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ABSTRACT
For efficient data transfer, modern machine learning accelerators

use tiered memory systems. To buffer frequently accessed data,
these systems typically include a small, high-speed on-chip mem-
ory implemented either as a software-managed scratchpad or a
hardware-managed cache. Scratchpad memory provides a broad de-
sign space and greater flexibility for developers. Hardware-managed
cache offers a more standardized solution, as cache automates the
data transfer. Although there is extensive research on the design
space exploration of scratchpad-based accelerators, the design space
of cache-based accelerators has distinct characteristics and remains
largely unexplored. Choosing an efficient design space configura-
tion can yield significant performance improvements compared to
a suboptimal configuration in cache-based accelerators. A frame-
work to assist in guiding the design space search for cache-based
accelerators is highly desirable.

We present CADOSys, a system that efficiently explores the de-
sign space of cache-based accelerators given the ML model and
cache microarchitecture specifications. e.g., cache capacity. CA-
DOSys begins by analyzing the data access patterns and quantify-
ing the data locality of the ML model. It then utilizes a depth-first
search (DFS) algorithm that considers the data locality across all
layers of the ML model to determine the design space choice for
each layer. We evaluate CADOSys using convolutional neural net-
works (CNNs), deep learning recommendation models (DLRMs),
and transformers. The results demonstrate that CADOSys achieves
up to 9.12× speedup, with an average speedup of 1.82× compared
to state-of-the-art design space optimization methods.

1 INTRODUCTION
Spatial accelerators, such as Google’s TPU [11, 12] and Meta’s

MTIA [5], are increasingly adopted in machine learning (ML) sys-
tems due to their ability to efficiently exploit parallelism and en-
hance data locality [3, 30]. As shown in Fig. 1, modern spatial
accelerators have customized compute units inside each Process-
ing Engine (PE) to provide highly parallel computations [22, 28].
Beyond computation, the memory subsystem plays a critical role
in spatial accelerators, as a single memory access can consume up
to 200 times more energy than a compute operation [20]. Accelera-
tors are equipped with hierarchical memory subsystems to connect
high throughput computing units with low-speed off-chip mem-
ory. To mitigate the memory access latency gap between off-chip
memory and Local Mem, modern accelerators employ a last-level
scratchpad or last-level-cache (LLC) shared across PEs. For example,
Google’s TPU used local (scratchpad) memory and Meta’s MTIA
used a cache as their last-level on-chip memory [5, 11, 12]. The
design space of scratchpad-based accelerators has been extensively
explored in prior research [6, 7, 9, 13, 34], whereas the design space
of cache-based accelerators remains relatively underexplored.
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Figure 1: Overall architecture of spatial ML accelerators.

Scratchpad memory is commonly used in accelerators for its
flexibility through software-managed control. Programmers can de-
termine when to load and evict data from the scratchpad. However,
this flexibility requires exploring a vast design space to achieve glob-
ally optimal performance. Previous studies have focused on intro-
ducing constraints to narrow the design space [6, 7, 9, 10, 13, 32, 34].
However, even within a constrained design space (which may yield
sub-optimal solutions), the search process can still take days [34]. In-
stead of relying on scratchpad memory, state-of-the-art accelerators
configure the last-level shared on-chip memory as a cache [5, 15],
as the cache automates data transfer between off-chip memory and
computing units.

The use of caches simplifies the integration of unified compiler
and ISA support for hardware-managed cache-based accelerators
alongside host CPUs, making it a more standardized solution for
datacenter ML accelerators [5]. For instance, benefiting from the
compatibility of caches, Meta’s MTIA leverages existing software
support, such as PyTorch, and achieves up to 1.5× energy savings
over GPUs.

While caches enhance programmability and compatibil-
ity, fully realizing the potential of emerging accelerators
necessitates thorough exploration of cache-based accelerator
design spaces. Optimizing performance requires careful arrange-
ment of computation sequences, such as loop ordering and tiling,
to align with the cache architecture. For example, we find that the
performance of a cache-based accelerator can vary significantly
depending on the ML dataflow used (the most important aspect of
the design space in cache-based accelerators, more details in § 2.2).
As shown in Fig. 2, we employ three kinds of dataflow [3, 28] in the
spatial accelerator with different cache configurations. In the case of
layer Conv1, the WS (weight stationary) dataflow outperforms the
IS (input stationary) dataflow and OS (output stationary) dataflow
when using a cache with infinite capacity as it maximizes the PE
data reuse1. However, when using a 512KB LRU (Least Recently
Used) cache, theWS dataflow underperforms compared to the other
two dataflows, as IS provides better data locality with limited cache

1Prior design space exploration frameworks [3, 25, 28] will pick the WS dataflow when
using a cache with infinite capacity since WS achieves the maximum PE data reuse.
We use the same setup to conduct all experiments in this paper, more details in the
evaluation section (§ 6.1).
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Figure 2: Comparison between different dataflows on Conv1
of ResNet18. The bottom (no pattern) indicates computation
time and the top (\\ pattern) indicates stall time due to cache
misses. Frameworks optimized for scratchpad-based acceler-
ators would consider WS as the optimal dataflow since WS
achieves the maximum data reuse (the same as infinite cache
capacity). However, when using a cache-based accelerator, IS
or OS could be the optimal.

capacity. Cache specifications have a significant impact on over-
all performance. Thus, a design space exploration framework that
takes cache specifications into account is highly desirable.

In this paper, we present CADOSys, a system that automatically
explores the design space of cache-based accelerators, using ML
workloads and cache microarchitecture specifications as inputs. To
be more specific, our contributions include:

• We characterize and quantify the cache capacity requirement
within each layer to achieve different levels of data locality,
considering data access patterns (§ 4).

• CADOSys uses DFS to search the design space choice of
each layer, prioritizing inter- and intra-layer locality with
constraints on actual cache capacity (§ 5.1).

• Cache also introduces additional factors, e.g., batch size and
PE array size into the performance model into its design
space search (§ 5.2).

• We evaluate CADOSys using 6 ML models, including CNNs,
DLRMs, and transformers. Results show thatCADOSys achieves
up to 9.12× and an average of 1.82× speedups compared
to existing design space selection methods, specifically for
scratchpad-based accelerators2. CADOSys only has ∼3% per-
formance loss compared with brute-force search but saves
hours or even days of simulation time (§ 6).

2 RELATEDWORK AND MOTIVATION
This section first includes an overview of the ML accelerator

scalability with the behind design search space (§ 2.1). We then
discuss the design space of cache-based spatial accelerators and
how it is distinguished from scratchpad-based accelerators (§ 2.2),
which necessitates a cache-aware design space search model (§ 2.3).

2.1 Design Space of Spatial Accelerators
With the emergence of massive neural networks, scalability is an

important metric for evaluating the performance of ML accelerators.
Data reuse is necessary to mapMLworkloads to spatial accelerators
with a fixed amount of resources. To improve data reuse, modern
2This paper does not aim to compare cache-based accelerators with scratchpad-based
accelerators. Instead, the primary contribution is a framework for design space explo-
ration in cache-based accelerators, since cache-based accelerators are already commer-
cially emerging.
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Figure 3: Mapping one convolution layer to a spatial acceler-
ator with 32*32 PE array size using the WS dataflow.

spatial accelerators use various loop ordering and tiling strategies
to improve data locality (§ 2.1.1). To further enhance performance
and minimize the overhead of data movement between on-chip and
off-chip memory, an efficient scheme for overlapping data trans-
fer and computation in a pipeline is essential (§ 2.1.2). In modern
accelerators, the key focus areas for design space exploration in-
clude analyzing data reuse patterns and optimizing the data transfer
and compute pipeline. This presents a significant challenge, as the
search space is high-dimensional and NP-hard (§ 2.1.3).

2.1.1 Loop Ordering and Tiling. To maximize data reuse, acceler-
ators utilize efficient loop ordering and tiling strategies to map
ML workloads onto spatial accelerators. Previous works categorize
these loop ordering and tiling patterns into three primary types
of dataflows [3, 20, 28]: Output Stationary (OS), Weight Station-
ary (WS), and Input Stationary (IS). The stationarity of a specific
dataflow is defined by identifying the tensor whose elements re-
main in a fixed (stationary) position for the longest period during
processing within PEs. There are other types of dataflow, e.g., row
stationary dataflow [3], however, such dataflow requires additional
hardware support.

Fig. 3 illustrates how to map one convolution layer (converted
into matrix-to-matrix multiplication) onto a (32 ∗ 32) spatial ac-
celerator using the WS dataflow. In this configuration, a (32 ∗ 32)
portion of the (𝐾∗𝑁 ) filter remains stationary on the PE array, while
the complete input feature map is successively passed through the
(32 ∗ 32) array across multiple iterations. During each iteration,
the PE array performs a matrix-to-matrix multiplication of size
(𝑀 ∗ 32) and (32 ∗ 32) to generate (32 ∗ 32) output feature maps. The
entire dataflow will continue until the entire (𝐾 ∗𝑁 ) filter has been
processed. In WS, each element of the filter is loaded into the PE
array only once, whereas each element of the input feature map
typically needs to be loaded multiple times.

2.1.2 Data Transfer. Data transfer is another factor affecting accel-
erator performance. The guideline for selecting the optimal dataflow
is to maximize the data reuse for PE arrays [3, 28]. However, the
performance model becomes more complicated and can be affected
by various other reasons in real systems. For instance, the latency
of moving the same amount of data from off-chip memory to the
PE array varies depending on whether data already exists in the
on-chip scratchpad.
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Table 1: Prior works in design space exploration. CADOSys
stands out by integrating cache into its performance model.

Work Locality On-chip Memory Search Speed

SmartShuttle [17] Intra-Layer Scratchpad Slow
Timeloop [25] Intra-Layer Scratchpad Slow
GAMMA [13] Intra-Layer Scratchpad Fast

Mind Mappings [6] Intra-Layer Scratchpad Fast
COSA [9] Intra-Layer Scratchpad Fast
SET [2] Inter-Layer Scratchpad Slow

TileFlow [34] Inter-Layer Scratchpad Slow
CADOSys (ours) Inter-Layer Cache Fast

1. // Converted Conv to Matrix-Matrix multiplication
2. Input[M][K]; // define input matrix
3. Weight[K][N]; // define weight matrix
4. Output[M][N]; // define output (partial sum) matrix
5. // Assuming the PE shape is S*S;
6. for (k = 0; k < K/S; k++) { // Loop K
7.     for (n = 0; n < N/S; n++) { // Loop N
8.         Weight[k*S:(k+1)*S][n*S:(n+1)*S] => Scratchpad? => PE;
9.         for (m = 0; m < M/S; m++) { // Loop M

10.             Input[m*S:(m+1)*S][k*S:(k+1)*S] => Scratchpad? => PE;
11.             Output[m*S:(m+1)*S][n*S:(n+1)*S] => Scratchpad? => PE;
12.             for (p = 0; p < S; p++) {
13.                 for (q = 0; q < S; q++) {
14.                     for (r = 0; r < S; r++) {
15.                         PE Computation;
16.                     }
17.                 }
18.             }
19.             Output[m*S:(m+1)*S][n*S:(n+1)*S] => Scratchpad? => DRAM;
20.         }
21.     }
22. }

Loop Ordering and Tiling

Data Transfer

Figure 4: Design space of conv layers in spatial accelerators
by a loop nest representation. Scratchpad-based accelerators
explore the design space of Loop Ordering, Tiling, and Data
Transfer, whereas cache-based accelerators only need to fo-
cus on Loop Ordering and Tiling.

Moving all data to the scratchpad ahead of computation is a so-
lution to make the PE dataflow time more stable and deterministic.
However, the scratchpad capacity is usually limited, making accel-
erators suffer from PE stall cycles waiting for data transfer [20].
One solution is to pipeline the data transfer and PE computation,
by overlapping data transfer from off-chip memory to scratchpad,
scratchpad to the PE array, and then performing PE computation.
The granularity of the data transfer pipeline and the scratchpad par-
tition between input, weight, and output tensors are themain design
space factors affecting the spatial accelerator performance [9, 25].

2.1.3 Design Space Search. The design space of scratchpad-based
accelerators covers multiple dimensions and is NP-hard, making it
challenging to find a globally optimal solution in both intra-layer
and inter-layer design spaces. Fig. 4 shows the loop representation
of the design space of a single convolution layer (implemented
as matrix-matrix multiplication [3, 20, 28]) on a scratchpad-based
accelerator. The order and tiling of loops K, N, andM (Lines 6,7,9) de-
cide the data reuse pattern, i.e., dataflow. Another design space spec
is pipelining data transfer and PE computation (Lines 8,10,11,19).
For example, the computation (Lines 12-18) of the current loop can

be overlapped with the data transfer of the next loop (Lines 10-
11). In addition, the scratchpad partition between inputs, weights,
and outputs will be another additional design spec. Data transfer
pipeline and scratchpad partitioning are interdependent, adding
complexity to the search space for accelerator design. For example,
in line 10 transferring input data to PE, tiling the data transfer is
necessary if the input data size is larger than the scratchpad size.
The off-chip memory and scratchpad memory allocation itself is a
high-dimensional, NP-hard optimization problem that is challeng-
ing to solve [10, 19, 21, 32]. As the search space of a single layer is
already NP-hard, the inter-layer design space is even more time-
consuming. All those challenges result in prior works confining
the search within a constrained space to speed up the design space
search [6, 7, 9, 13, 34], as the cost of long search time or sub-optimal
solutions (shown in Table 1).

2.2 Design Space of Cache-based Accelerators
The performance of scratchpad-based spatial accelerators is sen-

sitive to the choice of hardware mapping within the large design
space. An efficient hardware mapping can achieve more than 10×
energy efficiency than a randommapping [25]. However, the search
cost is non-negligible, due to the NP-hard search space and long
pre-silicon simulation time [9, 13, 25]. Using a cache a hardware-
managed LLC (last-level cache) as an on-chip memory can result
in a less complicated and easy-to-search design space.

In a cache-based system, the cache automates data transfers be-
tween off-chip memory and processing elements (PEs). This means
that read or write instructions will transfer data at the granularity
of a cache line, as determined by the hardware, rather than being
specified by software through design space exploration. Moreover,
the hardware cache manages the partitioning of on-chip memory
space among different data types, and the cache replacement policy
optimizes data storage based on data locality. Therefore, the main
design space to explore in cache-based accelerators is the loop or-
dering and tiling, i.e., ML dataflow (although there are multiple loop
ordering and tiling solutions, IS, WS, and OS are the most common
dataflows and have been successful in prior designs [28]). This sim-
plification makes the exploration of the design space in cache-based
accelerators more straightforward compared to scratchpad-based
accelerators.

2.3 Why CADOSys?
Even though a hardware-managed cache automates the data

transfer pipeline, the unique characteristics of ML workloads leave
room for improving system performance further through design
space exploration. ML dataflow stands as one of the design spec-
ifications in cache-based accelerators. Efforts are still necessary
to guide the dataflow selection to improve both intra-layer and
inter-layer data locality.
Intra-Layer. State-of-the-art design space exploration frameworks
select IS, OS, WS dataflows, or their combinations, by balancing
the trade-off between maximizing PE data reuse and minimizing
off-chip memory access based on performance models [3, 9, 16, 17,
25, 35]. While a dataflow that maximizes PE data reuse reduces
on-chip memory data access, it does not necessarily guarantee min-
imal off-chip memory access. This approach is particularly efficient
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Figure 5: Overview ofCADOSys.CADOSys takesMLworkload
and cache specifications as inputs and generates the design
space choice of each ML layer as the output.

for scratchpad-based accelerators. In such systems, data transfers
between off-chip memory, the scratchpad, and local memory are
managed by software (typically through two instructions). Despite
the large design space, the hit-and-miss behavior of the scratch-
pad becomes predictable once the data transfer amount for each
pipeline loop, determined by tiling, is established.

In cache-based accelerators, the off-chip memory to scratchpad
and scratchpad to Local Mem data transfer are merged as one oper-
ation (instruction). This makes the number of runtime off-chip to
Local Mem data transactions non-deterministic and highly relies
on the cache runtime hit-and-miss status (controlled by hardware
cache replacement policies). As the example in Fig. 3, the 32 ele-
ments of a single row/column of the PE data might span multiple
cache lines, necessitating multiple cache line accesses instead of just
one. Such data access patterns (with poor space locality) may trigger
cache misses easily. Therefore, the performance model and design
space selection mechanisms used for scratchpad-based accelerators
cannot be directly applied to cache-based accelerators.

As illustrated in Fig. 2, the impact of cache shows that different
cache configurations have distinct optimal dataflows, even for the
same workload, highlighting the need for cache-aware dataflow op-
timization. Furthermore, we observed a significant reduction in stall
cycles for the WS dataflow when the cache capacity increased from
512KB to 1024KB. Therefore, before selecting a specific dataflow, it
is ncessary to quantify the data access requirements of the dataflow
and compare them with the available cache capacity.
Inter-Layer. Scratchpad-based accelerators employ layer fusion
to enhance data locality by minimizing data transfers between off-
chip memory and on-chip (scratchpad) memory [34]. In contrast,
cache-based accelerators rely on cache replacement policies, rather
than software-controlled instructions, to manage data transfers
between off-chip memory and the LLC. Consequently, layers are
automatically fused based on cache replacement policies that retain
tensors across multiple layers. Optimizing the retention of tensors
with cross-layer locality in the cache is a key area for improving
inter-layer data locality.

3 CADOSYS OVERVIEW
This section gives an overview of CADOSys. CADOSys takes ML

workload characteristics and accelerator hardware specifications
as inputs and generates the dataflow of each layer. We break down
the entire process into three steps (shown in Fig. 5).
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Figure 6: Amount of data access of 5 types of conv layers in
ResNet18. From bottom (//) to top (xx), each pattern indicates
the amount of inputs, weights, and outputs data access. The
total amount of data access of the three dataflows is almost
the same, though with a different breakdown.

• CADOSys characterizes and quantifies the data reuse and
cache capacity requirement of each layer (§ 4). This step
takes ML workload information (size of inputs, weights, and
outputs of each layer) and accelerator hardware specifica-
tions (PE array size and cache capacity) as inputs.

• CADOSys uses a DFS-based algorithm to generate the design
space of each layer (§ 5). The search algorithm incorporates
cache effects into its performance model and seeks to en-
hance data reuse at both intra-layer and inter-layer levels.
Moreover, CADOSys considers various factors, such as ML
model and accelerator scalability to ensure its robustness.

• The output of CADOSys (design space choice of each layer)
can be used as the input either for pre-silicon architecture
simulation, or post-silicon deployment.

4 DATA PREPARATION FOR CADOSYS
In this section, we prepare the necessary data for building CA-

DOSys, by characterizing the data reuse (§ 4.1) and quantifying the
cache capacity requirement (§ 4.2) of each design space choice.

4.1 Characterizing Data Reuse
In this part, we characterize the cache data reuse of each dataflow.

ML accelerators make use of data locality by reusing either inputs,
weights, or outputs through IS, WS, and OS dataflow, respectively.
To provide a clear and intuitive explanation of this, we show the
amount of data access of ResNet18 in Fig. 6. Though different
dataflows may have similar total amounts of cache data access,
the difference in the breakdown of inputs, weights, and outputs can
result in differences in cache data reuse (i.e., how many times each
element is accessed from the cache) across different dataflows. This
difference in cache data reuse can result in different cache capacity
requirements for different dataflows. In this part, we analyze both
intra-layer and inter-layer cache data reuse.
Intra-Layer. In ML workloads, different dataflows share different
intra-layer data locality, resulting in a difference in cache capacity
requirement. The purpose of stationarity in PE arrays is to sacrifice
the locality for one part of the data while achieving the locality for
the other two parts [28, 29]. For example, theWS dataflow sacrifices
the locality of weights to obtain the locality of inputs and outputs.
As the size of inputs, weights, and outputs are usually different
in different ML workloads [1], different dataflows show distinct
intra-layer cache data reuse (The variation in the amount of data
access shown in Fig. 6 across different dataflows reflects distinct
data reuse patterns).
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Figure 7: Data reuse in the OS dataflow. Row-major access
completes the computation of all columns for the first S rows
of the output matrix before proceeding to the next set of S
rows, where S represents the size of the PE array.

Inter-Layer. In addition to intra-layer, inter-layer cache data reuse
is also important in ML workloads. For instance, the output of one
layer may be the input for a specified subsequent layer while weight
parameters are not shared across layers. ML accelerator compilers,
e.g., Glow [26], divide data into two categories, placeholder nodes
and constant nodes to indicate the difference with respect to cache
data reuse. In the inter-layer scenario, the outputs of a layer can
achieve even higher locality, as long as it is used as inputs for sub-
sequent layers. Such inter-layer cache data reuse also impacts our
choice of dataflow in CADOSys. CADOSys prioritizes the dataflow
that achieves inter-layer cache data reuse.

4.2 Requirement on Cache Capacity
After characterizing the data reuse of each dataflow, we calculate

the cache capacity requirement of each dataflow.
To achieve the best performance of each dataflow, the ideal

solution is to cache all placeholder nodes and constant nodes as long
as locality exists. For example, to achieve a full locality in the OS
dataflow, either the entire input matrix or the entire weight matrix
has to be cached based on the data access order. We assume a single
PE array with grid size 𝑆 ∗ 𝑆 . PE arrays implement convolution
operations as general matrix-to-matrix multiplications [3, 20, 28].
We assume the input matrix size is𝑊𝑀 ∗𝑊𝐾 , the weight matrix
size is𝑊𝐾 ∗𝑊𝑁 , and the output matrix size is𝑊𝑀 ∗𝑊𝑁 . Based on
row-major data access order in Fig. 7, 𝑆 rows of the input matrix
have to pass through all columns of the weight matrix to generate 𝑆
rows of the output matrix. Under this scenario, the entire𝑊𝐾 ∗𝑊𝑁

matrix has to be cached to achieve a full locality.
With the increasing complexity of AI models, which can have

billions of parameters as seen in large language models [33], it is
impractical to preload all parameters into MB-level caches. Instead
of achieving full locality, aiming for partial locality is an alternative
solution when dealing with limited cache capacity. As the same
example in Fig. 7, caching 𝑆 ∗𝑊𝐾 of the input matrix enables the OS
dataflow to achieve partial locality. When computing 𝑆 rows of the
output, all elements from the weight matrix must be retrieved from
off-chip memory, while the 𝑆 rows of inputs are already cached in
the first loop. In the case of column-major data access, the locality
pattern is the reverse of row-major access; therefore, 𝑆 ∗𝑊𝐾 of the
weight matrix should be cached instead. For IS and WS dataflows,
the minimum cache capacities to achieve partial locality are 𝑆 ∗

Algorithm 1: Cache aware design space selection.
Input :Accelerator PE shape 𝑆 ∗ 𝑆 , cache capacity𝐶 ; Shapes of 𝑁 layers (𝑊𝑀 [𝑁 ],

𝑊𝐾 [𝑁 ],𝑊𝑁 [𝑁 ]), dependency Graph𝐺 ;
Output :Dataflow of the 𝑁 layers 𝐷 [𝑁 ];

Data access order of the 𝑁 layers𝑂 [𝑁 ];
1 Initialize placeholder node priority queue 𝑃 ;
2 Initialize current available cache𝐶𝐴 = 𝐶 ;
3 foreach layer 𝑛 ∈N do
4 𝐷 [𝑛] = Dataflow which maximizes the PE data reuse;
5 if 𝐶𝐴 is enough to make 𝐷 [𝑛] achieve full locality then
6 if Inputs of layer 𝑛 in 𝑃 then
7 match𝑂 [𝑛] with the previous layer accordingly;
8 else if 𝐷 [𝑛] == Weight Stationary then
9 𝑂 [𝑛] = (𝑊𝐾 [𝑛] <𝑊𝑁 [𝑛]) ? row : col;

10 else if 𝐷 [𝑛] == Input Stationary then
11 𝑂 [𝑛] = (𝑊𝐾 [𝑛] <𝑊𝑀 [𝑛]) ? row : col;
12 else if 𝐷 [𝑛] == Output Stationary then
13 𝑂 [𝑛] = (𝑊𝑁 [𝑛] <𝑊𝑀 [𝑛]) ? row : col;
14 else
15 if 𝑃 is not empty then
16 Pop the first node from 𝑃 and update𝐶𝐴 ;
17 goto line 5;
18 Recover 𝑃 ;
19 if (𝑊𝑀 [𝑛] * 𝑆) <=𝐶𝐴 then
20 𝐷 [𝑛] = Weight Stationary;
21 else if (𝑊𝑁 [𝑛] * 𝑆) <=𝐶𝐴 then
22 𝐷 [𝑛] = Input Stationary;
23 else if (𝑊𝐾 [𝑛] * 𝑆) <=𝐶𝐴 then
24 𝐷 [𝑛] = Output Stationary;
25 else
26 if 𝑃 is not empty then
27 Pop the first node from 𝑃 and update𝐶𝐴 ;
28 goto line 19;
29 end
30 𝑂 [𝑛] = row;
31 end
32 Release nodes from 𝑃 that will not be used in the future and update𝐶𝐴 ;
33 Insert nodes to 𝑃 that will be used in the future and update𝐶𝐴 ;
34 end

𝑊𝑁 and 𝑆 ∗𝑊𝑀 respectively. The cache capacity requirements for
achieving both full and partial locality across all three dataflows
are summarized in Table 2.

Table 2: Cache capacity requirement of different dataflow
(row/col stands for row/col major access).

Order + Locality IS OS WS

Row + Partial 𝑆 ∗𝑊𝑁 𝑆 ∗𝑊𝐾 𝑆 ∗𝑊𝑀
Row + Full (𝑊𝐾 + 𝑆 ) ∗𝑊𝑁 (𝑊𝑁 + 𝑆 ) ∗𝑊𝐾 (𝑊𝐾 + 𝑆 ) ∗𝑊𝑀
Col + Partial 𝑆 ∗𝑊𝑁 𝑆 ∗𝑊𝐾 𝑆 ∗𝑊𝑀
Col + Full (𝑊𝑀 + 𝑆 ) ∗𝑊𝑁 (𝑊𝑀 + 𝑆 ) ∗𝑊𝐾 (𝑊𝑁 + 𝑆 ) ∗𝑊𝑀

5 CADOSYS
Having determined the cache capacity requirement, we then

demonstrate how CADOSys selects its design parameters. By em-
ploying a DFS-based algorithm, CADOSys efficiently explores the
design space (§ 5.1). We also extend CADOSys to accommodate
different batch sizes and various PE configurations (§ 5.2).

5.1 Searching Algorithm
We propose a DFS-based search algorithm (Algorithm 1) to find

the data reuse pattern that maximizes the PE data reuse as well as
achieve full or partial intra-layer data locality. We model the end-to-
end execution of an ML network as an execution tree, where each
layer offers 6 options (3 dataflows with 2 data access orders for each
dataflow). Each node in the execution graph branches into 6 leaves,
representing 6 choices. Since the design decisions at one layer can
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affect the overall cache behavior, backtracking in a greedy-based
manner3 is essential to account for these global effects. This makes
a DFS-like algorithm well-suited for this type of scenario.

CADOSys first identifies the dataflow which maximizes the PE
data reuse, i.e., which dataflow achieves better PE data locality [3,
28] (lines 4). CADOSys then checks if the selected dataflow can
achieve the full data locality based on the cache capacity require-
ment model in § 4.2 (lines 4-5). Regarding data access order, CA-
DOSys will first pick the one that can achieve inter-layer data local-
ity (lines 6-7). Otherwise, it will select the access order requiring
less cache capacity than the alternatives (lines 8-13). If full locality
cannot be achieved, CADOSys proceeds to check the feasibility of
achieving partial locality (lines 14-31). The guideline is to prioritize
cache placeholder nodes other than constant nodes since these nodes
could be revisited in subsequent layers (lines 19-24). For instance,
CADOSys prioritizes IS dataflow as input nodes are less likely to be
accessed in subsequent layers than output nodes. In the worst-case
scenario where the cache capacity is too constrained to achieve
even partial locality, CADOSys selects the dataflow that maximizes
PE data reuse.

After finishing each layer, CADOSys will update the placeholder
nodes priority queue and cache capacity information for check-
ing inter-layer data locality, e.g., outputs of the previous layer act
as inputs for the next layer. If the placeholder node is accessed in
subsequent layers, CADOSys will consider this node already occu-
pying the cache (lines 32-33). If the cache capacity is insufficient to
achieve inter-layer data locality, CADOSys will backtrack (similar
to DFS) to maximize the intra-layer data full locality (lines 15-17)
or partial locality (lines 26-28). CADOSys pops each element of the
placeholder nodes priority queue as the backtracking process. The
priority of each node is determined by its most recent anticipated
future usage (node dependency graph is part of CADOSys input).

5.2 Scalability of CADOSys
With the emergence of massive neural networks, scalability is

an important metric for evaluating the performance of ML acceler-
ators. Algorithm 1 automates the process of design space selection
under the context of single PE array and single input batch size. To
scale the performance of accelerators [22, 23], datacenter ML accel-
erators are equipped with multiple PE arrays, and ML workloads
are processed in batches. We enhance the Algorithm 1 to make it
scale for the multi-PE and multi-batch scenarios.
Multi-Batch. In themulti-batch scenario, the amount of data access
of both input and output feature maps of each layer scales according
to the batch sizes. Assuming a batch size 𝐵, the input scales from
𝑊𝑀 ∗𝑊𝐾 to 𝐵 ∗𝑊𝑀 ∗𝑊𝐾 and the output scales from𝑊𝑀 ∗𝑊𝑁 to
𝐵 ∗𝑊𝑀 ∗𝑊𝑁 . The filter size remains the same𝑊𝐾 ∗𝑊𝑁 , making
the cache requirement of the IS and OS dataflow remain the same
as the single batch. For the WS dataflow, instead of a single input,
all inputs within the same batch pass through the stationed filter.
Therefore, the cache requirement of the WS dataflow scales based
on the batch size 𝐵. We listed the scale cache capacity requirement
of WS in Table 3.

3Enumerating all dataflows to achieve global inter-layer data locality is impractical
for large networks due to the vast search space [8, 34].

Table 3: Multi-batch cache capacity requirement of WS.

Row + Partial 𝑆 ∗ 𝐵 ∗𝑊𝑀 Col + Partial 𝑆 ∗ 𝐵 ∗𝑊𝑀
Row + Full (𝑊𝐾 + 𝑆 ) ∗ 𝐵 ∗𝑊𝑀 Col + Full (𝑊𝐾 + 𝑆 ) ∗ 𝐵 ∗𝑊𝑀

Weight
(0, 0)

Weight
(0, 0)

Weight
(0, 0)

Weight
(0, 0)

Input
M * S

Output
M * S

4-to-One

One-to-4

Weight
(0, 1)

Weight
(1, 0)

Weight
(1, 1)

Weight
(0, 0)

Input
M * S
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M * S

Input
M * S

Input
M * S

Input
M * S

Output
M * S

Reduce                                  Reduce 

(a) Data parallelism.                                           (b) Model parallelism.

Figure 8: Data and Model parallelism in a 2*2 PE grid.

Multi-PE. In the multi-PE scenario, both data parallelism and
model parallelism can be used [22, 23]. For example, in WS (also
applies to IS and OS), assuming the 1 ∗ 1 PE grid is scaled to a 𝑛 ∗ 𝑛
grid, we can have only one copy of the filter and distribute it into all
𝑛 ∗ 𝑛 PEs (data parallelism, left side of Fig. 8) or have 𝑛 ∗ 𝑛 different
parts of filter on each PE (model parallelism, right side of Fig. 8).
When using data parallelism, a one-to-all and all-to-one operation
is required before and after processing the stationed data [22, 23],
but the data locality remains the same as the single-PE scenario
since data parallelism does not introduce additional non-stationary
data. On the other hand, model parallelism introduces extra non-
stationary data. The cache capacity requirement of each dataflow
needs to scale accordingly (𝑆 in Table 2 and Algorithm 1 needs to
scale to 𝑛 ∗ 𝑆).

6 EVALUATION
We demonstrate CADOSys’s effectiveness by answering the fol-

lowing questions through experimental evaluation:

• Does CADOSys perform better than state-of-the-art design
space exploration solutions (§ 6.2)?

• Is CADOSys better than brute force search (§ 6.3)?
• Does CADOSys scale well for multi-batch and multi-PE sce-
narios (§ 6.4)?

6.1 Experimental Setup
We build CADOSys following the model of Scale-sim [28, 29],

which is one of the state-of-the-art simulators for modeling the
performance of spatial accelerators. We set the LLC associativity
as 16 with a 64-byte cache line and an LRU replacement policy.

We evaluate CADOSys using diverse workloads. We include rep-
resentative CNNs (AlexNet, ResNet18, ResNet50, and MobileNetV2),
which are widely used for image processing and span almost a
decade of progress in CNN design, showcasing computational pat-
terns that are broadly representative [7, 27]. We also evaluate DL-
RMs (deep learning recommendation models), which could benefit
even more from a cache-based accelerator due to their sparse com-
putations [5, 24]. In addition, we also include Transformers, the
fundamental building blocks of large language models [4, 31].

We adopt amapping scheme alignedwith state-of-the-art scratchpad-
based optimizationmethodologies, including Timeloop [25], GAMMA [13],
and COSA [9], to maximize data reuse at the PE level and minimize
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Figure 9: Speedups of CADOSys in different cache sizes.

the amount of unique (cache) data access as the baseline4. However,
this baseline does not incorporate cache microarchitecture specifi-
cations when modeling data access patterns and on-chip memory
capacity requirements.

6.2 How well does CADOSys perform?
We evaluate the efficacy of CADOSys by comparing it with the

state-of-the-art design space selection scheme [3, 28] which picks
the dataflow that achieves the maximum PE data reuse of each layer.
We set the PE array size as 8 ∗ 8, with an LLC with the capacity of
256KB, 512KB, 1024KB, and 2048KB. As shown in Fig. 9, CADOSys
achieves a 1.29×, 1.62×, 1.82×, and 1.15× (geometric mean of the 6
workloads) speedup over the baseline on an LLC with a capacity of
256KB, 512KB, 1024KB, and 2048KB, respectively.

Among the 4 cache sizes, CADOSys demonstrates superior per-
formance with 512KB and 1024KB LLCs. In scenarios with limited
cache capacity, most layers cannot achieve full data locality across
the three dataflows, highlighting the effectiveness of CADOSys.
Conversely, with larger caches, all dataflows attain full locality,
reducing the impact of CADOSys.

Among the 6 workloads, CADOSys achieves higher speedups
in CNNs and DLRMs compared to Transformers. This is because
performance differences between dataflows arise when there are
disparities in the sizes of input, weight, and output matrices. For
instance, in CNNs early layers often have inputs larger than weights
(i.e.,𝑊𝑀>𝑊𝐾 in Table 2), while later layers have weights larger
than inputs. Such imbalances in CNNs and DLRMs makes CADOSys
more effective.

6.3 How does CADOSys outperform brute force?
In this section, we compare CADOSys with brute-force search.

CADOSys is able to find the dataflow combination close to brute-
force but saves searching time significantly.

We present the layer-wise performance breakdown of AlexNet
using a 512KB LLC (Fig. 10a) and a 1024KB LLC (Fig. 10b). The
brute-force method explores all 35 dataflow combinations across
the 5 convolutional layers in AlexNet.

When using a 512KB LLC, CADOSys is consistent with the brute-
force result. CADOSys improves the performance on layer Conv1
significantly by using the IS dataflow instead of WS dataflow. When
considering the data access pattern, the available cache capacity
is insufficient to enable WS dataflow to achieve a full locality. The
4We use a baseline that assumes an ideal cache (provided the data capacity meets the
requirement), and under this assumption, Timeloop [25], GEMMA [13], and CoSA [9]
yield the same design space choice.
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Figure 10: Layer-wise performance comparison of AlexNet
between maximizing PE array reuse (baseline), CADOSys,
and brute-force search. CADOSys performs better than the
baseline and almost the same as a brute-force search (saves
search time significantly).
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input matrix size is much larger than the weight matrix size. When
using a 1024KB LLC, CADOSys only has a 3.1% performance loss
compared with a brute-force search. The reason is the searching
algorithm 1 (line 19-24) in CADOSys gives a higher priority to WS,
as its potential to offer better data locality for larger batch sizes.

While CADOSys cannot guarantee a globally optimal design
choice, it significantly reduces search time compared to a brute-
force approach. For example, obtaining the optimal dataflow for
AlexNet using brute force requires simulating all 243 combina-
tions, with each simulation taking approximately 76 seconds (on a
Neoverse-N1 server we used). In contrast, CADOSys eliminates the
need for an end-to-end simulation before making the design choice,
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saving around 5 hours of simulation time. For larger networks like
ResNet18, with its 318 possible dataflow combinations, brute-force
search becomes impractical due to the extensive simulation time
required. In addition to pre-silicon simulation-based systems, CA-
DOSys also reduces search time in post-silicon scenarios, where
the routing and packaging process for generating an accelerator
binary can be time-consuming [14, 18]. This makes CADOSys more
efficient than brute-force search.

6.4 Does CADOSys scale well?
In addition to evaluating the single-batch and single-PE scenario,

we also assess the scalability of CADOSys in multi-batch (§ 6.4.1)
and multi-PE scenarios (§ 6.4.2).

6.4.1 Multi-batch. In the multi-batch scenario, we evaluate the
performance of CADOSys on batch sizes 1, 2, 4, and 8. The geometric
mean speedups of the six workloads are shown in Fig. 11. CADOSys
achieves 1.39×, 1.43×, 2.28×, and 1.87× (geometric mean of the 4
batch sizes) speedups over the baseline on an LLC with a capacity
of 256KB, 512KB, 1024KB, and 2048KB, respectively. Unlike single-
batch, CADOSys is effective when using a 2048KB cache under the
multi-batch scenario (compared with the 2048KB result in Fig. 9).
The reason is that as the batch size increases, the cache capacity
requirement of each dataflow will also increase. As a result, the
dataflow which maximizes the PE data reuse may not be able to
achieve the full locality.

6.4.2 Multi-PE. In the multi-PE scenario, we evaluate the perfor-
mance of CADOSys on the accelerator with 1x1, 2x2, 4x4, and 8x8
PEs. We scale the batch size and LLC capacity 𝑛 times (assuming
𝑛x𝑛 PEs) compared with the single-PE scenario. The geometric
mean speedups of the six workloads are shown in Fig. 12. CADOSys
achieves 1.51×, 1.86×, and 1.66× (geometric mean of the 4 PE array
sizes) speedups over the baseline on an LLCwith a capacity of 256*𝑛
KB, 512*𝑛 KB, and 1024*𝑛 KB. We observe the efficacy of CADOSys
does not grow linearly as the number of PEs (and batch size) scales.
The reason is that the cache requirement of each dataflow does
not increase linearly as the number of PEs increases based on the
equations listed in Table 2. Fortunately, CADOSys can identify the
margin of cache capacity for all batch sizes and the number of PEs.

7 CONCLUSION
Accelerators are generally categorized into two types based on

their memory management: scratchpad-based and cache-based.
Extensive research has been conducted on optimizing scratchpad-
based accelerators. However, cache-based accelerators are emerg-
ing, and there is a lack of comprehensive optimization strategies
for them. In this paper, we introduce CADOSys, a framework to
optimize cache-based accelerators.

CADOSys takes both ML workload characteristics and cache mi-
croarchitecture specifications as inputs to quantify cache capacity
requirements. It employs a DFS algorithm to determine the optimal
design space configuration for each layer of the ML model. Results
show that CADOSys achieves an average speedup of 1.82× com-
pared to state-of-the-art scratchpad-based optimization methods.
While CADOSys incurs only a ∼3% performance loss compared to
brute-force search, it significantly reduces simulation time by hours

or even days. Additionally, CADOSys consistently improves per-
formance for different batch and PE array sizes. The design space
generated by CADOSys can be used in pre-silicon simulations or
directly deployed in post-silicon accelerators.
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