
Storage Allocation

for Real-Time, Embedded Systems ?

Steven M. Donahue1, Matthew P. Hampton1, Morgan Deters1,
Jonathan M. Nye1, Ron K. Cytron1, and Krishna M. Kavi2

1 Washington University
Department of Computer Science
Saint Louis, MO 63130, USA,

cytron@cs.wustl.edu,
WWW home page: http://www.cs.wustl.edu/�doc/

2 University of North Texas
P.O. Box 311277

Denton, Texas 76203

Abstract. Dynamic storage allocation and automatic garbage collec-
tion are among the most popular features that high-level languages can
o�er. However, time-critical applications cannot be written in such lan-
guages unless the time taken to allocate and deallocate storage can be
reasonably bounded. In this paper, we present algorithms for automatic
storage allocation that are appropriate for real-time and embedded sys-
tems. We have implemented these algorithms, and results are presented
that validate the predictability and e�ciency of our approach.

1 Introduction

Languages featuring dynamic storage allocation and automatic garbage collec-
tion continue to grow in popularity|such languages include Java (Java is a
registered trademark of Sun Microsystems) and ML. Following standard termi-
nology, storage requests are satis�ed by allocating storage from a storage heap.
Such storage is live or busy until such time as the storage is declared dead. For
languages like Java, an automatic garbage collection algorithm can detect dead
objects. Other languages o�er primitives for dynamically asserting the death
of an object. In any case, once the object is declared dead, the storage associ-
ated with the object can be deallocated, which makes that storage available for
subsequent reallocation.

Developers of real-time and embedded systems have been slow to embrace
automatic storage management for the following reasons.

{ Real-time applications require predictable execution.Automatic storageman-
agement incurs overhead that can be di�cult or impossible to predict. In this
paper, we examine this issue with respect to storage allocation. For real-time
applications, allocation time must be bounded.

? This work is supported by the National Science Foundation under grant 0081214
and by DARPA under contract F33615{00{C{1697



{ Embedded systems require predictable storage bounds. Embedded systems
are typically deployed without the advantages of a virtual memory backing
store. Thus, the heap cannot be extended without physically inserting more
RAM into the system.
As a result, the storage requirements for these kinds of applications must
be known in advance. For our purposes, this implies that the size of the
run-time heap is �xed and known a priori.

Unfortunately, the performance of automatic storage management continues
to be problematic for developers of embedded or real-time systems. While there
are currently several reasons for this, one concern is that the time taken to
perform storage-management functions cannot easily be bounded. Time-critical
applications cannot abide such behavior. In our view, the term time-critical

applies to both of the following.

{ An application may be time-critical in the sense that some instruction se-
quences must execute in a reliable timeframe. Embedded and real-time ap-
plications often have this property.

{ Hardware support for storage-management functions can be time-critical in
the sense that such hardware must be clocked at a predetermined rate for
synchronous operation. In this situation, it is better to perform a little work
at each storage-management operation than to have some operations execute
for-free and others take a very long time.

Ironically, Java was initially designed as a language for embedded-systems ap-
plications, but its storage management remains problematic for the following
reasons.

{ Storage allocation [9] usually involves searching a free-list of storage blocks.
For garbage-collected programs, the free-list tends to diminish until the point
of collection. Following collection, the free-list typically contains a large num-
ber of (former) objects. To satisfy a single storage request, searching the
free-list could take time proportional to the size of the list|unacceptable
for time-critical situations.

{ Garbage collection [8] techniques usually require marking (a subset of) the
program's live objects; the storage for the unmarked objects can then be re-
turned to the storage manager for reallocation. Collection cycles can happen
unexpectedly and can take considerable time; moreover, negative e�ects on
the data and instruction caches are drastic [4, 2, 1].

{ As the program executes, the heap becomes fragmented : relatively small
holes develop in the heap storage area. To defragment the heap, objects are
either copied or compacted during the collection cycle, taking more execution
time and toll on the cache.

If the time taken to execute storage-management functions can be reasonably
bounded, then languages such as Java could better support time-critical ap-
plications. Moreover, it then becomes possible to relegate storage-management
activities to hardware where better performance might be obtained.



Our paper's contributions can be summarized as follows.

{ Results are presented using Knuth's buddy system [6], which bounds the time
taken to satisfy a storage allocation request.

{ A variation of the buddy system is presented that delays recombination. We
present results on the e�ectiveness and e�ciency of this variation.

{ An algorithm is presented for defragmenting a buddy system heap. The
algorithm is specialized toward satisfying a single request, rather than a mass
defragmentation of the heap which can be disruptive to program execution.

Our paper is organized as follows: Section 2 explains our approach and im-
plementation using simple examples. Section 3 presents experiments based on
this implementation. Section 4 presents conclusions and ideas for future work in
this area.

2 Approach

In this section, we describe our approach for obtaining free blocks of storage in
bounded time. Wilson presents an excellent survey of storage allocation [9], and
the buddy system upon which we base our work is described well by Knuth [6].

Fig. 1. Unstructured list allocator

2.1 Motivation for Segregated Free-Lists

We �rst consider a common storage allocation technique, based on maintaining
a relatively unstructured list of available blocks, as shown in Figure 1. A storage
request is satis�ed by searching that free-list for (typically) the �rst block that
is su�ciently large to satisfy the request. While this approach works well in
practice, it is possible that the only block that can satisfy a given request is at
the far end of the free-list. Because the free-list structure is a function of the
allocating program's behavior, it is not easy to bound the time needed to satisfy
an allocation request, even if we assume the free-list contains a block of suitable
size.

By contrast, consider a storage allocator whose free-lists are segregated by
size, as shown in Figure 2. For e�ciency in obtaining a block of the desired size,



Fig. 2. Data structure for buddy system; objects are segregated by size, and each list
of equally-sized blocks is referenced from the list display, shown at the left

an indexable slot is reserved to head a linked list for each possible block size. A
request for a block of a given size can be satis�ed by simply returning a block
from the appropriate list. This takes constant time, assuming that a block is
available on the appropriate list.

2.2 Buddy System Allocation

Our approach for storage allocation is a segregated-by-size technique, based on
Knuth's buddy system [6]. Each storage request is resolved to a block of size
2k for some positive, integral value of k. Figure 3(a) shows the buddy system's
structure in its initial state, assuming the heap is 256 bytes.

The buddy system operates as follows:

1. When the program requests memory, the allocator �rst calculates the small-
est power of 2 that is larger than or equal to the size requested. More specif-
ically, a request of size s is translated into a request of size 2k; k = dlog2 se.

2. The free-list at index k is consulted for an available block.
3. If a block of size 2k is not available, then two such blocks can be obtained

through bisection of a block of size 2k+1. Figure 3(b) shows the result of
subdividing the initial heap into two sub-blocks.

4. Applying this strategy recursively, increasingly larger blocks can be subdi-
vided until a block of size 2k can be obtained.

For example, the heap in Figure 2 has blocks available of size 16. Thus, a request
for a block of size 10 can be satis�ed immediately, with the resulting block
returned in the time it takes to unlink a block from the size-16 free-list.

Further, consider a request for a block of size 8. Because the list of blocks
of size 8 is empty, the buddy system hunts upwards for a larger block that can
be subdivided to obtain the desired size. The time necessary for that search is



(a) (b)

Fig. 3. A block can be divided into two sub-blocks

O(log(M)) where M is the size of the storage heap. For embedded and real-
time systems, we assume that the heap size is �xed and that O(log(M)) time is
considered e�cient.

2.3 Buddy System Deallocation

When blocks are deallocated, a common problem for most storage-management
algorithms is the coalescing of free blocks that happen to lie consecutively into
larger blocks. The buddy system greatly simpli�es this task. When a block of
size 2k+1 is bisected into two blocks of size 2k, the resulting blocks are said to
be buddies of each other. A buddy of size 2k can implicitly compute its buddy's
address by 
ipping a predetermined bit of its own address|typically bit k where
bit 0 is the rightmost bit.1

Figure 4 shows the result of requesting a block of size 16 given the initial
condition shown in Figure 2. The initial block is recursively subdivided until
two blocks of size 16 are obtained. One of those blocks is returned to satisfy
the allocation request, and the other block remains on the free-list for blocks of
size 16.

When storage is returned, the buddy system eagerly joins buddies to create
ever larger blocks. Thus, if the block allocated in Figure 4 is immediately deal-
located, buddies are joined together repeatedly until the heap is returned to the
state shown in Figure 2.

2.4 Buddy System Implementation and Behavior

As shown in Figure 2, the buddy system normally keeps an array of linked lists of
identically-sized blocks. Each element of the array heads the linked list for blocks

1 Without loss of generality, we assume the heap's origin is address 0.



Fig. 4. Allocation using the buddy system

of a given power of two. When a block is deallocated, a check is performed to see
if that block's buddy is also free. In support of this test, each block is equipped
with one bit to re
ect whether it is busy. The bit must be present when the
block is actually in use by the allocating program.

When a block is not in use, it is kept on a linked list as shown in Figure 2.
The blocks are actually maintained in a doubly-linked list, which facilitates quick
deletion of a block from its linked list. Space for these links can come from the
block itself, since while on the free-list, the space is not otherwise in use. In
addition, it is necessary for the block to keep track of its size, which implies that
the smallest block that can be managed using the buddy system must be able
to accommodate two pointers, along with the size of the block.

Although the buddy system has the advantages stated in this paper, it has
not been widely used for storage allocation in programming-language systems
for the following reasons.

1. The buddy system tends to fragment storage [6]. This means that the heap
may contain su�cient storage to satisfy a request, but the storage is not con-
tiguous within a buddy's boundary. There are two sources of fragmentation:
Internal fragmentation occurs within a block, when a request for storage

is rounded up to a power of two. Consider a request for a block of size
s that is translated into a request for size 2k. For such a request, the
number of wasted bytes w must satisfy 0 � w < 2k�1.

External fragmentation occurs because free storage can be distributed
among blocks whose buddies are busy|still in use by the allocating
program. Such free blocks cannot (at present) be combined.

From the above, we see that internal fragmentation could waste up to half of
a program's data store. We claim that the advantages of the buddy system
mitigate such waste. Moreover, we assume that whoever runs a program can
establish a reasonable size for the heap, based on program behavior and
input data|this must be true for embedded systems which cannot typically



a�ord a backing store. The bound for the heap's size could be multiplied by
1.5 to obtain a heap where internal fragmentation need not be a concern.
Alternatively, if the size of data types is known a priori, then worst-case
analysis can identify a (perhaps better) bound on internal fragmentation.
This bound can be calculated by �nding the data type that maximizes the
amount of internal fragmentation. Clearly, the worst-case run of the program
would be one in which all allocations are of this type. Thus, the worst-case
bound on internal fragmentation would be the level of internal fragmentation
created by allocating the worst-case data type.
External fragmentation remains problematic, because the allocating program
can cause the heap to reach a state where su�cient storage exists but is un-
allocatable due to its position in the heap. In this paper we present an algo-
rithm for defragmenting a buddy heap. The algorithm operates on-demand,
and defragments just enough storage to satisfy a given request.

2. Performance can be poor for programs that create objects with very short
lifetimes. In fact, a typical assumption of Lisp-like programs is that new
objects will die soon. In the limiting case, the state of the free-list could
oscillate between Figure 2 and Figure 4; if this is repeated many times, the
buddy system su�ers from overhead as blocks are joined together only to be
split again by the next allocation request.
We present a variation of the buddy system in this paper. Dubbed the es-

tranged buddy system, we delay block recombination [5] until large storage
blocks are needed.

For the purposes of this paper, it is important to understand the extent to
which the buddy system operates within bounded time. There are essentially
three steps to allocate a block of size 2k.

1. Starting at index k, search upwards for an available block.
2. Recursively bisect the discovered block until a block of size 2k is obtained.
3. Return the address of that block.

The �rst two steps can take time proportional to the size of the list display
shown in Figure 2. For a heap of size M , the list display is �(M). The �nal
step takes constant time. Most programming language systems insist that any
storage returned by an allocator be properly initialized, typically to all-zeros. As
reported in Section 3, it is expected that most storage requests are for blocks
of relatively small size|16 bytes. For a 16 Mbyte heap, assuming 16 is the
smallest request, at most 20 slots could be inspected before a suitable block is
found. This bound is quite reasonable when compared with the unknown length
of an unstructured free-list.

2.5 Estranged Buddy System

As stated in Section 1, if blocks are allocated and immediately deallocated, then
the buddy system could oscillate between subdividing blocks and reuniting bud-
dies. Given our assumptions, such behavior causes no asymptotic di�culties.



As a practical concern, particularly for continuous garbage collection, we inves-
tigated the extent to which such wasteful behavior can be eliminated and we
report on those results in this paper. The basic idea is to avoid unnecessary
block recombination. Although delayed recombination has been previously pro-
posed [5], our goal was to obtain an implementation e�cient in terms of its use
by embedded and real-time Java applications.

2.6 Motivation for Delayed Recombination

We next examine the conditions under which blocks of storage are deallocated.

Occasional collection is the traditional approach for garbage collection. The
collector runs on-demand, when storage becomes scarce or in response to
the application program requesting a collection cycle. From the deallocator's
point of view, objects are returned in relatively large bursts rather than in
a continuous stream.

Continuous collection returns objects in anticipation of future demands. Such
a collector could run as a low-priority thread, collecting objects continuously
as allowed by available CPU resources. Other techniques include contami-
nated garbage collection [1], which returns objects upon method return.

For occasional collection, programs appear to alternate between allocating and
deallocating states. Objects are not returned in a trickle, but seemingly all at
once when the collector runs. For such an approach, it may not be possible to
deallocate a given block immediately after the block is allocated. The dealloca-
tion would have to wait until the next collection cycle.

On the other hand, a continuous collector can exhibit the behavior that
calls for delayed recombination. For this paper, our experiments used occasional
rather than continuous collection. Future research will investigate the results of
the estranged buddy system for such collectors.

2.7 Estranged Buddy Allocation

The estranged buddy system is a variation of Knuth's buddy system that delays
recombination of free blocks. When a block is deallocated, it is viewed as es-

tranged from its buddy and thus reluctant to rejoin. Although this idea was �rst
proposed by Kaufmann [5], no implementation details were provided. Below, we
describe our implementation which is biased toward the behavior we expect from
Java programs:

{ Programs tend to request many blocks of the same size. In Java, equal type
implies equal size, except for arrays. Since programs typically instantiate
many objects of the same type, a request for a block of size s implies the
likelihood of similar requests in the future.

{ Programs tend to allocate relatively small blocks. Good object-oriented de-
sign prescribes simple objects with relatively few �elds. Thus, most objects
in Java are small.



Fig. 5. Estranged buddy list structure

In our implementation of delayed recombination, the estranged buddy system
maintains two free-lists per size, as shown in Figure 5.

Buddy-busy contains blocks whose buddies are busy. The objects in such
blocks are presumably still in use by the allocating program.

Buddy-free contains blocks whose buddies are free. Note that only one of the
two free buddies appears on any list. The other buddy's availability is implied
by its buddy's presence on the buddy-free list.

The two lists are used so that buddy-busy blocks can be allocated in preference to
buddy-free blocks, the latter being saved for recombination should larger blocks
be scarce.

Delayed recombination allows increased 
exibility in satisfying allocation re-
quests. We implemented the following heuristic to satisfy a request of size 2k:

1. The buddy-busy list at index k is examined.
2. The buddy-free list at index k is examined.
3. We examine the buddy-free list at index k � 1, so that two blocks of half

the necessary size can be combined. The recombination of such blocks was
delayed in the estranged buddy system.

4. We apply the usual buddy algorithm and search above for a large block that
can be subdivided.

5. We try to glue from the buddy-free lists of the lowest level up to level k.

Essentially we favor constant-time strategies over searches of the list display.
Also, by favoring buddy-busy over buddy-free we tend to preserve opportunities
for recombination.

2.8 Defragmenting a Buddy Heap

In this section we examine an algorithm for defragmenting a buddy heap. The
algorithm is appropriate for Knuth's buddy system as well as our estranged



buddy system. We assume defragmentation becomes necessary when the heap
contains su�cient storage to satisfy a request, but such space is the sum of
storage \holes" that are not joinable in the buddy sense. We do not penalize the
heap for internal fragmentation|we assume all storage requests are expressed
as powers of two, and that wasted space within a block is not allocatable.

With our focus on real-time, embedded systems, a defragmentation algorithm
must have the following properties:

{ The heap cannot be extended. For an embedded system, the heap size is
�xed when the product is delivered. Thus, defragmentation must happen in
place.

{ The defragmentation must occur in bounded time, since the need for defrag-
mentation cannot be anticipated by the allocating program.

In fact, fragmentation can plague any allocator if blocks of storage can be re-
turned ad hoc. Most allocators enter a compaction phase, during which storage
is massively reorganized. All live objects are pushed to one end of the heap, and
all \holes" pushed toward the other end. The holes are then combined into one
large block that is suitable for subsequent allocations. For real-time systems, this
approach cannot be reasonably bounded. We therefore developed an approach
that liberates su�cient storage to satisfy only the request at hand.

Consider Knuth's buddy system in a situation where an allocation request
of size 2k cannot be satis�ed yet space is available. The following must be true:

{ There is no block available in any list of size 2l; l � k. Otherwise, such a
block could be bisected until a block of size 2k is obtained.

{ There are no free blocks anywhere that can be combined. This follows from
the eager recombination of Knuth's buddy system.

Thus, the only space that is available must be below level k. Defragmentation
must then consist of relocating objects so as to free buddies that can be combined
to obtain a block of size 2k.

The key observation is shown in Figure 6. If two blocks are on some free-list
at level j, then they are necessarily not buddies, as described above. However,
each must have a buddy that is currently busy. By exchanging one block's busy
buddy with the other free block, two joinable blocks result. This approach can
be applied recursively down the size display to obtain a block at level k.

Application of the above defragmentation algorithm to our estranged buddy
system is straightforward.

3 Experiments

Based on the implementation described above, we present experiments to inves-
tigate the following:

1. How does the performance of our bounded-time allocator compare with a
standard, unstructured-list allocator? We are interested in worst-case as well
as average performance on standard benchmarks.



Fig. 6. Defragmentation algorithm

2. How does the performance of our estranged buddy system compare with
Knuth's buddy system?

3. What size objects are typically allocated by Java programs?

We implemented our approach in the context of Sun's Java system, JDK 1.1.8.
Our changes were con�ned to those portions of its Java Virtual Machine (JVM) [7]
that deal with storage allocation, in particular the realObjAllocmethod of the
gc module. Sun's 1.1.8 system o�ers the following JVM interpreters:

{ A reference interpreter is provided, written entirely in C.
{ A more e�cient interpreter implements the most frequently executed por-
tions in (Sparc) assembly language.

To facilitate our implementation, we based our work on the C version. However,
the changes we made are compatible with the architecture of the (speedier)
assembly version.

Sun's JVM interpreter manages objects using handles. Each handle contains
a pointer to the object's current location as well as a reference to an appropriate
method table for (virtual) method-lookup. One object can reference another only
indirectly through the handles. Thus, if objects are relocated (during garbage
collection, for example), only the handle's pointer to the object needs to be
updated. To simplify our work, we retained the Sun JVM's use of handles even
though our approach avoids relocating objects.

The timings were obtained on a Sparc Ultra 1 running at 167MHz with 128
megabytes of RAM. Our benchmarks consisted of the spec benchmarks [3],
using their \large" problem size. Figure 7 summarizes the properties of these
benchmarks, including the number of objects created and the execution time on
the standard JDK 1.1.8 system. The times reported are for the unstructured-list
allocator, as shipped with JDK 1.1.8. As shown in Figure 7, the mpegaudio and
compress benchmarks take signi�cant computational time without allocating



many objects. We therefore do not report further results for those benchmarks,
but concentrate instead on the others, which do allocate a substantial number
of objects.

Name Description Lines Objects Execution
of source created Time (sec)

compress Modi�ed Lempel-Ziv 6,396 10129
jess Expert System 570 7,923,782 1802
raytrace Ray Tracer 3750 6,346,487 2101
db Database Manager 1020 3,210,520 3766
javac Java Compiler 9485 5,902,305 1969
mpegaudio MPEG-3 decompressor N/A 7,555 8519
mtrt Ray Tracer, threaded 3750 6,586,584 2223
jack PCCTS tool N/A 6,579,042 2336

Fig. 7. spec benchmark properties

3.1 Worst-Case Performance of Buddy over Unstructured-List

A buddy system works well for real-time and embedded systems, not especially
due to its average performance, but more due to the bounded nature of its worst-
case allocation performance. We compared the JDK 1.1.8 (unstructured-list)
allocator against the buddy system on the following contrived example:

1. N objects of constant size k are allocated, �lling most of the heap.

2. References to every other object are purged, rendering N=2 objects dead.

3. A garbage collection cycle is performed. At the conclusion of the cycle the
free-list contains N=2 blocks of size k, and a larger \remainder" block at the
end.

4. An object of larger size is then requested.

The above scenario causes the unstructured-list allocator to search to the end of
its free-list to �nd a block of suitable size. By contrast, the buddy system would
have such blocks segregated by size so they can be found quickly. In Figure 8
we show the results for this example: the buddy system is 72 times faster than
the unstructured-list allocator. Because that speedup depends on the length of
the unstructured list, it is possible to make the speedup arbitrarily high for a
contrived example.

While a contrived example may be unfair, it is important to note that a real
program could misbehave and that the unstructured-list allocator can provide
no reasonable bound on allocation time.



Fig. 8. Speedup of buddy system on a contrived example

Benchmark Estranged Knuth
jess 1.04 1.02
raytrace 1.03 0.92
db 1.01 1.01
javac 1.00 1.00
mtrt 1.10 1.02
jack 1.04 1.03

Fig. 9. Speedup of the buddy systems over JDK 1.1.8's unstructured-list allocator



3.2 Average performance of Knuth's Buddy and Estranged Buddy

Systems

We next compare the e�ciency of the unstructured-list allocator, Knuth's buddy
system, and our estranged buddy system on the spec benchmarks. We ran the
spec benchmarks, large size (100) under the following conditions:

{ The JDK 1.1.8 system is equipped with a standard, unstructured-list allo-
cator.

{ Knuth's buddy system eagerly recombines blocks.
{ The estranged buddy system delays recombination as described in Section 2.

Figure 9 shows that Knuth's buddy system operates well on these benchmarks,
but sometimes loses performance. On the other hand, the estranged buddy sys-
tem can be up to 10 percent faster than the (JDK 1.1.8) unstructured-list allo-
cator.

Admittedly, neither approach o�ers tremendous improvement. However, these
results show that the advantages of both systems in terms of worst-case perfor-
mance do not come with a loss in average performance, especially when recom-
bination is delayed.

3.3 Qualitative Analysis of Estranged Buddy

We implemented the estranged buddy system described in Section 2. While the
execution times reported above are an overall indication of our allocator's per-
formance, we investigated qualitatively how requests are satis�ed. The shaded
portions of Figure 10 show the percentage of allocation requests that were satis-
�ed immediately, by �nding a block of size 2k available in slot k of the size display.
Figure 10 shows that by delaying recombination, signi�cantly more blocks can
be found without having to break larger blocks or glue smaller blocks. The es-
tranged buddy system �nds a block available in the buddy-free or buddy-busy
list almost 90% of the time, while the Knuth implementation �nds a block im-
mediately only 50% of the time.

3.4 Object Size

We show in this section that one reason for the estranged buddy system's success
is that most allocation requests by Java programs are for blocks of relatively
small size. In fact, JDK 1.1.8 cannot allocate fewer than 16 bytes for an object,
and a large number of requests are for size-16 blocks. We next examine two of
the spec benchmarks in detail, showing their distribution of allocation requests.

The raytrace application is typical of those spec benchmarks that allocate
many objects. Figure 11(a) shows the distribution of allocation requests for that
raytrace. On the other hand, the compress benchmark allocates relatively few
objects, but Figure 11(b) shows that some of those objects are large, presumably
used for holding the data for compression.



(a)

(b)

Fig. 10. Handling of requests by (a) Knuth's buddy system allocator and (b) the
estranged buddy system allocator



(a) raytrace

(b) comrpess

Fig. 11. Allocation requests



4 Conclusions

From the experiments we have conducted, we have shown the following:

1. An allocator hat segregates the free-list by size o�ers a reasonable bound on
the amount of time required for memory allocation and deallocation.

2. Delayed recombination of memory blocks (as in estranged buddy) increases
signi�cantly the chances that memory blocks will be available immediately
upon an allocation request.

3. The estranged buddy system o�ers performance gains over Knuth's buddy
system and the standard list allocator.

Arguably, the structured-list allocator is bounded, but its bound is O(M)|
in fact, it is di�cult to imagine an allocator whose performance is worst than
O(M). For real-time applications, cost analysis of an operation must consider
worst-case behavior. A worst-case assumption of O(M) for object instantiations
causes gross overprovisioning for most allocations but is a necessarily conser-
vative bound. Asymptotically, both Knuth's buddy system and the estranged
buddy system operate in O(logM) time, where M is the size of the heap. For
real-time and embedded systems, this bound should be su�cient to obtain rea-
sonable performance without overly provisioning for allocation times.

For future work, we will investigate the extent to which the time for re-
sponding to an allocation request could be e�ectively constant. To obtain such
an improvement, the allocator must go beyond segregation by size.

Acknowledgements

We thank Sun Microsystems for access to their Java interpreter. We thank Con-
rad E. Warmbold of Washington University for his help in preparing �gures for
this paper.

References

1. Dante J. Cannarozzi, Michael P. Plezbert, and Ron K. Cytron. Contaminated
garbage collection. Programming Language Design and Implementation, 2000.

2. Trishul Chilimbi and James Larus. Using generational garbage collection to imple-
ment cache-conscious data placement. Proceedings of the International Symposium

on Memory Management, 1998.
3. SPEC Corporation. Java spec benchmarks. Technical report, SPEC, 1999. Available

by purchase from SPEC.
4. Scott Haug. Automatic storage optimization via garbage collection. Master's thesis,

Washington University, 1999.
5. Arie Kaufman. Tailored-list and recombination-delaying buddy systems. ACM

Transactions on Programming Languages and Systems, 6(1):118{125, January 1984.
6. Donald E. Knuth. Fundamental Algorithms, Volume 1, The Art of Computer Pro-

gramming, Second Edition. Addison-Wesley, 1973.



7. Tim Lindholm and Frank Yellin. The Java Virtual Machine Speci�cation. Addison-
Wesley, 1997.

8. Paul R. Wilson. Uniprocessor garbage collection techniques (Long Version). Sub-
mitted to ACM Computing Surveys, 1994.

9. Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic
storage allocation: A survey and critical review. In Henry Baker, editor, Proceedings
of International Workshop on Memory Management, volume 986 of Lecture Notes

in Computer Science, Kinross, Scotland, September 1995. Springer-Verlag.


