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More CPU’s per chip -- Multi-core systems

More threads per core -- hyper-threading

More cache and cache levels (L1, L2, L3)

System on a chip and Network on chip

Hybrid system including reconfigurable logic

But, embedded system require careful management
  of energy

Billion Transistor Chips
How to garner the silicon real-estate for improved performance?
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We propose innovative architecture that “scales” in

performance as needed, but disables hardware elements when

not needed.

We address several processor elements for performance and

energy savings

Multithreaded CPUs
Cache Memories
Redundant function elimination
Offload administrative functions

Billion Transistor Chips
How to garner the silicon real-estate for improved performance?
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Computer Architecture Research

A new multithreaded architecture called Scheduled Dataflow(SDF)
Uses Non-Blocking Multithreaded Model
Decouples Memory access from execution pipelines
Uses in-order  execution model (less hardware complexity)

The simpler hardware of SDF may lend itself better for embedded
applications with stringent power requirements
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Computer Architecture Research

Intelligent Memory Devices (IRAM)

Delegate all memory management functions to a separate
processing unit embedded inside DRAM chips

More efficient hardware implementations of memory
management are possible

Less cache conflicts between application processing and
memory management

More innovations are possible
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Computer Architecture Research

Array and Scalar Cache memories

Most processing systems have a data cache and 
instruction cache.  WHY?

Can we split data cache into a cache for scalar data and one for
arrays?

We show significant performance gains
with 4K scalar cache and 1k array cache we
get the same performance as a 16K cache
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Computer Architecture Research
Function Reuse
 Consider a simple example of a recursive function like Fib

int fib (int);
int main()
{ printf ("The value is %d .\n ", fib (num) )}
int fib (int num)
{ if (num == 1) return 1;

              if (num == 2) return 1;
              else  {return fib (num-1) + fib (num-2);}

For Fib (n), we call Fib(n-1) and Fib(n-2);
For Fib(n-1) we call Fib(n-2) and Fib (n-3)
So we are calling Fib(n-2) twice

Can we somehow eliminate such redundant calls?
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Computer Architecture Research

What we propose is to build a table in hardware and save function
Calls.

Keep the “name”, and the input values and results of
functions

When a function is called, check this table if the same
    function is called with the same inputs

If so, skip the function call, and use the result from a
previous call
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This slide is deliberately left blank
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Overview of our multithreaded SDF

 Based on our past work with Dataflow and Functional Architectures

 Non-Blocking Multithreaded Architecture
Contains multiple functional units like superscalar and other

multithreaded systems
Contains multiple register contexts like other multithreaded  

systems

 Decoupled Access - Execute Architecture
Completely separates memory accesses from execution pipeline
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Background

How does a program run on a computer?

• A program is translated into machine (or assembly) language
• The program instructions and data are stored in memory (DRAM)
• The program is then executed by ‘fetching’ one instruction at a

time
• The instruction to be fetched is controlled by a special pointer

called program counter
• If an instruction is a branch or jump, the program counter is

changed to the address of the target of the branch
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Dataflow Model

+ -

* /

+

X Y A B

(X+Y)*(A+B) (X-Y)/(A+B)

MIPS like instructions

 1. LOAD    R2, A     / load A into R2
 2. LOAD    R3, B    / load B into R3
 3. ADD      R11, R2, R3    / R11 = A+B
 4. LOAD    R4, X    / load X into R4
 5. LOAD    R5, Y    / load Y into R5
 6. ADD      R10, R4, R5        / R10 = X+Y
 7. SUB       R12, R4, R5        / R12 = X-Y
 8. MULT   R14, R10, R11    / R14 = (X+Y)*(A+B)
 9. DIV       R15, R12, R11    / R15 = (X-Y)/(A+B)
 10. STORE   ....,  R14      / store first result 
 11. STORE  .....,  R15   / store second result

Pure Dataflow Instructions

1:   LOAD    3L     / load  A, send to Instruction 3
2:   LOAD    3R    / load B, send to Instruction 3
3:   ADD      8R, 9R    / A+B, send to Instructions 8 and 9
4:   LOAD    6L, 7L    / load X, send to Instructions 6 and 7
5:   LOAD    6R, 7R    / load Y, send to Instructions 6 and 7
6:   ADD       8L    / X+Y, send to Instructions 8
7:   SUB        9L    / X-Y,  send to Instruction 9
8:   MULT    10L   / (X+Y)*(A+B), send to Instruction 10
9:   DIV        11L   / (X-Y)/(A+B), send to Instruction 11
10: STORE     / store first result
11: STORE    / store second result
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We use dataflow model at thread level 
Instructions within a thread are executed sequentially

We also call this non-blocking thread model

SDF Dataflow Model
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Blocking vs Non-Blocking Thread Models

Traditional multithreaded systems use blocking models

• A thread is blocked (or preempted)
• A blocked thread is switched out

and execution resumes in future

• In some cases, the resources of a blocked thread
• (including register context) may be assigned to other
• awaiting threads.
• Blocking models require more context switches

In a non-blocking model, once a thread begins execution, it
will not be stopped (or preempted) before it
completes execution
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Non-Blocking Threads

Most functional and dataflow systems use non-blocking
threads

A thread/code block is enabled when  all its inputs are available.
A scheduled thread will run to completion.

Similar to Cilk Programming model

Note that recent versions of Cilk (Clik-5) permits
thread blocking and preemptions
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Cilk Programming Example

   thread fib (cont int k, int n)
       {   if (n<2)

send_argument (k, n)
       else{

cont int x, y;
spawn_next sum (k, ?x, ?y);    /* create a successor thread
spawn fib (x, n-1);                   /* fork a child thread
spawn fib (y, n-2);                  /* fork a child thread

}}
 thread sum (cont int k, int x, int y)
        {send_argument (k, x+y);}        /* return results to parent’s 

      /*successor
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Cilk Programming Example

c
o
d
e

sum

fib

fib

0

0

2

cont

cont

cont

n-1

n-2

x
y

Join counter



Computer Systems Research at
UNT

18

Decoupled Architectures
Separate memory accesses from execution

Separate Processor to handle all memory accesses
The earliest suggestion by J.E. Smith -- DAE architecture

Address
Registers

Memory

Execute Processor

Access Processor

Operands

Operands

Branch Decision

Branch Decision
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Limitations of DAE Architecture

• Designed for STRETCH system with no pipelines

• Single instruction stream

• Instructions for Execute processor must be coordinated with
the data    accesses performed by Access processor

• Very tight synchronization needed

• Coordinating conditional branches complicates the design

• Generation of coordinated instruction streams for Execute
and Access my prevent traditional compiler optimizations
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Our Decoupled Architecture

We use multithreading along with decoupling ideas

Group all LOAD instructions together at the head of a thread

Pre-load thread’s data into registers before scheduling for execution

During execution the thread does not access memory

Group all STORE instructions together at the tail of the thread

Post-store thread results into memory after thread completes execution

Data may be stored in awaiting Frames

Our non-blocking and fine grained threads facilitates a clean
separation of  memory accesses into Pre-load and Post-store
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Pre-Load and Post-Store

LD F0, 0(R1) LD F0, 0(R1)
LD F6, -8(R1) LD F6, -8(R1)
MULTD F0, F0, F2 LD F4, 0(R2)
MULTD F6, F6, F2 LD F8, -8(R2)
LD F4, 0(R2) MULTD F0, F0, F2
LD F8, -8(R2) MULTD F6, F6, F2
ADDD F0, F0, F4 SUBI R2, R2, 16
ADDD F6, F6, F8 SUBI R1, R1, 16
SUBI R2, R2, 16 ADDD F0, F0, F4
SUBI R1, R1, 16 ADDD F6, F6, F8
SD 8(R2), F0 SD 8(R2), F0
BNEZ R1, LOOP SD 0(R2), F6
SD 0(R2), F6

                             Conventional          New Architecture
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Features Of Our Decoupled System

• No pipeline bubbles due to cache misses

• Overlapped execution of threads

• Opportunities for better data placement and prefetching

• Fine-grained threads -- A limitation?

• Multiple hardware contexts add to hardware complexity

If 36% of instructions are memory access instructions, PL/PS can achieve 36%
increase in performance with sufficient thread parallelism and completely mask
memory access delays!
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A Programming Example

+ -

* /

+

X Y A B

(X+Y)*(A+B) (X-Y)/(A+B)

Execute
ADD        RR2, R11, R13 / compute A+B,  Result in R11 and R13
ADD        RR4, R10 / compute X+Y,  Result in R10
SUB         RR4,  R12 / compute X – Y, Result in R12
MULT     RR10, R14 / compute (X+Y)*(A+B), Result in R14

          DIV          RR12, R15 / compute (X-Y)/(A+B), Result in R15

Pre-Load
LOAD  RFP| 2,    R2 / load A into R2
LOAD  RFP| 3,    R3 / load B into R3
LOAD  RFP| 4,    R4 / load X into R4
LOAD  RFP| 5,    R5 / load Y into R5
LOAD RFP| 6,     R6 / frame pointer for returning first result
LOAD RFP| 7,     R7 / frame offset for returning first result
LOAD RFP| 8,     R8 / frame pointer for returning second result

         LOAD RFP| 9,    R9 / frame offset for returning second result

Post-Store
STORE    R14,   R6|R7                    / store first result  

              STORE    R15,  R8|R9                     / store second result 
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A Programming Example

preload: L O A D  RFP|2, R2 # base of a into R2 body:  MULTD  RR8, R11 #a[i,k]*b[k,j] in R11 
 L O A D  RFP|3, R3 # index a[i,k] into R3  A D D D  RR10, R10 # c[i,j] + a[ i,k]*b[k,j] in 

R 1 0  
 L O A D  RFP|4, R4 # base of b into R4  FORKSP  poststore #transfer to SP 
 LOAD  RFP|5, R5 # index b[k,j] into R5  STOP    
 L O A D  RFP|6, R6 # base of c into R6     
 L O A D  RFP|7, R7 # index c[i,j] into R7     
 IFETC H  RR2, R8 # fetch a[i,k] to R8 poststore: ISTORE  RR6, R10 #save c[i,j] 
 IFETC H  RR4, R9 # fetch b[k,j] to R9  STOP    
 IFETC H  RR6, R10 # fetch c[i,j] to R10     
 FORKEP  b o d y  # transfer to EP     
 STOP        

Figure 4: A SDF Code Example 
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Conditional Statements in SDF

Execute
EQ RR2, R4 / compare R2 and R3, Result in R4
NOT     R4, R5 / Complement of R4 in R5
FALLOC “Then_Thread” / Create Then Thread (Allocate Frame memory, Set Synch-Count,
FALLOC “Else_Thread” / Create Else Thread (Allocate Frame memory, Set Synch-Count,
FORKSP R4, “Then_Store” /If X=Y, get ready post-store “Then_Thread”
FORKSP R5, “Else_Store” /Else, get ready pre-store “Else_Thread”
STOP

Pre-Load
  LOAD  RFP| 2,    R2       / load X into R2
  LOAD  RFP| 3,    R3      / load Y into R3

/ frame pointers for returning  results
   / frame offsets for returning results

In Then_Thread, We de-allocate (FFREE) the Else_Thread
and vice-versa

X Y

=

Then_Thread Else_Thread
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SDF Architecture
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Execution of SDF Programs

Preload

Preload

Poststore

 

Thread0

Thread 2

Preload

Preload

Execute

Poststore

Execute

Poststore

Thread 3

Thread 4

SP =PL/PS     EP=EX

Execute

Preload

Poststore

Execute

Execute

PoststoreThread 1
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Some Performance Results
Scalability of SDF (Matrix)
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Some Performance Results
SDF vs Supersclar and VLIW

   IPC  IPC  IPC 

 V L I W  Superscalar  S D F  

 Benchmark 1 IALU/1 FALU 1 IALU/1 FALU 1 SP, 1 EP 

Matrix Mult  0.334  0.825  1.002  

Z o o m  0.467  0.752  0.878  

Jpeg  0.345  0.759  1.032  

ADPCM  0.788  0.624  0.964  

    

 Benchmark 2 IALU, 2FALU 2 IALU, 2FALU 2 SP, 2 EP 

Matrix Mult  0.3372  0.8253  1.8244  

Z o o m  0.4673  0.7521  1.4717  

Jpeg  0.3445  0.7593  1.515  

ADPCM  0.7885  0.6245  1.1643  

        

 Benchmark 4 IALU, 4FALU 4IALU, 4FALU 4 SP, 4EP  

Matrix Mult  0.3372  0.826  2.763  

Z o o m  0.4773  0.8459  2.0003  

Jpeg  0.3544  0.7595  1.4499  

ADPCM  0.7885  0.6335  1.1935  
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Some Performance Results
SDF vs SMT

   IPC  IPC 

 SMT  S D F  

 Benchmark 2 threads 2 threads 

Matrix Mult  1.9885  1.8586  

Z o o m  1.8067  1.7689  

Jpeg  1.9803  2.1063  

ADPCM  1.316  1.9792  

     

 Benchmark 4 threads 4 threads 

Matrix Mult 3.6153  3.6711  

Z o o m  2.513  2.9585  

Jpeg  3.6219  3.8641  

ADPCM  1.982  2.5065  

      

Benchmark   6 threads 

Matrix Mult   5.1445  

Z o o m    4.223  

Jpeg    4.7495  

ADPCM    3.7397  
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Some Scalability Data
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Speculative Thread Execution

Architecture Model
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We extend MESI cache coherency protocol
Our states are:

011SpR.Sh

111SpR.Ex

010S

110E/M

X0XI

Dirty(Exclusive)ValidSpRead

Speculative Thread Execution
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 Transition Diagram (processor)

Speculative Thread Execution
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 Transition Diagram (bus)

Speculative Thread Execution
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Node structure

Speculative Thread Execution
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 Synthetic Benchmark Result

Speculative Thread Execution

c. SP:EP  50%:50%

b. SP-EP 66%:33%a. SP:EP 33%:66%
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Real Benchmarks

Speculative Thread Execution
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Array and Scalar Caches

Two types of localities exhibited by programs
Temporal: an item accessed now may be accessed

in the near future
Spatial: If an item is accessed now, nearby items are

likely to be accessed in the near future

Instructions and Array data exhibit spatial

Scalar data items (such as loop index variable) exhibit temporal

So, we should try to design different types of caches for
arrays and scalar data
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Comparing Split and Unified Cache

Unified Cache
Direct mapped
Block size: 32 bytes
Split Cache
scalar cache: 2-way set associative

32 bytes blocks
array cache: Direct mapped

128 byte blocks

Array and Scalar Caches



Computer Systems Research at
UNT

42

Summary of Results with array and scalar caches
using SPEC 2000 Benchmarks

43% reduction in Miss rate for benchmark art and mesa
24% reduction in Miss rate for benchmark equake
12% reduction in Miss rate for benchmark ammp

Array and Scalar Caches
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Augmenting scalar cache with victim cache and array cache with
prefetch buffers

What is a Victim Cache?

A small fully associative cache to augment L1 
direct mapped cache

On a cache miss, the displaced cache entry is moved to 
victim cache

Minimizes the number of conflict misses

Array and Scalar Caches
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Results
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 Conventional cache configuration: 16k, 32 bytes block, Direct mapped
 Scalar cache configuration: 4k, 64 bytes block, Direct mapped 

with 8 lined Victim cache 
 Array cache configuration: 4k, 64 bytes block, Direct mapped with multiple (4) 

10 lined stream buffers 

Array and Scalar Caches
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Embedded applications

Tighter constraints on both functionality and  implementation.

Must meet strict timing constraints

Must be designed to function within limited resources such as

memory size, available power, and allowable  weight

Split caches can address these challenges

Array and Scalar Caches
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Reconfigurability

• The performance of a given cache architecture is largely
determined by the behavior of the applications

• Manufacturer typically sets the cache architecture as a
compromise across several applications

• This leads to conflicts in deciding on total cache size, line

size and associativity

• For embedded systems where everything needs to be cost

effective, this “one-size-fits-all” design philosophy is not

adequate

Array and Scalar Caches
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• Our goal is to design caches that achieve high performance
for embedded applications while remaining both energy
and area efficient

• We apply reconfigurability to the design of caches to
address these conflicting requirements

• Emphasize only on cache size
• We did not implement reconfigurability for associativity as

cache splitting and victim caching solves that problem

Reconfigurability

Array and Scalar Caches
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Benchmarks

Benchmark Description % of 
load/s

tor 

Name 
in fig 

bit counts Test bit manipulation 11 bc 
qsort Computational Chemistry 52 qs 

dijkstra Shortest path problem 34.8 dj 
blowfish Encription/decription 29 bf 

sha Secure Hash Algorithm 19 sh 
rijndael Encryption Standard 34 ri 

string search Search mechanism 25 ss 
adpcm Variation of PCM standard 7 ad 
CRC32 Redundency check 36 cr 

FFT Fast Fourier Transform 23 ff 

 

Array and Scalar Caches
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Percentage reduction of power, area and cycle for
instruction cache

Conventional cache configuration: 8k, Direct mapped instruction cache,
                                                        32k 4-way Unified level 2 cache
 Our Instruction cache configuration:  Size variable, Direct mapped
                                                        with variable sized prefetch buffer

Array and Scalar Caches
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Percentage reduction of power, area and cycle for
data cache

Conventional cache configuration: 8k, Direct mapped data cache, 
                                                    32k 4-way Unified level 2 cache
 Scalar cache configuration:  Size variable, Direct mapped 
                                            with 2 lined Victim cache 
 Array cache configuration: Size variable, Direct mapped 

Array and Scalar Caches
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Cache configurations yielding lowest power, area and cache
access time

Benchmark Instruction cache Prefetch buffer Array cache Scalar cache 
bit counts 256 bytes 256 bytes 512 bytes 512 bytes 

qsort 256 bytes 512 bytes 1k 4k 
dijkstra 1k 2k 512 bytes 4k 
blowfish 1k 1k 512 bytes 4k 

sha 256 bytes 512 bytes 512 bytes 1k 
rijndael 512 bytes 512 bytes 1k 4k 

string search 256 bytes No prefetching  512 bytes 1k 
adpcm 256 bytes 256 bytes 1k 512 bytes 
CRC32 256 bytes 256 bytes 512 bytes 512 bytes 

FFT 1k 1k 1k 4k 
 

Array and Scalar Caches
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Summarizing
For instruction cache
85% (average 62%) reduction in cache size
72% (average 37%) reduction in cache access time
75% (average 47%) reduction in energy consumption

For data cache
78% (average 49%) reduction in cache size
36% (average 21%) reduction in cache access time
67% (average 52%) reduction in energy consumption

when compared with an 8KB L-1 instruction cache and an 8KB L-1
unified data cache with a 32KB level-2 cache

Array and Scalar Caches
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Function Reuse
Eliminate redundant function execution

If there are no “side-effects” then a function with the same

Inputs, will generate the same output.

Compiler can help in making sure that if a function has

Side-effects or not

At runtime, when we decode “JAL” instruction we know

that we are calling a function

At that time, look up a table to see if the function is

called before with the same arguments
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Function Reuse
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Function Reuse

 

Here we show what percentage of functions are “redundant”
  and can be be “reused”
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Function Reuse

 

 Benchmark Speedup 
Fib 3.23 

Dijkstra 1.83 
Rawcaudio 1.81 
Bit Count 1.81 
Quick Sort 1.67 

Parser 1.71 
Gcc 1.40 
Perl 1.22 
Ijpeg 1.27 

Vortex 1.42 
M88ksim 1.38 

Go 1.37 
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Function Reuse
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Visit our website
http://csrl.unt.edu/

You will find our papers and tools

For More Information



Computer Systems Research at
UNT

60

This slide is deliberately left blank



Computer Systems Research at
UNT

61

 For object-oriented programming systems, memory management is

complex and can consume as much as 40% of total execution

time

 Also, if CPU is performing memory management, CPU cache will

perform poorly due to switching between user functions

and memory management functions

If we have a separate hardware and separate cache for memory

management, CPU cache performance can be improved dramatically

Offloading Memory Management Functions
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Separate Caches With/Without Processor
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Execution Performance Improvements
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0.03460.0314,539,7654,540,6600.04164.gzip

2.902.8112983022203130204622400.59255.vortex

% Performance
increase due to
fastest separate

Hardware
Implementation

% Performance
increase due to

Separate
Hardware

Implementation

Numbers of
instruction in

Separated
Hardware

Implementation

Numbers of
instructions in
 conventional
Architecture

% of
cycles

spent on
malloc

Name
of

Benchmark
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Performance in Multithreaded Systems

 Instruction 
Reduction 2T speedup 3T speedup 4T speedup 

Cfrac 23.3% 19.3% 25.26% 30.08% 
espresso 6.07% 9.09% 8.35% 6.27% 
perlbmk 9.05% 14.03% 18.07% 18.35% 
parser 16.88% 17.38% 16.93% 18.61% 
Ave. 13.83% 14.95% 17.15% 18.33% 

 

All threads executing the same function
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Performance in Multithreaded Systems

Each thread executing a different task

 Ave.  #of instruction 
Reduction 

Ave. Performance 
Improvement 

2T 11.52% 14.67% 
3T 12.41% 20.21% 
4T 14.67% 19.60% 
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Hybrid Implementations

Key cycle intensive portions implemented in
hardware

For PHK, the bit map for each page in hardware
page directories in software
needed only 20K gates
produced between 2-11% performance


