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Abstract—GPU acceleration has become central to achieving
exascale performance for high-performance computing (HPC)
applications. Even at this extreme scale, most scientific and
HPC-scale DNN applications under-utilize GPU resources. Exist-
ing NVIDIA GPU sharing mechanisms—namely, CUDA Multi-
Process Service (MPS)—can be used to increase utilization,
throughput, and energy efficiency. However, naively co-scheduling
workflows often does not yield optimal results. Scheduling mul-
tiple workloads with high resource utilization on the same set
of GPUs, for example, leads to performance degradation due to
resource contention. In short, GPU sharing must be granularity-
and interference-aware to maximize the benefit of co-scheduling.
We propose a scheduling approach that optimizes workflow
scheduling configurations to maximize given system metrics–i.e.,
throughput and energy efficiency; uses workload profiling data
to right-size GPU resources for combinations of HPC workflows;
and collocates workflows using existing concurrency/sharing
mechanisms. We show that choosing the right arrangement of
workflows to collocate can increase throughput by as much as
2x and energy efficiency by 1.6x using CUDA MPS on NVIDIA
A100X GPUs.

I. INTRODUCTION

The ever-growing demand for modern scientific calculations
is the underlying factor behind the race to build impres-
sive supercomputers and high performance computing (HPC)
systems [1]. Although traditionally, HPC setups have been
mainly driven by powerful CPU architectures, the inescapable
breakdown of Dennard scaling has fueled the interest in
alternate solutions. Initially, this interest was mainly devoted to
multicore processes [2] and more recently to the development
of different types of accelerators [3]. While there is a ten-
dency to accelerator diversification pointing to a heterogeneous
accelerator era in HPC [4], GPUs are still the dominant
choice [5]. Therefore, unless there is a significant disruption
in the accelerator market, it is essential to find best ways
to run HPC workloads on GPUs. In this work, we propose
a scheduling approach that incorporates profiling data and
GPU-sharing capabilities into workflow schedulers. The key
contributions of our work presented here are:

• Evaluation framework for workflow utilization analysis
and a scheduling approach that incorporates granularity-
and interference-awareness using currently available GPU
sharing mechanisms.

• An approach for right-sizing GPU resource allocation
using existing MPS sharing mechanism.

• A repository of bare-metal HPC benchmarks that can be
run on small prototype HPC clusters in reasonable time-

frames and incorporates easy scaling of resources and
problem size.

The key takeaways from our analysis that we discuss in detail
in Section V are:

• Sharing GPUs between low-utilization applications min-
imizes interference and yields greater benefits to both
system throughput and energy efficiency.

• The relative priority of specific metrics like system
throughput and energy efficiency determines the optimal
scheduling configuration of workflow tasks.

• Throughput and energy efficiency are impacted differ-
ently by the total number of MPS clients scheduled
concurrently.

The rest of the paper is organized as follows: In section II we
provide relevant background about NVIDIA GPU architecture,
which is the accelerator used in our experiments. We also
describe the various concurrency mechanisms in these GPUs
as well as the intro to GPU utilization and Warp occupancy
measurements using the GPUs NVIDIA toolchain.

II. BACKGROUND

A. GPU Architecture Overview

In this work, we focus exclusively on NVIDIA GPUs,
leaving evaluation on AMD and other architectures for future
work. The architecture of NVIDIA GPUs is built around
the Single-Instruction, Multiple-Thread paradigm, which takes
advantage of thread-level parallelism through simultaneous
hardware multi-threading. The streaming multiprocessor (SM)
creates, manages, schedules, and executes threads. Threads are
partitioned by SMs into warps, which execute one common
instruction at a time for all threads in the warp. Because
the individual threads are still free to branch and execute
independently, full efficiency is only realized when all threads
of a warp agree on their execution path. [6]

B. GPU Concurrency Mechanisms

NVIDIA provides multiple off-the-shelf mechanisms for
overlapping kernels from different processes on the same GPU.
By default, shared GPU access is provided through a time-
sliced scheduler. In time-slicing, work from queues belonging
to different kernels do not execute concurrently. Instead, they
must be swapped in and out of the GPU as each process
is scheduled. Additional concurrency mechanisms have been
designed to eliminate the overhead of context-switching when
sharing GPUs between multiple processes (or kernels).
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CUDA Streams [7] is a feature of the CUDA programming
model that provides multiple streams of execution within a
single process. Different work from an application can be
submitted to independent work queues that are processed
concurrently by the GPU. Because streams are part of the
same application, they share the same address space and there
is no SM performance isolation.

CUDA Multi-Process Service (MPS) [8] allows multiple
processes to share compute resources on a single GPU,
whether they are cooperative MPI processes or processes from
completely separate applications. MPS consists of a control
daemon, a server process, and a client runtime for each
concurrent process. While this mechanism provides memory
protections and logical SM partitions between processes—for
up to 48 clients—memory bandwidth, scheduling hardware,
caches, and memory capacity are shared equally between all
client processes.

CUDA Multi-Instance GPU (MIG) [9] is a new feature
on NVIDIA GPUs starting with the Ampere architecture that
enables hardware partitioning of GPUs into up to 7 separate
instances. Each MIG instance has a separate and isolated path
through the entire memory system allowing for complete par-
titioning of memory and compute resources between separate
applications. MIG is less flexible than MPS in that it requires
a GPU to be idle before the partition configurations can be
changed. However, MIG offers much better isolation than
MPS.

Fine-grained kernel scheduling. Recent works on fine-
grained scheduling [10], [11] have proposed frameworks using
the streams sharing mechanism to schedule kernels from mul-
tiple applications without context switching overhead. These
proposals are geared towards deep learning workloads that
switch frequently between compute and memory kernels,
leading to increased idle time for GPU resources. The primary
aim of these solutions is to maintain low latency for priority
applications and address long tail latencies caused by MPS.

C. GPU Utilization and Warp Occupancy

GPU compute utilization is determined not only by the
number of active SMs but also by the warp occupancy of
SMs during workload execution as well as the percentage
of execution time where the GPU is idle. Occupancy is
calculated at the kernel level of execution. Each workflow task
is comprised of multiple kernels. Theoretical occupancy—
the upper bound of active warps in an SM—depends on both
kernel launch configuration and device capabilities. Limiting
factors for theoretical occupancy include total warps, blocks,

registers, and shared memory per SM. Achieved occupancy—
calculated kernel by kernel—describes the actual average per-
centage of available resources utilized during kernel execution
and depends on factors like load balancing and number of
blocks launched by the kernel. [6]

III. MOTIVATION

Even in top supercomputers, most GPU-accelerated appli-
cations still greatly under-utilize the available GPU resources
[12]. On the client side, applications are often optimized for
minimal latency rather than GPU utilization. At the same time,
the infrastructure provider is motivated to maximize the re-
source utilization of its hardware to increase overall throughput
and energy efficiency. Table I shows both the theoretical and
achieved occupancy for selected benchmark test problems.
Certain applications like Lammps, which utilizes over 90%
of the maximum warps available to it, are unsuited to GPU
sharing with MPS because the resulting resource contention
will likely degrade overall performance. Instead, other sharing
strategies like the one proposed by Orion [11] work better.

A. HPC Workflows

Workload analysis from the National Energy Research Sci-
entific Computing Center (NERSC) suggests that although
the programming codes used in these HPC calculations are
widely diversified, they tend to represent a reduced number
of algorithms [13]. On the other hand, although a significant
portion of these codes are already running on GPUs, there
are still over 50% of these applications that need perfor-
mance optimization in either moderate or massive ways. Yet
performance is not the only concern, energy consumption is
a factor as well [14]. Although GPUs are performance-per
watt efficient, given their increasing adoption in HPC systems,
it is still imperative to optimize the energy consumption of
GPUs alongside their performance [15]. GPU sharing is one
way to increase performance and improve energy efficiency.
HPC workflows typically consist of multiple sequential and
concurrent tasks. Such is the case for several simulation tasks
in condense matter or electronic structure calculations (e.g.,
Lammps [16], Berkeley GW Epsilon [17]) or deep learning
workloads in general [18]. As introduced in Section II, MPS
allows NVIDIA GPUs to be shared by tasks from separate
workflows. Figure 1 shows the change in task throughput
as the MPS SM partition is increased from 10% to 100%,
demonstrating GPU under-utilization for common workflows
benchmarks (i.e., BerkeleyGW-Epsilon [17], Kripke [19], and
WarpX [20]). Throughput increases non-linearly in all three

Benchmark Average Achieved Average Theoretical % of Theoretical
Warp Occupancy Warp Occupancy Achieved

AthenaPK 13.3% 51.32% 25.92%
BerkeleyGW-Epsilon 23.97% 41.67% 57.52%
Cholla-Gravity 31.45% 37.5% 83.87%
Kripke 32.61% 43.63% 74.74%
Cholla-MHD 17.72% 19.32% 91.72%
LAMMPS 32.7% 35.0% 93.43%
WarpX 24.81% 92.55% 26.81%

TABLE I: Warp occupancy metrics for each benchmark with 2 GPUs and 1x problem size
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(a) BerkeleyGW-Epsilon Throughput (b) Kripke Throughput (c) WarpX Throughput

Fig. 1: Change in throughput for three benchmarks as MPS SM partition percentage increases

plots, which suggests decreasing benefit from larger MPS
partitions. The green circle in Figure 1a highlights the MPS
partition sizes that will yield the best throughput for the
BerkeleyGW-Epsilon benchmark, and the red circle highlights
partition sizes that will negatively impact workload perfor-
mance. Figure 1b shows a similar non-linear shape for all
input scales for the Kripke benchmark. Finally, we can see
that the scale of the input influences the shape of the graph:
Larger problem sizes in Figure 1c show more linearity in
the partition size-throughput relationship, suggesting larger
partition sizes are more beneficial. In summary, the granularity
of SM partition size impacts the potential benefit of workflow
multi-tenancy using MPS.

IV. OUR SCHEDULING APPROACH

Our scheduling approach takes into account the GPU mem-
ory and compute utilization as well as the power profile of each
workload in a workflow and collocates workflows to maximize
either throughput or energy efficiency depending on system
requirements.

A. Workload Profiling and Evaluation Framework

The first step in our interference- and granularity-aware
scheduling is offline profiling of individual workflow tasks.
The profiling data gathered in this step is used to predict
interference between workflows at the level of a complete
workflow task. While other works propose interference-aware
collocation at the kernel level of granularity [10], [11], our ap-
proach is designed to use off-the-shelf scheduling mechanisms
with minimal profiling overhead. We collect GPU compute,
memory, and memory bandwidth utilization as well as average
power and GPU idle time using the NVIDIA Nsight Systems
tool [21] and NVIDIA System Management Interface (SMI)
GPU metric query utility. Both of these tools add minimal
overhead, and therefore offline profiling only requires the
time it takes to run a workflow task. Additionally, because
scaling is well-understood for a vast majority of HPC codes,
it is possible to infer the utilization characteristics of larger
problem sizes from profiling information gathered with smaller
workloads. For all workloads we evaluated, the scaling we
observed aligned with previously reported data.

B. Optimized Workflow Collocation

Our scheduling approach assumes a pre-existing queue of
workflows to be scheduled. The suite of HPC benchmark
codes we compiled and evaluated are often used as tasks in
larger simulation workflows, in which case an entire queue
of workflow tasks as well as data dependencies between
them is known before workflow execution. Using the resource
utilization information collected in the profiling step, we select
groups of queued workflows to co-schedule on available GPUs
based on (1) predicted interference and (2) evaluation metric
priority (i.e., optimize throughput or energy). Two workflows
are predicted to interfere if they have combined average SM
utilization over 100%, combined average memory bandwidth
utilization over 100%, or combined maximum memory utiliza-
tion above the device memory capacity. In general, the co-
scheduling decision is based on the following criteria:

1) Workflows with the lowest compute utilization are prior-
itized for co-scheduling over high-utilization workflows.

2) Total compute utilization is kept under 100% for all
scheduled workflows combined.

3) Combined maximum memory utilization must be kept
under GPU device memory capacity. Because scheduling
takes place at the level of workflow tasks and not GPU
kernel, we take into account the maximum memory
requirement for each task.

4) If energy efficiency is prioritized, the maximum number
of MPS clients available are used. Otherwise, if through-
put is prioritized, the number of clients is limited to 2.

C. Evaluation Metrics

One advantage of this approach to co-scheduling is that we
can prioritize different metrics depending on the requirements
of the system. In our evaluation—Section V, we show the
trade-off between system throughput and total energy effi-
ciency. Energy efficiency is measured by the reduction in total
GPU energy with MPS over sequential scheduling—i.e., jobs
are scheduled individually on GPUs in queue order with no
parallel overlap. Throughput is defined as the number of tasks
completed in a given time and is also calculated relative to
sequential scheduling. Finally, a product metric gives priority
to either throughput or energy efficiency similar to the Energy-
Delay product used in the computer architecture discipline.

1632



Benchmark Problem Max Memory Avg Memory BW Avg SM Avg Power Energy
Size (MiB) Utilization (%) Utilization (%) (W) (J)

AthenaPK 1x 563 0.01 7.54 90.09 234.24
4x 2093 1.78 30.29 88.86 5407.36

BerkeleyGW- 1x 30157 2.63 9.04 94.41 319448.05Epsilon

Cholla-Gravity 1x 615 0.51 13.6 88.43 309.51
4x 5063 4.45 45.16 138.75 20285.8

Kripke 1x 621 0.27 26.56 123.3 382.24
4x 5481 3.78 63.21 148.16 12467.54

Cholla-MHD 1x 2175 31.01 72.58 234.24 9849.99
4x 6753 41.29 88.58 261.64 127249.21

LAMMPS 1x 2321 4.24 63.0 196.79 580.54
4x 4977 7.13 96.28 258.38 29390.48

WarpX 1x 61453 0.04 33.29 117.14 2588.8
4x 61453 19.75 77.28 244.32 85756.49

TABLE II: Utilization statistics for selected workflows

For example, while a [throughput×efficiency] product gives
equal weight to both metrics, if throughput is more important
than efficiency, a [throughput×throughput×efficiency] product
can be used to identify workflow co-scheduling configurations
that are weighted toward throughput. Often configurations
optimized for one metric will be less optimal for the other,
necessitating such a product metric to identify the best con-
figuration for given system requirements.

V. EVALUATION

For our analysis, we selected 7 representative HPC work-
loads and tested the effect of various collocation decisions on
system throughput and energy. Common to many of the codes
we tested is the Kokkos portability library [22], which provides
an architecture-agnostic API to adapt HPC application code to
various parallel backends, such as OpenMP, CUDA, and HIP.
The basic concepts of Kokkos are described in [23]. Even
though multiple benchmarks use this library, the utilization
characteristics of the individual applications still vary widely.
Table II shows the utilization and power profile for each
benchmark task for multiple problem sizes. Because many of
our benchmarks are physics simulation codes, problem size is
usually determined by the number of atoms in the simulation
input.

A. Workflow Benchmarks

The benchmarks we selected are drawn from commonly
used HPC workloads. We used many exascale benchmarks
tested in [24] as well as codes drawn from the NERSC-10
suite [25].

AthenaPK is a flexible framework for astrophysical fluid dy-
namics simulations available on GitHub [26]. This code com-
bines the hydrodynamics and magnetohydrodynamics solvers
of Athena++ [27] with the block-structured adaptive mesh
refinement framework of Parthenon [28] and the performance
portability of Kokkos. Our benchmark uses three-dimensional
hydrolinear wave convergence as a test problem.

BerkeleyGW is a widely-used code in simulation workflows
for predicting the optical properties of materials and nanostruc-
ture [17]. The Epsilon module computes a material’s dielectric
function via three main computational kernels. Although we
didn’t investigate scaling with this benchmark due to resource
limitations of our evaluation environment, the computational

complexity of the Epsilon module for this test problem in-
creases O(N4) with the number of atoms in the input.

Cholla (Computational Hydrodynamics on ParaLLel Ar-
chitectures) is a GPU-native three-dimensional astrophysical
hydrodynamics code [29]. Cholla demonstrates nearly ideal
scaling to multiple GPUs using MPI. Cholla-MHD adapts the
base hydrodynamics code to magnetohydrodynamics (MHD)
[30]. For our benchmarks, we selected two test problems:
three-dimensional gravitational collapse due to spherical over-
density [31] and three-dimensional Advecting Field Loop [32].

Kripke is a mini-app benchmark produced and maintained
by Lawrence Livermore National Laboratory (LLNL) that also
serves as a proxy app for the LLNL ARDRA neutral particle
transport code [19]. The Kripke code solves the Discrete
Ordinance and Diamond Difference discretized steady-state
linear Boltzmann equation, but more importantly provides
a test environment to investigate how different data layouts
affect instruction, thread, and task level parallelism.

LAMMPS is a high-performance molecular dynamics simu-
lation code [16] and is the performance-critical component of
Parsplice [33] workflows typically used to simulate defects in
energy-relevant materials.

WarpX is an electromagnetic and electrostatic Particle-
In-Cell code used in the development of advanced particle
accelerators [20]. The test problem used in our evaluation
models a beam-driven plasma-wakefield accelerator (PWFA)
[34].

B. Workflow Combinations

We evaluated our approach on a number of workflow com-
binations described in Table III. These combinations feature
workloads with a variety of utilization profiles and energy
requirements. Figure 2 shows the overall throughput, energy
efficiency, and power capping (defined in Section V-C) for both
MPS and time-slicing sharing mechanisms. The effectiveness
of GPU sharing with MPS for both throughput and energy
efficiency varied widely depending on the task compositions
of the workflows being co-scheduled. In the combinations we
tested, the increase in throughput from GPU sharing using
MPS ranged from 0% to 147%. Energy efficiency improve-
ment with MPS similarly ranged from a 2% decrease to a
109% increase. It is clear, therefore, that the benefit of co-
scheduling workflows on the same set of GPUs depends on
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Workflow 1 Workflow 2 Workflow 3 Workflow 4
Comb.

#
Benchmark Problem

Size
#

Iter.
Benchmark Problem

Size
#

Iter.
Benchmark Problem

Size
#

Iter.
Benchmark Problem

Size
#

Iter.
1 AthenaPK 4x 5 LAMMPS 4x 3
2 Epsilon 1x 1 Athena 8x 1 Athena 4x 14
3 Kripke 4x 11 WarpX 2x 8
4 Kripke 4x 13 WarpX 4x 2
5 Epsilon 1x 1 MHD 4x 2
6 Gravity 4x 4 Kripke 2x 48
7 MHD 4x 2 LAMMPS 4x 8
8 Athena 1x 300 Gravity 1x 50 Athena 1x 300 Gravity 1x 50
9 Athena 1x 300 Gravity 1x 50

10 MHD 4x 1 LAMMPS 4x 4 MHD 4x 1 LAMMPS 4x 4

TABLE III: Workflow combinations

(1) the resource utilization profile of the workflows and (2)
whether energy efficiency or throughput is prioritized as a
scheduling consideration.

C. Understanding Impact of Power Capping

Software (SW) power capping occurs when the power draw
of a GPU reaches a set maximum threshold. In the case
of the NVIDIA A100X GPUs used in our evaluation, that
value is 300 watts. The power capping data in Figure 3
shows the relative increase in software power capping for MPS
and time-slicing over sequential scheduling for the workflow
combinations listed in Table III. GPU power draw depends on
a number of factors—such as average GPU clock frequency—
but closely correlates with GPU utilization. In other words,
the instantaneous power draw will be higher whenever more
SMs are active. By definition, SW power capping indicates the
SW Power Scaling algorithm is reducing the clock frequency
below the requested or default clock frequency [35]. Because
clock frequency is reduced, there is potential for throughput to
decrease when power capping occurs frequently during work-
flow execution. Our experiments, however, show that there is
no direct correlation between workflow throughput and clock

throttling due to SW power capping. Workflow Combination 6
in Figure 3, for example, showed the highest differential in the
percentage of execution time where power capping was active
for MPS compared to sequential scheduling. At the same
time, the throughput for this combination was not significantly
lower than other combinations, suggesting that throughput and
energy efficiency are influenced more by other factors like
contention for GPU compute resources. It is interesting to note
that while power capping limits overall power consumption,
the resulting increase in task latency from clock throttling
seems to cancel out any energy efficiency benefits. A more
comprehensive study of the energy effects of power capping
(with varying power thresholds) is left to future work.

D. Impact of Cardinality and Scheduling Configuration for
Workflow Combinations

In this section we discuss the effect of both cardinality and
scheduling configuration on the metrics of interest. Cardinal-
ity refers to the number of concurrent workflows scheduled
simultaneously, while scheduling configuration more broadly
refers to both the number of sequential tasks in each workflow
as well as the number of concurrent workflows scheduled.

Fig. 2: Throughput and energy efficiency for workflow combinations 1-10
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Fig. 3: Percentage of time spent throttling GPU clock fre-
quency due to SW power capping for workflow combinations
1-10

Often workflows consist of multiple independent tasks that
can be launched either sequentially or in parallel, which gives
freedom in determining the exact scheduling configuration
of all tasks (e.g., whether to treat them as single sequential
workflows or split them into multiple parallel workflows.

Cardinality. We evaluated the effect of cardinality using
workflows comprised of LAMMPS and AthenaPK tasks.
LAMMPS is the most resource-intensive workload we tested
and AthenaPK is the least. We varied the number of MPS
clients while increasing the total number of workloads being
scheduled. Figure 4 shows the change in overall throughput
and efficiency for the entire set of workflows for each client
total over sequential scheduling when using MPS. In the set
labels (x-axis), the first number identifies how many sequential
tasks were launched for each workflow while the second
number refers to the number of workflows launched in parallel.
Because MPS outperforms time-slicing in every instance, we
omit the time-slicing data here. In these experiments, we
ran workflows consisting of multiple instances of the same
application to evaluate the effect of scheduling configuration
for a high- and low-utilization workflow. For AthenaPK, the
low-utilization workflow, as we increased the number of clients
launched on the same GPU, throughput dropped considerably
from the 2x configuration to the 8x configuration and then
changed relatively little as we added additional clients. At the
same time, energy efficiency continued to rise as we continued
adding clients up to the 48-client maximum. These results are
intuitive because throughput drops as the overall utilization
and interference increase and energy efficiency increases as
we overlap more work. Some key takeaways here are (1) both
the high- and low-utilization workflows show similar trends
regarding these metrics, (2) the impact of cardinality is greater
for the low-utilization workflow, and (3) the throughput benefit
of collocation with MPS drops off sharply as we increase
cardinality. The product metric in this case simply shows the
relative dominance of throughput vs energy efficiency as we
add clients. In both Figure 4a and Figure 4b, throughput drops
by a greater degree than the increase in energy efficiency,

which is reflected in the product of the two. Depending on
which metric is more important, workflows can be scheduled
using different cardinality. For example, if throughput is se-
lected as the most important measure, the scheduling algorithm
should avoid configurations with cardinality greater than 2x2
or 2x4 for these workflows. If energy efficiency is more salient,
on the other hand, higher cardinality is more beneficial. The
product metric shown in Figure 4 captures this relationship,
and depending on the relative priority of throughput and
efficiency (or potentially another measure) different product
metrics can be used.

Scheduling Configuration. We tested the impact of schedul-
ing configuration again using workflows comprised of
LAMMPS and AthenaPK tasks. I this case, the total number
of workflow tasks remains constant for each workflow set.
Similar to Figure 4, Figure 5 shows the change in over-
all throughput and energy efficiency for the entire set of
workflows for each configuration over sequential scheduling
when using MPS. Again, the first number in the configuration
label refers to the number of sequential tasks launched by a
workflow, and the second refers to the number of workflows
launched concurrently. While the results in Figure 4 are
intuitive, those in Figure 5 are more surprising. For a workflow
consisting of low-utilization tasks like AthenaPK, minimizing
the number of concurrent workflows is more beneficial for
throughput even if there are enough GPU resources available
to schedule more concurrent MPS clients. Holding all other
variables equal, scheduling fewer, longer-running workflows
yields the most benefit to throughput, while maximizing over-
subscription of GPUs yields slightly more benefit to energy
efficiency. In the case of AthenaPK, SM utilization is low
enough that launching 48 clients does not generate interfer-
ence. LAMMPS workflows, on the other hand, do not benefit
from MPS co-scheduling regardless of the workflow schedul-
ing configuration. The increase in throughput and efficiency
peak at around 6% improvement over sequential scheduling,
which suggests that workflows involving only LAMMPS tasks
are not optimal to be co-scheduled with other LAMMPS
tasks. Energy efficiency improvement for MPS scheduling
essentially remains constant for both workflows regardless of
configuration, which shows that this metric depends on the
total number of tasks being scheduled. In general, the more
tasks being collocated via MPS sharing, the greater the overall
energy efficiency over sequential scheduling.

VI. CONCLUSIONS AND RECOMMENDATIONS

In this work, we evaluated a granularity- and interference-
aware scheduling approach that uses MPS to collocate (or
co-schedule) HPC workflows on the same set of GPUs. We
compiled a set of scientific HPC benchmarks comprised of
commonly used simulation codes and full-scale test problems.
Using these benchmarks, we evaluated the effect of co-
scheduling on both system throughput and energy efficiency.
Our evaluation demonstrates both that the granularity of the
MPS partition determines the benefit of GPU sharing and that
sharing must be interference-aware to maximize benefit.
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(a) AthenaPK (b) LAMMPS

Fig. 4: Throughput, energy efficiency, and efficiency-throughput product for AthenaPK and LAMMPS workflow combinations
with increasing cardinality (i.e., the number of concurrent workflows scheduled simultaneously)

(a) AthenaPK (b) LAMMPS

Fig. 5: Throughput, energy efficiency, and efficiency-throughput product for different configurations of AthenaPK and LAMMPS
workflow combinations

We make the following recommendations for programmers
interested in finding optimal scheduling configurations for
HPC workflow multi-tenancy with MPS:

1) If throughput is most important, schedule low-utilization
workflows in groups of 2-3 and avoid collocating high-
utilization workflows together. Needless to say, if the
latency of any individual workflow is most important
then one should carefully evaluate the cost and benefit
of concurrent execution.

2) If energy efficiency is most important, schedule lowest-
utilization workflows first and increase cardinality until
the decrease in throughput is intolerable.

3) Where possible, pair workflows with opposing power
profiles (i.e., low average power with high average
power). Though factors like resource contention have
more impact on throughput and energy efficiency, min-
imizing power drawn still boosts GPU performance.

Future Work: This work is limited in scope and can be
expanded to build a comprehensive scheduling framework
that incorporates the key takeaways from our results. We
are currently investigating a model that takes into account

different types of GPU interference between workflows—e.g.,
compute, memory, memory bandwidth—and recommends the
best workflow combinations to optimize either throughput or
energy efficiency. We intend to incorporate into this model a
measure of computational kernel similarity between workflows
to minimize offline analysis of all possible combinations.
Additionally, we are exploring the applicability of our results
to AMD GPU architectures, and investigating other sharing
mechanisms in addition to MPS—e.g., Orion and other fine-
grained kernel scheduling mechanisms [10], [11].
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