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Abstract

Real-time systems are often designed using preemptive scheduling and worst-case execution time estimates to guarantee
the execution of high priority tasks. There is, however, an interest in exploring non-preemptive scheduling models for real-
time systems, particularly for soft real-time multimedia applications. In this paper, we propose a new algorithm that uses
multiple scheduling strategies for efficient non-preemptive scheduling of tasks. Our goal is to improve the success ratio of
the well-known Earliest Deadline First (EDF) approach when the load on the system is very high and to improve the overall
performance in both underloaded and overloaded conditions. Our approach, known as group-EDF (gEDF) is based on
dynamic grouping of tasks with deadlines that are very close to each other, and using Shortest Job First (SJF) technique
to schedule tasks within the group. We will present results comparing gEDF with other real-time algorithms including,
EDF, Best-effort, and Guarantee, by using randomly generated tasks with varying execution times, release times, deadlines
and tolerance to missing deadlines, under varying workloads. We believe that grouping tasks dynamically with similar dead-
lines and utilizing a secondary criteria, such as minimizing the total execution time (or other metrics such as power or
resource availability) for scheduling tasks within a group, can lead to new and more efficient real-time scheduling algorithms.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The Earliest Deadline First (EDF) algorithm is the most widely studied scheduling algorithm for real-time
systems [1]. For a set of preemptive tasks (be they periodic, aperiodic, or sporadic), EDF will find a schedule if
a schedule is possible [2]. The application of EDF for non-preemptive tasks is not as widely investigated. It is
our contention that non-preemptive scheduling is more efficient, particularly for soft real-time applications
and applications designed for multithreaded systems, than the preemptive approach since the non-preemptive
model reduces the overhead needed for switching among tasks (or threads) [3,4]. EDF is optimal for sporadic
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non-preemptive tasks, but EDF may not find an optimal schedule for periodic and aperiodic non-preemptive
tasks. It has been shown that scheduling periodic and aperiodic non-preemptive tasks is NP-hard [5–7]. How-
ever, non-preemptive EDF techniques have produced near optimal schedules for periodic and aperiodic tasks,
particularly when the system is lightly loaded. When the system is overloaded, however, it has been shown that
the EDF approach leads to very poor performance (low success rates) [8]. In this paper, a system load or uti-
lization is used to refer to the sum of the execution times of pending tasks as related to the time available to
complete the tasks. The poor performance of EDF is due to the fact that, as tasks that are scheduled based on
their deadlines miss their deadlines, other tasks waiting for their turn are likely to miss their deadlines also – an
outcome sometimes known as the domino effect. It should also be remembered that Worst-Case Execution
Time (WCET) estimates for tasks are used in most real-time systems. We believe that, in practice, WCET esti-
mates are very conservative, and more aggressive scheduling schemes based on average execution times for
soft real-time systems using either EDF or hybrid algorithms can lead to higher performance.

While investigating scheduling algorithms, we have analyzed a variation of EDF that can improve success
ratios (that is, the number of tasks that have been successfully scheduled to meet their deadlines), particularly
in overloaded conditions. The new algorithm can also decrease the average response time for tasks. We call
our algorithm group-EDF, or gEDF, where the tasks with ‘‘similar’’ deadlines are grouped together (i.e.,
deadlines that are very close to one another), and the Shortest Job First (SJF) algorithm is used for scheduling
tasks within a group. It should be noted that our approach is different from adaptive schemes that switch
between different scheduling strategies based on system load; gEDF is used in overloaded as well as under-
loaded conditions. The computational complexity of gEDF is the same as that of EDF. In this paper, we will
evaluate the performance of gEDF using randomly generated tasks with varying execution times, release
times, deadlines and tolerance to missing deadlines, under varying loads.

We believe that gEDF is particularly useful for soft real-time systems as well as applications known as
‘‘anytime algorithms’’ and ‘‘approximate algorithms,’’ where applications generate more accurate results or
rewards with increased execution times [9,10]. Examples of such applications include search algorithms, neu-
ral-net based learning in AI, FFT and block-recursive filters used for audio and image processing. We model
such applications using a tolerance parameter that describes by how much a task can miss its deadline, or by
how much the task’s execution time can be truncated when the deadline is approaching.

This paper is organized as follows. In Section 2, we present related work. In Section 3, we present our real-
time system model. Numerical results are presented in Section 4. Conclusions are given in Section 5.

2. Related work

The EDF algorithm schedules real-time tasks based on their deadlines. Because of its optimality for peri-
odic, aperiodic, and sporadic preemptive tasks, its optimality for sporadic non-preemptive tasks, and its
acceptable performance for periodic and aperiodic non-preemptive tasks, EDF is widely studied as a dynamic
priority-driven scheduling scheme [5]. EDF is more efficient than many other scheduling algorithms, including
the static Rate-Monotonic scheduling algorithm. For preemptive tasks, EDF is able to reach the maximum
possible processor utilization when lightly loaded. Although finding an optimal schedule for periodic and ape-
riodic non-preemptive tasks is NP-hard [6,7], our experiments have shown that EDF can achieve very good
results even for non-preemptive tasks when the system is lightly loaded. However, when the processor is over-
loaded (i.e., the combined requirements of pending tasks exceed the capabilities of the system) EDF performs
poorly. Researchers have proposed several adaptive techniques for handling heavily loaded situations, but
they require the detection of the overload condition.

A Best-effort algorithm [8] is based on the assumption that the probability of a high value-density task
arriving is low. The value-density is defined by V/C, where V is the value of a task and C is its worst-case exe-
cution time. Given a set of tasks with defined values for successful completion, it can be shown that a sequence
of tasks in decreasing order by value-density will produce the maximum value as compared to any other sched-
uling technique. The Best-effort algorithm admits tasks based on their value-densities and schedules them
using the EDF policy. When higher value tasks are admitted, some lower value tasks may be deleted from
the schedule or delayed until no other tasks with higher value exist. One key consideration in implementing
such a policy is the estimation of current workload, which is either very difficult or very inaccurate in most
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practical systems that utilize WCET estimations. WCET estimation requires complex analysis of tasks [11,12],
and, in most cases, the estimates are significantly larger than average execution times of tasks. Thus the Best-
effort algorithms that use WCET to estimate loads may lead to sub-optimal value realization. Best-effort has
been used as an overload control strategy for EDF.

Other approaches for detecting overload and rejecting tasks were reported in [13,14]. In the Guarantee
scheme [13], the load on the processor is controlled by performing acceptance tests on new tasks entering
the system. If the new task is found schedulable under worst-case assumptions, it is accepted; otherwise, the
arriving task is rejected. In the Robust scheme [14], the acceptance test is based on EDF; if overloaded, one
or more tasks may be rejected based on their importance. Because the Guarantee and Robust algorithms also
rely on computing the schedules of tasks often based on worst-case estimates, they usually lead to underutili-
zation of resources. Thus Best-effort, Guarantee, or Robust scheduling algorithms are not good for soft real-
time systems or applications that are generally referred to as ‘‘anytime’’ or ‘‘approximate’’ algorithms [10].

The combination of SJF and EDF, referred to as SCAN-EDF for disk scheduling, was proposed in [15]. In
the algorithm, SJF is only used to break a tie between tasks with identical deadlines. The work in [16,17] is
very closely related to our idea of groups. This approach quantizes deadlines into deadline bins and places
tasks into these bins. However, tasks within a bin (or group) are scheduled using First Come First Served
(FCFS). The gEDF groups that we use are created dynamically instead of statically as done in [16,17].

One integrated real-time scheduler including Best-effort strategy for general-purpose operating systems has
been proposed in [18]. However, this approach relies on the preemptive scheduling and uses Best-effort as an
overload control strategy.

3. Real-time system model

3.1. Definitions

A job si in a real-time system or a thread in multithreading processing is defined as si = (ri,ei,Di,Pi); where
ri is its release time (or its arrival time); ei is either its predicted worst-case or average execution time; Di is its
deadline. We also maintain a dynamic deadline di with an initial value ri + Di, which tracks the absolute time
before the deadline expires. If modeling periodic jobs, Pi defines a task’s periodicity. Note that aperiodic and
sporadic jobs can be modeled by setting Pi appropriately.

For the experiments, we generated a fixed number (N) of jobs with varying arrivals, execution times and
deadlines. We assume that the jobs are mutually independent. Each experiment is terminated when the prede-
termined experimental time T has expired. This permitted us to investigate the sensitivity of the various task
parameters on the success rates of EDF and gEDF. We use random distributions available in MATLAB to
generate the necessary parameters with tasks.

A group in the gEDF algorithm depends on a group range parameter Gr. sj belongs to the same group as si

if di 6 dj 6 (di + Gr*(di � t)),1 where t is the current time, 1 6 i, j 6 N. In other words, we group jobs with very
close deadlines together. We schedule groups based on EDF (all jobs in a group with an earlier deadline will be
considered for scheduling before jobs in a group with later deadlines), but schedule jobs within a group using
shortest job first (SJF) approach. Since SJF results in more (albeit shorter) jobs completing, intuitively gEDF
should lead to a higher success rate than pure EDF.

We use the following notations for various parameters and computed values:

q is the utilization of the system, q = Rei/T. This is also called the load.
c is the success ratio, c = the number of jobs completed successfully/N.
Tr is the deadline tolerance for soft real-time systems. A job s is schedulable if s finishes before the time

(1 + Tr)*D, where Tr P 0.
le is used either as the average execution time or the worst case execution time, and defines the expected

value of the exponential distribution used for this purpose.

1 We are using the remaining time to a task deadline (called dynamic deadlines) in forming groups. We found that using static deadlines
for defining groups did not significantly change the results.
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lr is used to generate arrival times of jobs, and is the expected value of the exponential distribution used
for this purpose.

lD is the expected value of the random distribution used to generate task deadlines. We set this parameter
as a multiple of le.

R is the average response time of the jobs.
o is the response-time ratio, o ¼ R=le.
gc is the success ratio performance factor, gc = cgEDF/cEDF. This is used to compare gEDF with EDF.
go is the response-time performance factor, go = oEDF/ogEDF. This is used to compare gEDF with EDF.

3.2. gEDF Algorithm

We assume a uniprocessor system. QgEDF is a queue for gEDF scheduling. The current time is represented
as t Æ jQj represents the length of the queue Q Æ s = (r, e, D, P) yields the job at the head of the queue.

We define groups in gEDF as follows: gEDF Group ¼ fskjsk 2 QgEDF; dk � d1 6 D�1Gr; 1 6 k 6 m; m 6
jQgEDFjg;where; D1 is the deadline of the first job in a group.

Algorithm:

1. Enqueue(QgEDF, s)
if (s’s deadline d > t) then

insert job s into QgEDF by Earliest Deadline First, i.e. di 6 di+1 6 di+2,
where si, si+1, si+2 2 QgEDF, 1 6 i 6 jQgEDFj � 2;

end

2. smin = Dequeue (QgEDF)
if QgEDF5/ then

find a job smin with emin = min{ekj sk 2 QgEDF,
dk � d1 6 Gr*D1, 1 6 k 6 m, where
m 6 jQgEDFj};
run it and delete smin from QgEDF;

end

Enqueue is invoked on job arrivals and Dequeue is called when the processor becomes idle. The algorithm
that we presented tends to favor smaller jobs and thus it does not always guarantee fairness. Also the algo-
rithm needs to sort the jobs in each group, which could incur more overhead during execution than EDF.
However, in most practical systems, the number of jobs in a group is small and the added runtime overhead
will be negligible.

4. Numerical results

MATLAB is used to generate tasks and the generated tasks are scheduled using EDF, gEDF, or other
scheduling algorithms. For each chosen set of parameters, we have repeated each experiment 100 times (each
time, generated N tasks using the random probability distributions and scheduled the generated tasks) and
computed the average success rate. In what follows, we report the results and analyze the sensitivity of gEDF
to the various parameters used in the experiments, the effects of the percentage of small jobs, and how well
gEDF performs when compared to Best-effort algorithm. Note that we use the non-preemptive task model.

4.1. Comparison of gEDF and EDF

4.1.1. Experiment 1 – effect of deadline tolerance

Figs. 1–3 show that gEDF achieves higher success rate than EDF when the deadline tolerance (i.e., soft
real-time nature of the jobs) is varied from 20%, 50% to 100% (that is, a task can miss its deadline by 20%,
50% and 100%).

W. Li et al. / Computers and Electrical Engineering 33 (2007) 12–29 15
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For these experiments, we generated tasks by fixing expected execution rate and deadline parameters of the
probability distributions, but varied arrival rate parameter to change the system load. The group range for
these experiments is fixed at Gr = 0.4 (i.e., all jobs whose deadlines fall within 40% of the deadline of current
job are in the same group). It should be noted that gEDF’s success rates are consistently as good as those of
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Fig. 1. Success rates when deadline tolerance is 0.2.
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Fig. 2. Success rates when deadline tolerance is 0.5.
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Fig. 3. Success rates when deadline tolerance is 1.0.
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EDF under light loads (utilization is less than 1), but higher than those of EDF under heavy loads (utilization
is greater than 1, see the X-axis). Both EDF and gEDF achieve higher success rates when tasks are provided
with greater deadline tolerance. The tolerance benefits gEDF more than EDF, particularly under heavy loads.
Thus, gEDF is better suited for soft real-time tasks.

Fig. 4 summarizes these results by showing the percent improvement in success ratios achieved by gEDF
when compared to EDF. The Y-axis shows that higher success rates are achieved by gEDF when compared
to EDF for different system loads and different deadline tolerance parameters.

4.1.2. Experiment 2 – effect of deadline on success rates
In this experiment we explored the performance of EDF and gEDF when the deadlines are very tight (dead-

line = execution time) and when the deadlines are loose (Deadline = 5* Execution Time). Note that we gen-
erated the deadlines using exponential distribution with mean values set to 1 and 5 times the mean execution
time le. We varied the soft real-time parameter (Tr, or tolerance to deadline) in these experiments also, but all
other parameters are kept the same as in the previous experiment. As can be seen in Figs. 5 and 6, any sched-
uling algorithm will perform poorly for tight deadlines,2 except under extremely light loads. Even under very
tight deadlines, as in Fig. 6, the deadline tolerance favors gEDF more than EDF. With looser deadlines, as in
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Fig. 5. Tight deadline lD = 1 (Deadline = Execution Time) and Tr = 0.

2 It should be noted that when lD = 1, all jobs should be scheduled immediately upon arrival, lest they misses their deadlines. The impact
of using Least Laxity First approach is indirectly reflected by EDF when the deadlines are very tight.
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Figs. 7 and 8, both EDF and gEDF achieve better performance. However, gEDF outperforms EDF consis-
tently for all values of the deadline tolerance, Tr.
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Figs. 9 and 10, respectively, highlight the effect of deadlines on both EDF and gEDF. To more clearly eval-
uate how these approaches perform when the deadlines are very tight and loose, we set the deadlines to 1, 2, 5,
10 and 15 times the execution time of a task. We set le = 40, Tr = 0.2, (for gEDF Gr = 0.4). When lD = 1 and
2, the success ratios of EDF and gEDF show no appreciable differences. However, when lD becomes reason-
ably large, such as 5, 10, and 15, the success ratio of gEDF is better than that of EDF.

Fig. 11 summarizes these comparisons. The Y-axis shows the relative performance improvements (or better
success ratios) achieved by gEDF over EDF.

4.1.3. Experiment 3 – effect of group range

In this experiment, we vary the group range parameter Gr for grouping tasks into a single group. Note in
the following figures we do not include EDF data since EDF does not use groups. We set lD = 5 (Dead-
line = 5* Execution Time) and maintain the same values for other parameters as in the previous experiments.
We set the deadline tolerance parameter Tr to 0.1 (10% tolerance in missing deadlines) in Fig. 12, and to 0.5
(50% tolerance in missing deadlines) in Fig. 13. The data shows that by increasing the size of a group, gEDF
achieves higher success rates. In the limit, by setting the group range parameter to a large value, gEDF
behaves more like SJF. There is a threshold value for the group size for achieving optimal success rate and
the threshold depends on the execution time, tightness of deadlines and deadline tolerance parameters. For
the experiments, we used a single exponential distribution for generating all task execution times. However,
if we were to use a mix of tasks created using exponential distributions with different mean values, thus cre-
ating tasks with widely varying execution times, the group range parameter will have more pronounced effect
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Fig. 10. Success ratio of gEDF when lD = 1, 2, 5, 10, and 15.
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Fig. 9. Success ratio of EDF when lD = 1, 2, 5, 10, and 15.
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on the success rates. Section 4.2 discusses the effect of different job classes, generated using different average
execution time parameters.

4.1.4. Experiment 4 – effect of deadline tolerance on response time

Thus far we have shown that gEDF results in higher success rates than EDF, particularly when the system
is overloaded. Next, we will compare the average response times achieved using gEDF with the response times
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Fig. 11. The ratio of success ratio of gEDF vs. success ratio of EDF when lD = 1, 2, 5, 10, and 15.

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

Su
cc

es
s 

R
at

io

Gr:0.1
Gr:0.2
Gr:0.5
Gr:1.0

Fig. 12. Group Range: Gr = 0.1, 0.2, 0.5, 1.0 (Tr = 0.1).

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

Su
cc

es
s 

R
at

io

Gr:0.1
Gr:0.2
Gr:0.5
Gr:1.0

Fig. 13. Group Range: Gr = 0.1, 0.2, 0.5, 1.0 (Tr = 0.5).

20 W. Li et al. / Computers and Electrical Engineering 33 (2007) 12–29



Aut
ho

r's
   

pe
rs

on
al

   
co

py

achieved using EDF. Intuitively, completing shorter jobs first should result in faster response times. Our
experiments support this. We set le = 40, lD = 5, Gr = 0.4. Figs. 14 and 15 show that gEDF can yield faster
response times than EDF when soft real-time tolerance parameter Tr changes from 0 to 0.5, respectively.

Fig. 16 summarizes the improvements in response times achieved by gEDF when compared to EDF. Note
that that Y-axis shows the relative response times (and smaller number are better).

4.1.5. Experiment 5 – the effect of tight deadlines on response time

Figs. 17 and 18 show the change in response time of EDF and gEDF when lD changes to 1, 2, 5, and 10.
For these experiments, we set lr = le/q, le = 40,Gr = 0.4, Tr = 0.1. Like the success ratios of EDF and gEDF,
when lD is 1 and 2 times le, there is no difference between EDF and gEDF. However, when lD is larger multi-
ple of le, gEDF results in faster response times.

Fig. 19 summarizes the improvements in response times achieved by gEDF when compared to EDF. Note
that that Y-axis shows the relative response times (and smaller number are better).

4.2. The effect of multiple expected execution times

4.2.1. Experiment 6 – the effect of multiple les on success ratio

The jobs generated in Section 4.1 have a single average or worst-case expected execution time le. In other
words, jobs were created using a single exponential distribution. To evaluate the impact of the case when jobs
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Fig. 14. Response time when deadline tolerance Tr = 0.
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come from different classes with different mean execution times, we generated tasks using multiple exponential
distributions with different mean values.
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Fig. 16. The ratio of response time of gEDF vs. response time of EDF.

0

50

100

150

200

250

300

350

400

0.
1

0.
3

0.
5

0.
7

0.
9

1.
1

1.
3

1.
5

1.
7

1.
9

2.
1

2.
3

2.
5

2.
7

2.
9

Utilization

R
es

po
ns

e 
Ti

m
e

D=1
D=2
D=5
D=10

Fig. 17. Response time of EDF when lD = 1, 2, 5, and 10.
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Fig. 18. Response time of gEDF when lD = 1, 2, 5, and 10.
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We use the following mean execution times for generating tasks. Note that a job class will be designated as
(m,n) where m represent the mean value of the distribution used to generate execution times of tasks, and n
represents the fraction of jobs (out of N) that are generated with the mean m.

Set-1: This is the base line consisting of jobs drawn from a single exponential distribution. We generate N

jobs using an exponential distribution with a mean l. We designate this set of jobs as (le,N).
Set-2: Here we have two types of jobs, one generated using a mean of (1/2)le, and the second with a mean of

le,. Sixty-six percent of the jobs have a mean execution time of (1/2)le. This set is designated by
(0.5le,2/3N) and (le,1/3N).

Set-3: This set contains 3 classes of jobs generated using mean execution times of 1/4le, 1/2le, and le. We
designate this set as (0.25le,4/7N), (0.5le,2/7N), and (le,1/7N). Remember that the second number
in each tuple represents the fraction of total number of jobs of each class.

Fig. 20 shows that, when Tr is 0 (hard real-time), a job stream with more small jobs do not improve the
success ratios. On the other hand, when dealing with soft real-time jobs (with a deadline tolerance Tr of
0.2 and 0.5), job classes do impact success ratios of gEDF as shown in Figs. 21 and 22. Note that Set 2
and Set 3 have larger number of smaller jobs than Set 1. As expected gEDF results in higher success rates over
EDF when there are more small jobs.
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Fig. 19. The ratio of response time of gEDF vs. response time of EDF when lD = 1, 2, 5, and 10.
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4.2.2. Experiment 7 – the effect of percentage of small jobs on success ratio

Previously, we analyzed the effect of data sets with different job classes using different values of le, and
observed that a workload with more small jobs show higher gEDF performance when compared to EDF.
In this section, we will analyze the case where we use two different job classes (with two different les) but
change the percentage of small jobs in the mix.

Distribution 1: all jobs with le.
Distribution 2: 1/2 jobs with le; 1/2 jobs with 1/2le.
Distribution 3: 2/5 jobs with le; 3/5 jobs with 1/3le.
Distribution 4: 1/5 jobs with le; 4/5 jobs with 1/8le.

We set Tr = 0.5. Fig. 23 shows that for the distribution with more small jobs, gEDF obtains higher success
ratios than EDF. Note the Distribution 4 has more small jobs than any other distribution, and the data shows
that gEDF benefits from this fact.

4.3. Comparisons of gEDF, Best-effort, and guarantee algorithms

4.3.1. Experiment 8 - comparison of success ratios of gEDF and Best-effort

We have shown that gEDF not only shows better performance than EDF under overloaded conditions, but
shows comparable or better performance than EDF when the system is underloaded. Thus, there is no need to
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Fig. 21. Success ratio of gEDF/success ratio of EDF when Tr = 0.2.
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Fig. 22. Success ratio of gEDF/success ratio of EDF when Tr = 0.5.
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switch between EDF and gEDF based on system load. Researchers have explored adaptive algorithms to con-
trol the performance when the system is overloaded. One such algorithm is called the Best-effort Algorithm
(see Section 2). In this paper we will use the same Best-effort criteria (i.e., value-density: V/C) that Locke
[8] used. For this experiment we set all jobs to have the same value. The Best-effort approach used EDF when
the system is underloaded, and attempts to maximize V/C when the system exceeds 100% utilization (i.e., over-
loaded conditions).

The Best-effort relies on the precise estimation or prediction of utilization for switching between EDF algo-
rithm and the Best-effort. While it may be possible to predict the system load when the system only processes
periodic jobs, it is very difficult to compute the system load if the system processes a mixture of periodic, ape-
riodic, and sporadic jobs. Recently, synthetic utilization bound has been proposed to measure real utilization.
For the EDF-based schemes, however, synthetic utilization and real utilization are very close [19]. The esti-
mated loads are imprecise because most real-time systems utilize worst-case execution times (WCET), and
in most cases the actual execution times are lower than these estimates. Switching to Best-effort based on such
imprecise load estimations leads to inefficient utilization of the resources. In this paper we use a clairvoyant
scheme based on actual execution times of the real-time jobs. Thus the comparisons shown here present
the most optimistic scenarios as far as the Best-effort algorithm is concerned.

We set lr = le/q, le = 20, lD = 5, Gr = 0.4. Figs. 24 and 25 show that gEDF achieves higher success rates
than Best-effort when the deadline tolerance is varied, Tr = 0.2, 0.5, and 1.0.

Considering the need for predicting the precise utilization for implementing Best-effort, any improvements
gained by gEDF should be viewed in a positive light. The performance gains achieved by gEDF are even
grater when the deadline tolerance is as lenient as 50%, as in Fig. 25 (even for lighter loads).
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W. Li et al. / Computers and Electrical Engineering 33 (2007) 12–29 25



Aut
ho

r's
   

pe
rs

on
al

   
co

py

4.3.2. Experiment 9 – comparison of response times of gEDF and best-effort

Figs. 26 and 27 compare the average response times achieved using gEDF with that achieved using Best-
effort. We set lr = le/q, le = 20, lD = 5, Gr = 0.4.
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Fig. 25. Success rates when deadline tolerance is 0.5.
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Fig. 27. Response time when deadline tolerance is 0.2.
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Fig. 26. Response time when deadline tolerance is 0.
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4.3.3. Experiment 10 – comparison of success ratios of gEDF and guarantee

Although Guarantee algorithm is inappropriate for soft real-time systems, we include a comparison of
gEDF with the Guarantee scheme here for the sake of completeness. When the system is underloaded, Guar-
antee uses EDF; when the system is overloaded, Guarantee uses a specific policy to choose real-time jobs and
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Fig. 28. Success ratio when deadline tolerance is 0.2.
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Fig. 29. Success ratio when deadline tolerance is 0.5.
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Fig. 30. Response times when deadline tolerance is 0.2.
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guarantees execution of the jobs by their deadlines. In the simulation used here, incoming jobs, are accepted
based on FCFS policy, if they can be scheduled (along with all jobs already guaranteed) by the deadline.

We set lr = le/q, le = 20, lD = 5, Gr = 0.4. Figs. 28 and 29 show the success ratios of all the real-time sched-
uling algorithms discussed in this paper, including the Guarantee algorithm, Best-effort, EDF, and gEDF.

4.3.4. Experiment 11 – comparison of the response times of gEDF and guarantee

We set lr = le/q, le = 20, lD = 5, Gr = 0.4. Fig. 30 compares the response times of the real-time algorithms
considered in this paper.

5. Conclusions and future work

In this paper, we presented a new real-time scheduling algorithm that combines Shortest Job First sched-
uling with the Earliest Deadline First scheduling. We grouped tasks with deadlines that are very close to each
other, and scheduled jobs within a group using SJF scheduling. We have shown that group-EDF results in
higher success rates (that is, the number of jobs that have completed successfully before their deadline) as well
as in faster response times.

It has been known that while EDF produces an optimum schedule (if one is available) for systems using
preemptive scheduling, EDF is not as widely used for non-preemptive systems. We believe that for soft
real-time systems that utilize multithreaded processors, non-preemptive scheduling is more efficient. Although
EDF produces practically acceptable performance even for non-preemptive systems when the system is under-
loaded, EDF performs very poorly when the system is heavily loaded. Our gEDF algorithm performs as well
as EDF in terms of success ratio when a system is underloaded. Even on systems that are underloaded, gEDF
shows higher success rates than EDF when dealing with soft real-time tasks (using higher deadline tolerances).
And gEDF consistently outperforms EDF in overloaded situations.

In this paper we also compared our gEDF with schemes that adapt EDF when the system is overloaded.
Among the adaptive algorithms, we considered the Best-effort and Guarantee algorithms. In general, gEDF,
which can be used in both overloaded and underloaded situations, performs as well as or better than EDF,
Best-effort and Guarantee schemes. It should be remembered that the last two adaptive algorithms require
the ability to accurately measure system loads so that the overloaded conditions can be detected. In most cases
this is very difficult, particularly if the workload consists of periodic, aperiodic and sporadic jobs, or if the
system consists of both real-time and non-real-time jobs. Moreover, estimating system load based on
worst-case execution times, leads to under-utilizations, thus predicting overloaded conditions incorrectly.
These problems are not encountered by gEDF, since there is no need to estimate system load or to switch
between EDF and Best-effort on overloads.

In future work, we plan to explore the impact of a variety of parameters on the performance gEDF, and
evaluate gEDF for real workloads.
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