
Moola: Multicore Cache Simulator

Charles F. Shelor and Krishna M. Kavi
Department of Computer Science and Engineering, University of North Texas

Denton, TX, 76203, USA
(cfs0042, kavi)@unt.edu

Abstract

Chip multiprocessors have become the normative
architecture for medium and high performance processors.
These devices introduce new questions and research topics.
One such topic is exploring the design space of a cache-
memory hierarchy that prevents the memory accesses from
being a limiting factor on system performance. Simulation
of system workloads is a widely accepted method for
evaluating proposed cache organizations. Cycle accurate
simulation of multicore devices requires a significant
amount of time, limiting the number of configurations that
can be analyzed. The generation of a memory access trace
file from a cycle accurate simulation can be used to
analyze multiple cache configurations in much less time.

This paper introduces Moola, a multicore, trace-based
cache simulator with cycle accurate timing within the
cache-memory subsystem. Moola is suitable for
experimenting with different cache configurations,
including different types of last level cache (LLC)
implementations and demonstrating to researchers and
students how access congestion at the shared LLC can
adversely impact the system performance. Moola is highly
configurable at run-time through configuration files and
command line arguments. An analysis of congestion
effects in the LLC is provided as an example of how
Moola can be used to analyze current cache constructs.

keywords: Computer architecture, multicore processors,
cache simulation.

1 Introduction

The continuing trend to higher throughput processors

with limitations on total power dissipation has resulted in
the proliferation of multicore processors rather than
pushing the clock rates of uniprocessors [1][6]. Having 8
to 32 processing cores on a single chip requires an efficient
cache-memory subsystem to prevent memory system
bottlenecks from being the limiting performance factor.
Characterization of the multicore memory workload and
the performance of various cache-memory organizations is
essential to developing multicore processors that meet their
performance expectations.

Simulation is a common methodology used for

identifying performance bottlenecks and for exploration of
alternative solutions. Cache simulations are typically

trace-driven or execution-driven [13]. Cycle accurate
simulations are very slow while binary-instrumented code
runs close to real time. Either of these options can
generate the trace files needed for cache simulations. The
principle disadvantage of trace files is the file size can be
10’s to 100’s of Gigabytes even after compression.
Execution driven simulators do not have large file sizes,
but reproducibility of a multicore binary-instrumented code
is difficult with variations in operating system response to
establishing the multiple processes. Trace files maintain
the same ordering providing repeatable stimulus for
multiple cache system organizations.

While DineroIV [3] is a widely used cache simulator that
accepts memory traces as inputs, permitting various cache
configurations, it is not suitable for exploring the design
space of multicore systems with both private and shared
caches. There have been many extensions to Dinero, but in
most cases they are ad hoc and do not permit a systematic
evaluation of different cache organizations in a multicore
environment. Moola addresses the limitations of previous
trace driven cache simulators. Moola is an open source tool
and can be easily configured or extended to meet most
needs for simulating multicore cache systems. The tool can
be particularly useful for students in computer architecture
course to understand the impact of cache designs on the
performance of multicore processors.

The remainder of this paper provides details of the
Moola cache simulator in section 2. An example
application of Moola analyzing the L3 access congestion
for 21 benchmarks is given in section 3. A short
assessment of Moola’s accuracy is given in section 4. A
summary discussion of related work in multicore cache
simulation is presented in section 5. The conclusions for
the paper appear in section 6.

2 Moola Multicore Cache Simulator

Moola is a multicore cache simulator developed for use

in a university environment to illustrate the complexities of
multicore cache systems. It is highly configurable to
provide for simulation of a variety of cache structures. It
includes a built-in timing model to show the performance
impacts of different cache parameters in a multilevel
cache-memory subsystem. It is a modular, open-source
tool to allow customization and extension into a variety
research projects. Moola is designed as a trace based
simulator allowing a single time-consuming cycle-accurate

simulation to generate a trace file, which is then processed
rapidly through dozens or even hundreds of cache
configurations. Three key features of Moola are detailed in
sections 2.1 Moola Configuration, 2.2 Moola Last Level
Cache Types, and 2.3 Moola Timing Model. Figure 1 is a
block diagram illustrating an example Moola architecture
showing multiple processors, multiple split L1 private
caches, multiple unified L2 private caches, a shared L3
unified cache with multiple ports to main memory. A two-
level cache with a shared L2 can be configured also. The
interactions of private and shared caches increase in
complexity when shared data, locks, and barriers must be
modeled. The simulation must not change the order of
access of any of these structures to ensure the simulation
accurately reflects the system being analyzed. Coherency
of shared data must be modeled in the cache simulator and
coherency statistics should be reported. False sharing
statistics should be reported also.

2.1 Moola Configuration

Moola is very flexible in the amount and the manner in

which it can be configured. There are two main
configuration classes for a Moola run: physical system and
run management. The physical system being modeled
must be described sufficiently to allow Moola to simulate
the characteristics of the system being evaluated. The
inputs to be applied during the simulation must be
identified and coordinated. A combination of
configuration files and command line arguments provide a
modular configuration environment. A base configuration
can be described in a configuration file and then individual
items can be given modified values in the command line.
A script to analyze the effects of L2 associativity is easily
constructed as seen in Figure 2. The “-cfg file” command
line option reads the specified file and processes the
configuration data in the file. The “-l2_assoc” option then
overrides the configuration value from the file with the
value on the command line.

The configuration files can reference other configuration
files. This allows a configuration file for each of several

L1 cache configurations, each of several L2 cache
configurations, each of several L3 cache configurations
and then system configuration files that mix and match the
different cache configuration files to obtain the different
system structures to analyze. Table 1 lists the cache
parameters that can be configured. The parameter option is
prefixed with a cache identifier such as l1d for the level 1
data cache or l2 for the level 2 unified cache.

Table 1: Configurable Cache Parameters

Option Value
_access Integer: cycles access time
_assoc Integer: associativity
_bsize Integer: block size in bytes
_coherent String: coherency protocol
_distrib Integer: block size for distri-

buted cache interleave factor
_org String: cache organization

{private | shared | nonblock |
distributed}

_pref String: prefech policy
_replace String: replacement policy
_sbsize Integer: subblock size in bytes
_size Integer: cache size in bytes
_write String: write policy

Table 2 shows the general configuration options for

setting the number of processor cores, assigning input files
to processors, configuring the main memory parameters,
controlling configuration file reading and writing and some
statistics output controls. The actual configuration for each
run can be written to a configuration output file in a format
that is readable as a configuration input file for a repeated
run and to document the configuration of the run.

2.2 Moola Last Level Cache Types

The last level cache (LLC) of a multicore system accepts

all of the memory accesses that will terminate in the LLC
or that must be resolved with an access to main memory.
Applications that have relatively high LLC miss rates can
force a bottleneck at the LLC, especially when multiple
instances of the application are running at the same time.
The implementation of the LLC will have a significant
impact on the overall performance of the system. Moola
has 3 models of LLC that can be evaluated. The simplest
model is that of a blocking cache. The first access to an

script to analyze associativity in L2 cache
moola -cfg base.cfg -l2_assoc 1
moola -cfg base.cfg -l2_assoc 2
moola -cfg base.cfg -l2_assoc 4
moola -cfg base.cfg -l2_assoc 8

Figure 2 Configuration Script Example

	

	

Figure 1: Moola Example System Architecture

Table 2: General Configuration Parameters
Option Value

cfg String: configuration file name
cfg_out String: configuration output file

name
comb_i_d Combine instr & data stats
cores Integer: number of cores to sim
csvfile String: name of CSV out file
h, help Print short help message
h, help String: detail help on command
informat String: trace file format
mem_access Integer: memory access in cycles
mem_adrs Integer: memory on each port
mem_nleave Integer: interleave size for mem
mem_ports Integer: number memory ports
multicore String: multicore trace file name
output_sets Output statistics for sets
preset String: select a preset config
snapshot Integer: snap shot integer instr
unicore String: trace file for proc N
nicore_sh String: trace file for proc N,

instructions shared

idle LLC will be accepted and the access will be processed.
All subsequent accesses to the LLC will be blocked and
queued. These LLC requests will be processed in the order
that they are received after the initial access completes.
The maximum wait time for the last arriving request is the
number of pending requests times twice the sum of the
LLC access time plus the main memory access time. This
accounts for the case in which all of the pending accesses
are LLC misses and must perform a cache line write-back
before replacing the cache line from the main memory.
The average wait time at the LLC will be dependent on the
average LLC miss rate for the currently running
applications. The maximum wait time for the last arriving
request for the case of all LLC hits is the number of
pending requests times the LLC access time.

The second LLC model implemented by Moola is a non-
blocking hit-under-miss cache. After the first access to an
idle LLC, subsequent access requests while the cache is
being accessed will be blocked on a first-come-first-served
queue. If the current access is a miss and a memory
reference is initiated, the first queued accessed will be
processed. If this access is a hit, the access is completed
and the next queued access is processed. If the access is a
miss, the miss is queued for memory access and the next
queued LLC access is started. If multiple memory ports
have been configured and the second miss uses an idle
memory port, then the miss resolution can be immediately
initiated. The maximum wait time for this model is the
LLC access time plus twice the main memory access time
for a sequence of all misses with write-backs. Note that
only one LLC access time is needed as the other LLC
accesses are hidden by the main memory accesses. The
maximum wait time for the last arriving request for the

case of all LLC hits is the number of pending requests
times the LLC access time.

The third LLC model implemented in Moola is a non-
blocking distributed cache. The LLC implementation is
partitioned into the number of blocks controlled by a
configuration parameter to model the number of physical
memory segments in the LLC. When an LLC access
arrives its address is examined and routed to the
appropriate segment. Each segment operates as a non-
blocking cache. If the arriving requests do not access the
same memory segment, the accesses proceed in parallel. If
all of the accesses are to the same memory segment in the
LLC, then this model performs exactly like the second
model. However, if the addresses do not result in conflicts,
this model provides an LLC access speedup limited to the
minimum of the number of cores or the number of LLC
segments. Running appropriate benchmarks through
Moola will quantify the speedup possible for different
applications.

2.3 Moola Timing Model

The Moola built-in timing model will not perform cycle

accurate timing of multiple-issue, out-of-order processors
with the memory subsystem. However, it will provide a
good estimate of memory system contributions to total
execution time. All of the timing parameters are entered as
integer multiples of the processor clock. A single CPI
model is constructed by indicating a split L1 instruction
cache having a 1 clock access time. The L1 data cache is
given a 0 clock access time. This results in 1 clock per
instruction if all cache accesses are hits. The trace files
must contain instruction fetches if this timing model is to
be used.

Each processor model has a buffer of memory traces. At
simulation start-up, the selected trace files are read and the
buffers are filled. The time-of-issue of the first instruction
in each buffer is set to the current simulation time. The
first memory reference is pulled from the buffer and
processed. The number of cycles to complete the access is
returned, added to the current simulation time, and stored
as the issue time of the next trace transaction. Instruction
trace records should appear in the trace files prior to the
data trace record for that instruction. This ensures that no
data access is simulated before the instruction access
completes. Each trace buffer is searched to find the buffer
with the smallest issue time for the next trace record.

If a miss is detected during the processing of a trace
record, the cache with the miss calls the next level cache to
resolve the miss. This may include a write-back of the
current cache as well as a read of the missing data. Timing
of the operation is based on the number of cycles per
access configured for the cache, the number of accesses
required, and the amount of time an access might be
blocked waiting on the lower cache level.

The trace file is read to refill the buffer whenever it
becomes empty. If the end of the trace file is reached, the
simulated processor is marked idle. There is also an option
to command the processor to loop back to the start of the
trace file and repeat it. This allows shorter benchmarks to
be simulated repeatedly while a longer benchmark
continues to run. The simulation terminates when all of
the processor trace files have reached their ends with no
more repetitions pending the trace buffers are empty.

Performing a cold start of 8 cores simultaneously
generates 100% miss rates until the instruction and data
caches are warmed up. This situation is unlikely to occur
in a real system as the operating system takes some finite
amount of time to create a process and initiate execution.
This can be modeled in Moola by configuring a time delay
by processor for when they will start processing the given
trace file.

3 Moola Example

An example application was used to debug and test

Moola. This application was to analyze the congestion at
the LLC of the Intel Ivy Bridge processor in a 1 to 8 core
configuration. There were 7 SPEC integer benchmarks [5]
and 21 MiBench benchmarks [4] analyzed. The cache
model was configured to match the Intel Ivy Bridge [A, I2]
and main memory was configured to fast PC memory [10]
The 7 SPEC integer benchmarks were: bzip2, gcc_166,
gcc_200, gcc_typechk, gobmk, hmmer, and mcf. The 21
MiBench benchmarks were: adpcm_c, adpcm_d,
basicmath, blowfish, charcnt, CRC32, dijkstra, fft, ffti,
gsm_toast, gsm_untoast, jpeg_c, jpeg_d, patricia, qsort_int,
qsort_text, sha, stringsearch, susan_c, susan_e, and
susan_s. In addition to running each benchmark
individually, a mixed benchmark consisting of gcc_typeck,
gcc_200, basicmath, blowfish, dijkstra, ffti, jpeg_c, and
susan_s in an 8 processor configuration. Some of the
shorter benchmarks were reloaded when they completed to
attempt to keep all 8 processors busy through most of the
simulation.

Table 3 shows the results of the simulations as the
average of the speedups achieved by each benchmark.
This table also shows the difference between shared
instruction memory and non-shared instruction memory.
Sharing the instruction memory among the benchmark
instances increased the cache hit rates which increased the
speedup by 8%-17% for 3 or more instances.

Table 3: Average Speedups

Instances Non-shared instr Shared instr
2 1.76 1.81
3 2.21 2.49
4 2.60 3.05
5 3.17 3.64
6 3.60 4.17
7 4.19 4.51
8 4.46 5.00

Figure 3. Speedup by Benchmark

The smaller benchmarks that were mostly contained within
the L3 cache showed nearly linear speedup with increasing
instance count and processor count. CRC32 and dijkstra
are the primary examples of this. A couple of the “cache
buster” applications such as hmmer and mcf showed no
speedup improvement as more instances were added,
indicating the performance was limited by accesses to
memory even with only a single instance. Others, such as
susan_e, patricia, and charcnt, started with a linear speedup
with 2-4 processors and then leveled off with speedup
values of 3 to 4. Eleven of the twenty-one benchmarks had
speedups less than 4.0 when running on 8 processors. This
can be seen in Figure 3: speedup by benchmark.

1.00	

2.00	

3.00	

4.00	

5.00	

6.00	

7.00	

8.00	

2n	
 3n	
 4n	
 5n	
 6n	
 7n	
 8n	

adpcm_c	

adpcm_d	

basicmath	

blow;ish	

bzip2	

charcnt	

CRC32	

dijkstra	

fft	

ffti	

gcc_166	

gcc_200	

gcc_typeck	

gobmk	

gsm_toast	

gsm_untoast	

hmmr	

jpeg_c	

jpeg_d	

mcf	

patricia	

qsort_int	

qsort_text	

sha	

stringsearch	

susan_c	

susan_e	

susan_s	

4 Accuracy Assessment

The accuracy of Moola was assessed by having a

program spawn 1 to 14 processes and having each spawned
process run the gobmk benchmark executable from the
SPEC2006 suite. A mid-level MacPro system with 8
physical cores and 8 virtual cores (via hyperthreading)
running at 3.0 GHz was used to collect this data. The
runtimes of the 14 test cases were use to compute actual
speedup values. Moola was then configured to match the
cache size and timing parameters of the Intel(R) Xeon(R)
CPU E5-1680 v2 used in the MacPro system. Moola then
provided estimated speedups for the gobmk trace files with
both blocking and hit-under-miss L3 cache configurations.
These results are shown in Figure 4.

Figure 4: Moola estimated and actual speedups

The Moola estimated speedups for a blocking level 3

cache are fairly similar to those obtained with actual
measured timing. The Moola estimated speedups with a
hit-under-miss L3 cache showed significantly better
performance from 3 to 5 processors and then flattened
when limited by the available memory bandwidth. We will
be running more benchmarks through the accuracy analysis
and will be adjusting the timing estimates to improve the
correlation between the estimates and actual results.

5 Related Work

There are a variety of cache simulators available for

research use. DineroIV [3] has seen significant use with
over 600 citations in Google Scholar. This venerable
cache simulator is limited to uniprocessor systems and is
therefore not suitable for use in this application. CMP$im
[9] is a good multicore cache simulator tool for the Pin
binary instrumentation package from Intel. This tool
provides miss rates and other statistics, but does not
provide built-in timing. Since it is not trace-based, it

requires running the benchmark for each configuration
analyzed. It is a proprietary product that cannot be
modified to provide different styles of LLC operation.
Another Pin package from Ratanaworabhan [11] is an
open-source project that would allow development of
different LLC access architectures, however, it does not
provide a built-in timing model and requires rerunning the
benchmarks for each configuration analyzed. MCSMC [7]
does provide a timing model with similar capability to
Moola. However, the memory accesses used as input are
from synthetic trace generators and the cache structure
appears to be limited to a hierarchical binary sharing that
does not reflect the interconnection methodology of
current, common multicore processors. The work done by
Tao [12] uses the Valgrind binary instrumentation tool set
as the driver for the cache simulator. This tool does not
include a built-in timing model nor does it provide the
ability to vary the type of LLC access.

6 Conclusions

This paper introduces Moola, an extensive cache

simulator for multicore systems. Moola is an open source
trace-based cached simulator providing a built-in timing
model for cache-memory performance estimation. Moola
also allows different LLC cache organizations and is
highly configurable for modeling different cache
architectures. An example analysis using Moola to
demonstrate congestion effects at the LLC is provided.
Moola models cache coherencies in a multicore system.
The coherency protocol is selected during configuration at
run-time and new protocols can be easily added. This
analysis shows that Moola is a useful tool for students and
researchers to explore multicore cache concepts and
designs. More information on the status of Moola and the
source code for Moola can be found in the “projects panel”
at http://www.csrl.unt.edu/.

Acknowledgements
This research is supported in part by NSF award #1237417
and by industrial memberships of the NSF Net-Centric
IUCRC. The authors wish to acknowledge the support
given by Mike Ignatowski and Dave Mayhew of AMD for
their suggestions and insights into cache-memory
subsystems of current and future computer systems.

References
[1] AMD MultiCore Technology: http:

//multicore.amd.com
[2] http://www.anandtech.com/show/4830/intels-ivy-

bridge-architecture-exposed, September 17, 2011.
[3] Jan. Edler and Mark. D. Hill. “Dinero IV Trace-

Driven Uniprocessor Cache Simulator, University of
Wisconsion,
http://www.cs.wisc.edu/~markhill/DineroIV

0.00	

1.00	

2.00	

3.00	

4.00	

5.00	

6.00	

1	
 3	
 5	
 7	
 9	
 11	
 13	

Sp
ee
dup

Number of processors

actual	

moola	
 -­‐hum	

moola-­‐blk	

[4] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan
Ernst, Todd M. Austin, Trevor Mudge, Richard B.
Brown, IEEE 4th Annual Workshop on Workload
Characterization, Austin, TX, December 2001.

[5] John. L. Henning, “Performance Counters and
Development of SPEC CPU2006,” Computer
Architecture News, vol. 35, pages 118-121, March
2007

[6] IBM Cell Processor: http://www-306.ibm.com/chips
/techlib/techlib.nsf/products/Cell

[7] Muhammad Ismail, Talat Altaf, and Shahid Mirza,
MCSMC: A New Parallel Multi-level Cache
Simulator For Multi-core Processors. In Proceedings
of Electronics, Communications and Photonics
Conference (SIECPC), pages 264-269, King Abdul
Aziz City, Saudi Arabia, April 27-30, 2013.

[8] InfoWorld.com, “Intel brings Haswell micro-
architecture to servers with Xeon E3 chip”
http://www.infoworld.com/d/computer-hardware/intel-
brings-haswell-microarchitecture-servers-xeon-e3-
chip-216138, April 10, 2013

[9] Aamer Jaleel, Robert S. Cohn, Chi-Keung Luk, and
Bruce Jacob, CMP$im: A Pin-Based On-The-Fly
Multi-Core Cache Simulator, Fourth Annual
Workshop on Modeling, Benchmarking and
Simulation (MoBS), 2008

[10] NewEgg.com, G.SKILL Sniper Gaming Series 32 GB
DDR3 SDRAM memory, 9-9-9-24 timing,
http://www.newegg.com/Product/Product.aspx?Item=
N82E16820231610, fastest available memory on
NewEgg website, April 25, 2013.

[11] Paruj Ratanaworabhan, Functional Cache Simulator
for Multicore. In Proceedings of International
Conference on Electrical Engineering/Electronics,
Computer, Telecommunications and Information
Technology (ECTI-CON), pages 661-664, Hua Hin,
Thailand, May 16-18, 2012

[12] Jie Tao, Marcel Kunze, Wolfgang Karl, Evaluating the
Cache Architecture of Multicore Processors, In
Proceedings of 16th Euromicro Conference on Parallel,
Distributed and Network-Based Processing, pages 12-
19, Toulouse, France, February 13-15, 2008

[13] Richard A. Uhlig. And Trevor N. Mudge. “Trace-
driven Memory Simulation: A Survey”, In ACM
Computing Surveys, pages 128-170, Vol. 29, June
1997

