fig. 1.
The false misses will make attacks such as Evict &Time [3],
Prime &Probe [3], [4], Flush &Reload [5] more difficult since
the attacker will see many more misses than those caused by
victim accesses.

The use of the Guard Cache causing false hits and random
eviction causing false misses can be used to obfuscate side
channel attacks such as Prime & Probe, Flush & Reload or Evict
& Time. Since even the attacks that exploit speculative execution
rely on cache timing (primarily using Flush & Reload), our
technique can also prevent attacks such as Spectre. The left hand
side of Fig. 2 shows a successful attack using a proof-of-concept
code from [8]: characters of the secret key (”The Magic Words”)
are visible. The right hand side of the figure shows the case when
a Guard Cache is used to cause false hits, and it can be seen that
the attack is not successful (the characters of the secret are not
visible).

Speculative attacks are based on flushing array bounds vari-
ables from caches leading to delays in checking for out-of-
bounds accesses (since the array bounds variables are not in
the cache) and the attacker can rely on speculative execution to
bring large amounts of out-of-bounds data to the cache during

Fig. 2. Spectre Attack (a) Baseline Mode (b) With Guard Cache.

this delay. Guard Cache saves the flushed array bounds variable
making the bounds check very fast, thus minimizing any data
that is speculatively loaded into caches. The table at the bottom
of Fig. 2 shows that even a 1KiB Guard Cache at L1-D level
prevents Spectre attack. While 5% random evictions may not
completely prevent this attack, 10% or higher rates of evictions
prevent the attack. Random evictions are better suited for mit-
igating attacks that look for misses such as Prime and Probe,
since we create additional random misses, than those that look
for cache hits such as Spectre.

Since most cache side channel attacks are based on observing
cache hits or misses to specific cache lines, we feel that our
false hits and false misses obfuscate cache timing and prevent
or at least make it very difficult for most timing-based attacks to
succeed.

To make it more difficult for the attacker to discover the
presence of, or the size of Guard Cache, only a fraction of all
data evicted from primary cache is stored in Guard Cache. The
use of Guard Cache as a miss cache and random replacement
for evicting data from Guard Cache also makes it difficult to
discover the size of the Guard Cache.

III. RESULTS AND ANALYSIS

We evaluated our design using Gem5 [9] System-call Emula-
tion (SE) mode to accurately model a single high performance
X86 CPU core. The configuration uses 64KiB L1-D (8-Way),
32KiB L1-I (4-way) and 2MiB L2 (16-way) caches. We executed
several SPEC CPU2017 benchmarks in system call emulation
mode, fast forwarding for 1 billion instructions, then collecting
performance data for 500 million instructions. We evaluated the
benchmarks in baseline (no false hits or misses), only false hits
with different Guard Cache sizes, different frequency for using
the Guard Cache as a Victim Cache or as a Miss Cache, false
misses with different rates of random evictions, and with both
false hits and misses. We studied the use of false hits (using
Guard caches) and false misses at both L1-D and L2 levels.

Analysis of False Hits: In this section we evaluate the per-
formance losses due to the use of our Guard Caches for several
different SPEC 2017 benchmarks. We varied the Guard Cache

Authorized licensed use limited to: University of North Texas. Downloaded on August 24,2023 at 15:27:30 UTC from IEEE Xplore. Restrictions apply.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 22, NO. 2, JULY-DECEMBER 2023 99

Fig. 3. Guard Cache used as a victim cache and miss cache. X-axis designates the fraction of the evicted lines moved to Guard Cache (VC%) and the fraction of
demand misses brought to Guard Cache (MC%).

Fig. 4. Average performance loss due to random evictions with different
eviction frequencies.

sizes, 1 KB - 2 KB at L1-D level and 2KB-4 KB at L2 level.
We varied the fraction of data items evicted from the primary
cache (L1-D or L2) and moved to the Guard Cache: the first
number for each result in Fig. 3 shows this percentage. We also
varied how often the Guard Cache is used as a Miss Cache,
that is, on a demand miss, the missing data is brought in to the
Guard Cache and no data is evicted from the primary cache: the
second number for each result in Fig. 3 shows this percentage.
Thus, 90-10 shows the results when 90% of all evictions from the
primary cache are moved to the Guard cache, and 10% of demand
misses are brought into Guard cache. As can be seen, the results
in Fig. 3 show very minimal impact on performance (ranging
between −0.2% to 1.5% performance loss - negative numbers
indicate performance gains). LRU replacement policy for Guard
Cache used as a victim cache results in performance gains while
Random Replacement results in losses. The use of the Guard
Cache as a Miss Cache results in slightly higher performance
losses than when used as a Victim Cache. Guard Caches at L2,
with Miss Cache mode results in higher performance losses.

Analysis of False Misses: Next, we analyze the performance
impact of random evictions causing false misses. Fig. 4 shows
the performance losses for different SPEC 2017 benchmarks
for random eviction frequencies of 5, 10, 15%. On every cache
access that is a hit (either at L1-D or L2), we decide if a random
cache line should be evicted based on a selected frequency, and

Fig. 5. Performance Loss when random evictions are turned on only for a
fraction of execution.

evict a randomly selected cache line. Fig. 4 includes data for
both L1-D and L2 caches. As expected, higher rates of random
evictions cause higher performance losses, but may provide
greater obfuscation against side-channel attacks. Fig. 4 shows
that for some benchmarks (bwaves, imagick, roms, wrf), the
performance loss is more than 40% when the random eviction
rate is 5%, while the performance loss for other benchmarks
is substantially smaller. Application memory access behavior
causes different amounts of false misses, and different amounts
of performance loss. An application that exhibits higher cache
miss rates (for example, lbm, mcf) may not see significant impact
due to additional misses caused by random evictions, while
applications that exhibit very low cache miss rates (for example
x264, xz) may see higher impact on performance impact due to
random evictions. Also, since random evictions occur on cache
accesses that are hits, higher number of accesses to cache and
higher hits may also cause more evictions due to false misses. A
detailed application characteristics of SPEC 2017 can be found
in [10]. Additionally, an application only sees performance loss
if the randomly evicted data is accessed. Streaming applications
may not see the effects of false misses since the randomly evicted
data may not be accessed.

We also experimented by turning-on false misses only for a
fraction of the application execution time. For example, when
the false miss strategy is enabled 10% of the execution time
of an application, false misses are introduced for 50 million
instructions (out of 500 million instructions simulated in our
experiments). Fig. 5 shows the results. This data is to show
that if side-channel mitigation is turned on only when needed
(either when an attack is detected or when executing critical

Authorized licensed use limited to: University of North Texas. Downloaded on August 24,2023 at 15:27:30 UTC from IEEE Xplore. Restrictions apply.

100 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 22, NO. 2, JULY-DECEMBER 2023

code segments, such as critical kernel codes), the performance
loss may be acceptable.

Combined Analysis: In the final set of experiments, we used
both the Guard Cache (i.e., false hits) and random evictions (i.e.,
false misses). The performance losses are similar to those when
only false misses are in place. The performance impact of the
Guard Cache is negligible. The results are very similar to those
shown in Fig. 4.

IV. RELATED RESEARCH

Based on the access latency encountered by memory ac-
cesses (i.e., Load and Store instructions), an attacker can deduce
whether or not an access was a hit or a miss in cache. The
attacker either looking for misses to his/her data, indicating
that victims access evicted attacker data, or the attacker evicts
selected cache lines to see if the victim accessed the evicted
data [3], [4], [11], [12]. Mitigation techniques either disal-
low sharing of cache sets [13], [14], changing how addresses
are mapped to cache sets [15], [16], [17]. Other techniques
include Random Fill Cache Architecture [18] that replaces
demand fetch with random cache fill within a configurable
neighborhood window and Ghost Thread [19] that uses addi-
tional threads that injects random cache accesses in the same
address region than the protected process. ClepsydraCache [20]
assigns each cache entry a random time-to-live to reduce
conflicts on cache addresses. Our approach requires minimal
changes to cache designs or changes to the microarchitecture of
processors.

While past approaches have similarity to components of the
proposed mechanism, we combine hardware structures and ran-
domization policies in a manner that brings additional robustness
by making it significantly more difficult to observe any meaning-
ful timing patterns. We randomize several aspects of caches and
the combinations themselves can be randomly changed, making
it significantly more difficult to observe any meaningful patterns.
The ability to change the degree of randomization is also a useful
feature of our scheme.

V. CONCLUSION AND FUTURE WORK

Our focus in this contribution is the mitigation of timing based
side-channel attacks such as Prime&Probe, Flush&Reload and
Evict&Time. However, since even speculative execution attacks
(such as Spectre and its variants) rely on cache timings our
techniques should be useful against such attacks.

We proposed and evaluated techniques to obfuscate the timing
by introducing false hits and false misses. We use a small Guard
Cache as both a “Victim Cache” and a “Miss Cache”. We
collected performance data using different Guard Cache sizes;
1 K to 2 K at L1-D and 2K-4 K at L2 cache levels. We varied the
percentage of the time the Guard Cache is activated as a Miss
Cache and as a Victim Cache. We have seen negligible impact
on performance; but we have shown that the use of a Guard
Cache can prevent several side-channel attacks. Additionally,
we randomly evict data from primary cache, potentially causing
a cache miss when a hit is expected. We collected performance
data by varying the frequency of random evictions. As can be
expected, higher eviction frequencies lead to higher performance

losses, but potentially greater obfuscation of cache timing. We
believe that the obfuscations should be triggered only when
needed, either to protect critical sections or when an attack
is suspected or detected. And the run-time system should be
provided with a range of options to prevent or at least make it
very difficult for an attack to succeed.

ACKNOWLEDGMENT

The authors would like to thank Brandon Potter, Mike Igna-
towski of AMD for their suggestions.

REFERENCES

[1] D. J. Bernstein, “Cache-timing attacks on AES,” 2005. [Online].
Available: https://mimoza.marmara.edu.tr/∼msakalli/cse466_09/cache%
20timing-20050414.pdf

[2] N. Lawson, “Side-channel attacks on cryptographic software,” IEEE Secur.
Privacy, vol. 7, no. 6, pp. 65–68, Nov./Dec. 2009.

[3] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: The case of AES,” in Proc. Cryptographers’ Track RSA Conf.,
Springer, 2006, pp. 1–20.

[4] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level cache
side-channel attacks are practical,” in Proc. IEEE Symp. Secur. Privacy,
2015, pp. 605–622.

[5] Y. Yarom and K. Falkner, “Flush reload: A high resolution, low noise,
L3 cache side-channel attack,” in Proc. 23rd USENIX Secur. Symp., 2014,
pp. 719–732.

[6] N. P. Jouppi, “Improving direct-mapped cache performance by the addition
of a small fully-associative cache and prefetch buffers,” ACM SIGARCH
Comput. Archit. News, vol. 18, no. 2SI, pp. 364–373, 1990.

[7] S. Kim et al., “ReViCe: Reusing victim cache to prevent speculative cache
leakage,” in Proc. IEEE Secure Develop., 2020, pp. 96–107.

[8] G. Saileshwar and M. K. Qureshi, “Cleanupspec: An” undo” approach to
safe speculation,” in Proc. IEEE/ACM 52nd Annu. Int. Symp. Microarchi-
tecture, 2019, pp. 73–86.

[9] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit. News,
vol. 39, no. 2, pp. 1–7, Aug. 2011. [Online]. Available: https://doi.org/10.
1145/2024716.2024718

[10] A. Limaye and T. Adegbija, “A workload characterization of the SPEC
CPU2017 benchmark suite,” in Proc. IEEE Int. Symp. Perform. Anal. Syst.
Softw., 2018, pp. 149–158.

[11] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks: Au-
tomating attacks on inclusive last-level caches,” in Proc. 24th USENIX
Secur. Symp., 2015, pp. 897–912.

[12] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush flush: A fast and
stealthy cache attack,” in Proc. Int. Conf. Detection Intrusions Malware,
Vulnerability Assessment, Springer, 2016, pp. 279–299.

[13] V. Kiriansky, I. Lebedev, S. Amarasinghe, S. Devadas, and J. Emer,
“Dawg: A defense against cache timing attacks in speculative execution
processors,” in Proc. IEEE/ACM 51st Annu. Int. Symp. Microarchitecture,
2018, pp. 974–987.

[14] J. Kong, O. Aciicmez, J.-P. Seifert, and H. Zhou, “Deconstructing
new cache designs for thwarting software cache-based side channel at-
tacks,” in Proc. 2nd ACM Workshop Comput. Secur. Architectures, 2008,
pp. 25–34.

[15] F. Liu, H. Wu, K. Mai, and R. B. Lee, “Newcache: Secure cache archi-
tecture thwarting cache side-channel attacks,” IEEE Micro, vol. 36, no. 5,
pp. 8–16, Sep./Oct. 2016.

[16] M. K. Qureshi, “CEASER: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in Proc. IEEE/ACM 51st Annu. Int.
Symp. Microarchitecture, 2018, pp. 775–787.

[17] M. Werner, T. Unterluggauer, L. Giner, M. Schwarz, D. Gruss, and S.
Mangard, “ScatterCache: Thwarting cache attacks via cache set random-
ization,” in Proc. 28th USENIX Secur. Symp., 2019, pp. 675–692.

[18] F. Liu and R. B. Lee, “Random fill cache architecture,” in Proc. IEEE/ACM
47th Annu. Int. Symp. Microarchitecture, 2014, pp. 203–215.

[19] R. Brotzman, D. Zhang, M. Kandemir, and G. Tan, “Ghost thread: Effective
user-space cache side channel protection,” in Proc. 11th ACM Conf. Data
Appl. Secur. Privacy, 2021, pp. 233–244.

[20] J. P. Thoma et al., “Clepsydracache–preventing cache attacks with time-
based evictions,” 2021, arXiv:2104.11469.

Authorized licensed use limited to: University of North Texas. Downloaded on August 24,2023 at 15:27:30 UTC from IEEE Xplore. Restrictions apply.

https://mimoza.marmara.edu.tr/~msakalli/cse466_09/cache%20timing-20050414.pdf
https://mimoza.marmara.edu.tr/~msakalli/cse466_09/cache%20timing-20050414.pdf
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1145/2024716.2024718

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

