

MT-SDF: Scheduled Dataflow Architecture with mini-threads

Domenico Pace
University of Pisa

Pisa, Italy
col.pace@hotmail.it

Krishna Kavi
University of North Texas

Denton, Texas, USA
kavi@cse.unt.edu

Charles Shelor
University of North Texas

Denton, Texas
cfshelor@sbcglobal.net

Abstract—In this paper we show a new execution
paradigm based on Decoupled Software Pipelining in
the context of Scheduled Dataflow (SDF) architecture.
We call the new architecture MT-SDF. We introduce
mini-threads to execute loops as a software pipeline.

We permit the mini-threads to share registers. We
present a qualitative and quantitative comparison of
the mini-threads with the original SDF architecture,
and out-of-order superscalar architecture. We use
several benchmark

Key words: Dataflow Architecture, Decoupled
Software Pipelines, Multithreaded Architecture, and
Shared Registers.

I. INTRODUCTION

Achieving high performance is possible when

multiple activities can be executed concurrently. The
concurrency must not incur large overheads to be
effective. A second issue that must be addressed is the
synchronization and/or coordination of concurrent
activities. These actions often lead to sequentialization
of parallel activities, thus defeating the potential gains
of concurrent execution. Thus effective use of
synchronization and coordination are essential to
achieving high performance. One way to achieve this
goal is through speculative execution whereby it is
speculated that concurrent activities do not need
synchronization or predict the nature of the
synchronization. Successful speculation will reduce
sequential portions but mis-speculation leads to
overheads for undoing the speculative execution.

Implementation of these ideas in traditional
control-flow (or speculative superscalar) architectures
requires extensive software and hardware analyses to
expose inherent concurrencies in applications, and
complex recovery mechanisms when speculation fails.

More recently, a software technique known as
Decoupled Software Pipelining (DSWP) [8, 9, 10]
tries to eliminate or reduce dependencies among
iterations of loops by spreading the dependent
operations across multiple iteration of the loop in a
pipelined fashion. However, implementation of DWSP
on multicore processors requires efficient and fine-

grained communication among cores.
GPUs and GP-GPUs are receiving considerable

interest from high performance community. GPU
processors include a large number of small threads,
which can be used to execute applications with large-
scale data parallelism. However these processors are
difficult to program and the performance is limited by
the transfer of data between the primary processing
cores and GPUs.

We believe that the data flow computational model
presents a better choice to processor architecture, both
to implement scientific applications and applications
with limited data parallelism [2]. In our previous
research, we developed the Scheduled Dataflow [4, 5,
6, 7] that can be viewed as hybrid dataflow/control
flow architecture. SDF threads use data flow execution
model, while instructions within a thread are executed
in order so that conventional pipelines and memory
hierarchies can be used. In this paper we describe an
extension to SDF where SDF threads contain mini-
threads. The mini-threads contain both private and
shared registers; shared registers can be used to
communication among mini-threads. The MT-SDF
mini threads can be used to execute the pipeline stages
created using the Decoupled Software Pipelining
(DSWP) approach.

The rest of the paper is organized as follows.
Section II describes DSWP; Section III describes the
original SDF architecture; Section IV shows how SDF
is extended with mini-threads and Section V includes
our experimental results.

II. DECOUPLED SOFTWARE PIPELINING

Software pipelining has been used to extract higher

levels of parallelism, primarily in VLIW architectures.
DSWP uses a similar mechanism to effectively
tolerate variable latency stalls imposed by memory
loads. DWSP is used to parallelize recursive data
structure (RDS) loops to execute as two concurrent
Threads: a critical part (CP) thread comprising the
traversal slice and an off-critical part (off-CP) thread
comprising the computation slice. For example,
consider the following loop:

while (prt = prt → next) {
ptr → val = ptr →v a l + 1 ;

2013 Data-Flow Execution Models for Extreme Scale Computing

978-1-4799-5247-2/14 $31.00 © 2014 IEEE

DOI 10.1109/DFM.2013.18

22

}
The traversal slice consist of the critical part code, prt
= prt->next , and the computation slice is ptr->val=ptr-
>val+1. A DSWP parallelization of this loop consists
of:

while(prt = prt →next{ while(prt = consume()){
 produce (ptr) ptr →val =ptr →val+1;
} }

TRASVERSAL LOOP COMPUTATION LOOP

The produce () function enqueues the pointer onto

a queue and the consume() function dequeues the
pointer. If the queue is full, the produce function will
block waiting for a slot in the queue. The consume
function will block waiting for data, if the queue is
empty. In this way, the traversal and computation
threads behave as a traditional decoupled produce-
consumer pair. To reduce overhead, these threads
communicate using a Synchronization Array (SA), a
dedicated hardware structure for pipelined inter-thread
communication. The abstraction of the SA is sets of
blocking queues accessed via produce and consume
instructions. The produce instruction takes an
immediate dependence number and a register as
operand. The value in the register is enqueued in the
virtual queue identified by the dependence number.
The consume instruction dequeues data in a similar
fashion.

To apply similar techniques for DOACROSS loops
with loop carried dependencies [3], this technique is
extended, leading to PS-DWSP [9,10]. To better
understand how PS-DSWP (and in general DSWP)
works, consider the example shown in Figure 1.
Figure 1(b) illustrates the Program Dependence Graph
for the C code in Figure 1(a). In order to partition the
instruction of the loop, DSWP first groups the
instructions into Strongly Connected Components and
then DSWP creates the Directed Acyclic Graph
(DAG). DSWP can extract a maximum of 7 threads in
this example. In practice, the performance of this loop
is limited by the execution time of the SCC formed by
statements F and G (assuming the loop is repeated
several iterations). A key observation is that FG
cannot be partitioned by DSWP but it can be
replicated, so that multiple threads concurrently
execute this SCC for different iterations of the outer
loop (different element of the “p” list). There are
dependencies carried by the outer loop in the SCCs AJ,
CD, I. The first two are difficult to eliminate, the third
SCC can be subjected to reduction, allowing it to be
replicated. PS-DSWP can partition the DAG into two
stages: a first sequential stage containing A J, B, and
CD, and a second, parallel stage containing E, FG, H, I.
This parallel stage can be replicated to concurrently
execute in as many threads as desired, with the

performance limited only by the number of iterations
of the outer loop and the slowest stage in the pipeline.

Figure 1: PS-DWSP Example

Figure 2 sketches the code that PSDSWP generates

for the previous example. While not shown in this
figure, the actual transformation generates code to
communicate the control and data dependencies
appropriately, and to add up the sum reduction after
loop exit.

Figure 2. PS-DSWP applied to code in Figure 1

III. OVERVIEW OF SDF ARCHITECTURE

Scheduled Dataflow (SDF) [4,5,6,7] uses non-

blocking threads where threads are enabled only when
they receive all necessary inputs (data driven); and the
architecture decouples all memory access from the
execution pipeline. The architecture uses two different
processing pipelines: Execution Pipeline (EP) for
computations and Synchronization Pipeline (SP) for
accessing memory. SP prepares an enabled thread by
preloading all the data for the thread in its private
register set; SP also stores results of completed threads
into memory, thus enabling other threads. This
decoupling leads to 3 phases of execution: preload,
execute, post-store. Each thread's context is fully
described by its continuation <FP, IP, RS, SC>. FP is
the frame pointer representing storage allocated for the
thread where it receives its inputs; IP is its instruction
pointer, RS is the identification of the private register
set assigned to the thread, and SC is the

23

synchronization count indicating the number of inputs
needed to enable the thread. A scheduling unit (SU)
manages continuations and schedules them either on
SP or EP, depending on the state of the continuation.
Figure 3 shows a simple SDF program.

Figure 3. An SDF Program Example

In main.1, a new thread is created using FALLOC,

which allocates a new frame for the thread and stores
IP and SC in the frame; this instruction is executed by
EP. Data for the new thread is provided using STORE
instructions, which are executed by SP. When the
thread is ready to execute, it starts at CODE, by first
moving data from frame memory to registers using
LOAD instructions, executed by SP. A thread moves
between SP and EP using FORKSP or FORKEP
instructions. The frame memory and register sets are
returned when the thread completes post-storing
results, using an FFREE instruction.

IV. DWSP APPLIED TO SDF

To optimize the support for DSWP concepts we

implemented a new level of threads within SDF: we
call them mini-threads. We refer to the new
architecture as MT-SDF. The mini-threads are
completely contained within SDF threads. Unlike SDF
threads, no frame memories are allocated to mini-
threads; instead a register set is allocated when a mini-
thread is created (using RSALLOC). This way, the
mini-thread can receive its inputs directly in its
registers, eliminating the preload phase of SDF threads.
Min-threads do not use dataflow like enabling. A
mini-thread becomes ready to execute under the
control of the parent SDF thread, and we use
SPAWNSP instruction. Figure 4 gives an example of
MT-SDF code.

The mini-threads are placed in the mini-threads
queue in order to distinguish them from SDF (macro)
threads that may access Frame memories.

Figure 4. MT-SDF Program Example

Speculative Execution.

In addition, speculation can be used with mini-
threads. The concept is an extension of speculative
SDF threads reported previously in [4,7]. Speculative
mini-threads are created by the SPECSPAWNSP
instruction that creates a speculative continuation that
consists of a 5-tuple: <IP, RS, EPN, RIP, ABI>. EPN
is the epoch number: this value is used for the
committing order of the mini-threads. RIP is the re-try
instruction pointer used in case of mis-speculation.
ABI is the address buffer ID that is used to store the
addresses of speculatively read data; MESI like
coherency will detect violations on speculatively read
data items. Speculative threads commit strictly in the
order of epoch numbers. When a thread is considered
for commit, and no data access violations are found in
the ABI buffer associated with the thread, the commit
controller will schedule the thread for commit. If there
is a violation, the commit controller sets the IP of that
continuation to RIP and places the thread into the non-
speculative queue for re-execution.

Register Organization.

In many cases, several mini-threads need the same
inputs (e.g., base address for arrays, constant values).
To facilitate this, we view the register sets used by
mini-threads as partially shared (or global) and
partially private registers. In the current
implementation, each mini-thread has 32 private
integer and 32 floating point registers (R0 to R31 and
F0 to F31). All threads share 32-integer and 32-
floating point registers (R32 to R63 and F32 to F63).
This approach is similar to register windows used in
SPARC architecture [1]. The parent thread can now
store common data in shared or global register for use
by all threads. Figure 5 below shows the structure of

24

registers in MT-SDF
Since reduction operations are very common in

scientific applications, we have included reduction as a
basic operation on shared registers. Thus mini-threads
can use reduction when storing their results into shared
registers.

Figure 5. Shared Registers in MT-SDF

Impact of shared registers. To quantitatively evaluate
the shared register set feature of MT-SDF, we used the
dot product program. Figure 6 shows the execution
time of 4 different implementations of the dot product
program. In the figure, we show results using 10,000
element arrays, but use either 50 or 100 threads. In
each case, we compare the number of cycles needed
when using shared registers with reduction operation
and using a single thread that performs reduction
operation (which minimizes the complexity of
hardware, but the reduction thread can only be
activated after all threads have completed their
computation - the original SDF model of execution).

Figure 6. Evaluation of Shared Registers

V. EVALUATION OF MT-SDF

In this section we include comparison of MT-SDF
with SDF using several benchmark kernels. These
programs were hand-coded and executed using an
extended version of the SDF simulator. We relied on
hand-coded examples, since no optimizing compiler is
available for MT-SDF at this time.
a) Matrix Multiplication benchmark: First we
analyze the results of the matrix multiplication (MM)
benchmark. In this benchmark we used two 20x20
matrices. Figure 7 shows the thread structure
implemented in this program. Note that we are using
DSWP for coding the application - we use the same
structure for both SDF and MT-SDF implementation.
In this version we used two concurrent mini-threads to
optimize the execution of the inner loop of the matrix
multiplication program. We used a shared register
where each mini-thread can store its partial result. The
MM benchmark exhibits both thread level parallelism
and instruction level parallelism.

Figure 7. Coding Matrix Multiplication

The following figure shows the comparison of

execution times of MT-SDF and SDF

Figure 8. Matrix Multiplication Comparison

As can be seen from Figure 8, MT-SDF

outperforms SDF. MT-SDF needs 9% fewer execution

25

cycles than SDF. Mini-threads lead to better utilization
of both SP and EP pipelines. Figure 9 shows the
utilization rates of the pipelines for the MT-SDF
version compared to the SDF version of the program.
These results indicate that MT-SDF utilizes the
hardware resource more effectively.

Figure 9. Utilization Rates for Matrix Multiplication

We also experimented with increasing thread level
parallelism, using 4 and 5 threads for inner loop. The
results are shown in Figure 10. The version with 5 MT
is only 1% faster than the version with 2 MT. This is
due to the overhead of the creation of a mini-thread is
comparable to the computational load (4 MUL
instructions and 4 ADD instructions) of the mini-
thread itself.

Figure 10. Increasing Thread Level Parallelism

b) Fast Fourier Transform: FFT exhibits higher
degrees of thread level parallelism and higher
computational load than matrix multiply. We used
Cooley-Tukey1 algorithm and used speculative mini-
threads. Figure 11 shows the improvement in

���
��
http://it.wikipedia.org/wiki/Trasformata_di_Fourier_veloce#Algorit
mo_di_Cooley-Tukey

execution cycles. In this case the improvements due to
the utilization of mini-threads is more evident. MT-
SDF needs 45% fewer execution cycles to complete its
execution when compared SDF version.

Figure 11. FFT Comparisons

Analyzing the execution pipeline utilization rates (not
shown as a figure) and assuming 200 execution
pipelines installed:

_ SDF version uses only 162 EPs;
_ MT-SDF version uses all the 200 EPs.
If more EPs are available, the program will use

them also, leading to even better performance. This
implies MT-SDF can generate and use higher levels of
parallelism.

c). Monte Carlo method to estimate the PI and
Planckian Distribution: These two benchmarks
present a common behavior, but the Planckian
Distribution has a lower degree of synchronization
constraints. The following figure shows the results for
Planckian distribution. (note: has Pi as well?)

Figure 12. Planckian Comparisons

The Planckian Distribution benchmark contains a

DOALL loop: in this case MT-SDF outperform SDF,
saving 57% in execution cycles. Figure 13 shows the
pipelines’ utilization rates for the Planckian
Distribution benchmark. As evident from Figure 13,
the utilization rate in MT-SDF is consistently higher
than in SDF, especially for the SPs.

26

Figure 13. Utilization Rates for Planckian Distribution

c) Tri Diagonal Elimination: This benchmark, like
the Planckian Distribution benchmark, is one of the
kernels in the Livermore Loops suite. The C code is
shown below

As can be seen, there is a loop-carried dependence.

Iteration k needs the result from iteration k-1. To
optimize the execution of this benchmark, we coded it
using the DSWP technique. The following figure
shows the execution cycles needed by MT-SDF
compared to those needed by SDF.

Figure 14. Tri-diagonal Comparisons

Figure 15. Utilization for Tri-diagonal Elimination

MT-SDF outperforms SDF, saving 18% execution
cycles. As in other cases, mini-thread fast activation
paradigm allows for better pipelines utilization (Figure
15).

MT-SDF vs Out of Order Superscalar.

This section shows the comparison of MT-SDF
architecture with a superscalar out-of-order (OOO)
processor simulated through the SimpleScalar
simulator 2 . For MT-SDF we used the best
configuration in terms of number of SPs and EPs, to
achieve the best possible performance. For the
simulated superscalar processor we used the most
common configuration supported by the SimpleScalar
simulator (see Table 1 below). We used the same
memory access latencies for both architectures

Table 1: Parameters used for Simplescalar

Figure 16 shows the chart that summarizes the

results. The benchmarks considered have different
levels of parallelism.

Figure 16: MT-SDF vs Superscalar

For the Tri-Diagonal Elimination benchmark the

superscalar processor out-performs MT-SDF because
it can exploit the inherent instruction level parallelism.
On the other hand, to reach that performance the
superscalar processor uses a lot of resources. MT-SDF
uses only 2 SPs (equivalent to two memory port to
access the memory) and 1 EP. For other benchmarks,
MT-SDF out-performs the superscalar processor. In
��

��http://www.simplescalar.com�

27

particular for the matrix multiplication benchmark,
MT-SDF can exploit the inherent thread-level and
data-level parallelism.

VI CONCLUSIONS

We extended the Scheduled Dataflow architecture

with new features: this new architecture is called MT-
SDF. The main characteristics of MT-SDF are another
level of threads (mini-threads), shared registers and
reduction operations with shared registers. These new
features lead to substantial performance improvements
for both DOALL and DOACROSS loops, when
compared to the original SDF and out of order
superscalar architecture. Using shared registers to
store data that are common to several threads we can
achieve at least 10% speed-up over SDF. The
reduction capability with shared registers permits a
better exploitation of thread-level parallelism when
reduction operation is needed.

Mini-threads are the most important extension to
SDF. Mini-threads are introduced to support
Decoupled Software Pipelining (DWSP). Several
benchmarks have shown that is possible to achieve
between 9% and 57% speedup over SDF. Compared to
a superscalar out-of-order processor, MT-SDF
performs better when there is a high degree of thread
level parallelism, but only slightly worse for
applications with low degree of thread level
parallelism, particularly if the threads need to utilize
mutual exclusion on shared resources.

VII REFERENCES

[1]. Tom Germond, David L.Weaver. SPARC

Architecture Manual version 9, 1994.
[2]. A.R. Hurson and K.M. Kavi. Dataflow Revival –

a renewed interest in dataflow architecture”,
Wiley Encyclopedia of Computer Science, pp
890-901, Volume 2, ISBBN 978-0-471-38393-2,
Jan 2009.

[3]. A.R. Hurson, J.T. Lim, K.M. Kavi and B. Lee
"Parallelization of DOALL and DOACROSS
loops - a survey", Advances in Computers, Vol.
45, pp 54-105, (Edited by M. Zerkowitz),
Academic Press 1997.

[4]. Krishna Kavi, Wentong Li and Ali Hurson. “A
non-blocking multithreaded architecture with
support for speculative threads”, Proceedings of
the 8th International Conference on Algorithms,
Architectures and Applications of Parallel
Processing (ICA3PP-208), Cyprus, June 9-11,
2008, Proceedings published by Springer-Verlag,
LNCS 5022, pp 173-184

[5]. Krishna Kavi, Joseph Arul, and Roberto Giorgi.
Execution and cache performance of the

scheduled dataflow architecture. Journal of
Universal Computer Science, Special Issue on
Multithreaded Processors and Chip
Multiprocessors , 6:948– 967, 2000.

[6]. Krishna M. Kavi, Roberto Giorgi, and Joseph
Arul. Scheduled dataflow: Execution paradigm,
architecture, and performance evaluation. IEEE
Trans. Comput. , 50(8):834–846, August 2001.

[7]. Wentong Li, Krishna Kavi, Afrin Naz, and Phil
Sweany. Speculative thread execution in a
multithreaded dataflow architecture. In
Proceedings of the 19th ISCA Parallel and
Distributed Computing Systems , 2006.

[8]. Easwaran Raman, Guilherme Ottoni, Arun Raman,
Matthew J. Bridges, and David I. August. Parallel
stage decoupled software pipelining. In
Proceedings of the 6th annual IEEE/ACM
international symposium on Code generation and
optimization , CGO ’08, pages 114–123, New
York, NY, USA, 2008.

[9]. Ram Rangan, Neil Vachharajani, Manish
Vachharajani, and David I. August. Decoupled
software pipelining with the synchronization array.
In Proceedings of the 13th
InternationalConference on Parallel Architectures
and Compilation Techniques , PACT ’04, pages
177–188, Washington, DC, USA, 2004. IEEE
Computer Society.

[10].Ram Rangan, Neil Vachharajani, Guilherme
Ottoni, and David I. August. Performance
scalability of decoupled software pipelining.
ACM Trans. Archit. Code Optim. , 5(2):8:1–8:25,
September 2008.

Acknowledgements. This research is supported in
part by the NSF Net-Centric Industry/University
Cooperative Research Center, its industrial
memberships and by NSF Grant #1237417. Domineco
Pace spent Spring 2013 at UNT, working on his MS
thesis.

28

