Processing-in-Memory:
Exploring the Design Space

Marko Scrbak!, Mahzabeen Islam!, Krishna M. Kavil,
Mike Ignatowski?, and Nuwan Jayasena?

! University of North Texas, USA
{markoscrbak,mahzabeenislam}@my.unt.edu, krishna.kavi@unt.edu
2 AMD Research - Advanced Micro Devices, Inc., USA

{mike.ignatowski,nuwan. jayasena}@amd.com

Abstract. With the emergence of 3D-DRAM, Processing-in-Memory
has once more become of great interest to the research community and
industry. In this paper, we present our observations on a subset of the
PIM design space. We show how the architectural choices for PIM core
frequency and cache sizes will affect the overall power consumption and
energy efficiency. Our findings include detailed power consumption mod-
eling for an ARM-like core as a PIM core. We show the maximum number
of PIM cores we can place in the logic layer with respect to a power bud-
get. In addition, we explore the optimal design choices for the number
of cores as a function of frequency, utilization, and energy efficiency.

Keywords: Processing-in-Memory, 3D-DRAM, Big Data, MapReduce

1 Introduction

Over the last decade, we have witnessed the Big Data processing evolution. Ex-
isting commodity systems, which are widely used in the Big Data processing
community, are becoming less energy efficient and fail to scale in terms of power
consumption and area. [21] clearly shows that this is also true for any Scale-Out
workloads in general. With the evolution of new emerging DRAM technologies, in
particular 3D-DRAM, Processing-in-Memory (PIM) has again become of great
interest to the research community as well as the industry [15, 16]. When it comes
to Big Data processing, systems with 3D-DRAM including PIM could prove to
be more energy efficient and powerful than traditional commodity systems. Re-
cent studies [14, 19, 8] have shown the potential use of PIM in 3D-DRAM chips.
However, in order to prove the efficiency and usability of PIM, a much larger
design space needs to be explored. This includes both software and hardware
related design choices as well as tackling the challenges which arise from such a
complex heterogeneous system. From a software perspective, challenges such as
programmability, scalability, programming interfaces, and usability need to be
explored. Major hardware challenges include PIM core micro-architecture, inter-
connection networks, and interfaces. In this paper, we present our observations
for a subset of architectural choices for the PIM cores, e.g. core architecture,

2 Processing-in-Memory: Exploring the Design Space

frequency, and cache sizes to maximize energy efficiency. Our goal is to explore a
part of the large design space and investigate the trade-offs between certain de-
sign choices. We believe that our observations can be useful for narrowing down
some architectural choices. We focus on an ARM-like energy-efficient core as a
PIM core and evaluate design choices for caches, core frequency, and number
of cores for a set of Big Data analyses benchmarks based on MapReduce. Our
findings and observation include:

e How cache size and core frequency affect the performance of a single PIM core
and total power consumption

How these parameters and metrics translate to overall energy efficiency

Power decomposition for different system components

Potential number of cores we can place in the logic layer within a power budget

Possible design choices for number of cores as a function of frequency, utiliza-
tion, and energy efficiency

The rest of the paper is organized as follows. Section 2 covers the background
and related studies, and Section 3 describes benefits and challenges of PIM in
3D-DRAM. Section 4 shows our contribution to the design space exploration. In
Section 5 we describe the methodology and in Section 6 we present our results
followed by a discussion. We conclude with Section 7 and discuss the future
work.

2 Background and Related Work

2.1 3D-DRAM Memory

3D-DRAM memory provides memory access with lower latency, higher band-
width and lower power consumption. A prototype of such 3D-DRAM is already
available from Micron [22]. A group of different vendors, Hybrid Memory Cube
Consortium (HMCC) [10], are working on expanding 3D-DRAM capabilities.
Current prototype 3D-DRAM, known as Hybrid Memory Cube (HMC) has a
capacity of 4GB and can provide maximum memory bandwidth of 320GB/s
[10]. 3D-DRAM memory is typically going to consist of several layers of DRAM
(nMOS) dies stacked on top of each other with a logic layer (CMOS) sitting
on the bottom of the stack. Communication between different layers is done
through high speed TSVs (Through Silicon Vias) [10,9]. The logic die contains
necessary interfacing circuits for the DRAM dies, and it still has enough area to
accommodate additional logic [14,19]. The proposed TDP budget of the logic
layer is conservatively set at 10W [19].

2.2 An Overview on PIM

Processing-in-Memory (PIM) is the concept of putting computation as close as
possible to memory to get faster access to memory and achieve higher bandwidth.
Processing logic can be integrated in different levels of the storage hierarchy, e.g.

Exploring Processing-in-Memory Design Space 3

cache, memory (DRAM), permanent storage (Solid State Drive-SSD). In this
study, we focus only on processing in DRAM memory.

Research in the area of PIM can be categorized into two eras from the im-
plementation point of view. In the first era, researchers relied on a processing
technology that tried to combine both logic and DRAM cells on a single die.
However the incompatibilities in the manufacturing process of these different
types of devices made it difficult to integrate DRAM with logic [15,23]. The
invention of 3D-die stacking technology breathed a new life for PIM research.
3D-Die stacking technology enables two disparate technologies to be integrated
in the same die. It provides a very useful way of constructing a single die that
can offer both dense memory and fast logic. Also, some other common challenges
anticipated by the researchers of the past PIM studies seem to be easily solved
with 3D-DRAM technology.

PIM, Previous Studies. From the 1990s to 2005, a number of studies pro-
posed appropriate architectures employing PIM to achieve lower memory latency,
higher memory bandwidth and high throughput. Some interesting studies from
that era include EXECUBE [24], IRAM [13], FlexRAM [15], Smart Memories
[25], DIVA [11], and Intelligent Memory Manager [4]. In most of the work, the
researchers advocated architectures with vector [13] or SIMD type [24, 15,11, 4]
processing units sitting close to the memory arrays.

PIM, Related Studies. Recently proposed Near Data Computing (NDC) ar-
chitecture [14] and PIM for MapReduce applications [8] propose to integrate
simple ARM cores as PIM cores in 3D-DRAM memory and have shown per-
formance and energy gains. In our study, we closely resemble the architecture
but the goal of our study differs. In this paper, we explore the design space of
PIM cores utilizing MapReduce applications as a use case. In TOP-PIM [19] the
researchers presented a 3D-DRAM PIM model with GPUs as PIM cores. For
different process technologies, they have shown significant energy efficiency with
little or no performance degradation for different HPC and graph applications.
Other studies [15,2, 3] have provided useful insights on research directions for
PIM-augmented 3D-DRAM systems.

3 PIM Integrated 3D-DRAM: Looking into the Future

In data center systems we need to process large amounts of data as fast as possi-
ble. The main bottleneck in achieving higher speed processing is the gap between
processor and memory speed. Here we discuss the two most important issues
which create this problem, namely latency and bandwidth. Energy efficiency is
another crucial requirement for today’s data centers. 3D-DRAM memory cubes
provide memory accesses with lower latency, higher bandwidth and lower power
consumption. PIM cores integrated in the logic layer of 3D-DRAM are expected
to capitalize these benefits.

4 Processing-in-Memory: Exploring the Design Space

Latency. Memory access latency for a commodity processor can be divided in
two parts [13]. The first part is the time to send the address bits to the DRAM.
This includes lookups in the cache hierarchy, memory controller overhead, multi-
plexing the address over the system memory bus, and reaching the DRAM pins,
etc. The second part is the core DRAM access latency, which may include row
precharge time (tRP), row address to column address delay time (tRCD) and
column access delay time (tCAS). DRAM core latency is approximately 40-50ns
[14,5]. PIM core’s DRAM access latency will be reduced by the lookup time for
L2 and L3 caches as it only has L1 caches. In addition, the off-chip memory bus
delay can be avoided as the PIM cores reside in the same stack as the DRAM
dies and are connected with high speed TSVs. The reduction in DRAM access
latency is expected to be at least 30% [2].

Bandwidth. Today’s processors, which typically have superscalar pipelines,support
Out-Of-Order execution, and support speculation need an excessive amount of
data per second. A good part of data can be supplied by large caches. However,
present data intensive applications, e.g. Scale-Out applications [21], do not ben-
efit from deep cache hierarchies and demand more memory accesses resulting in
a high bandwidth requirement. Additionally, non-blocking and prefetch-enabled
caches increase this requirement. The invention of 3D-DRAM memory can pro-
vide a viable solution to the high bandwidth requirement. Current prototypes
[10] offer as much as 320GB/s off-chip memory bandwidth. Ser-Des links are used
to support this high memory bandwidth. Each Ser-Des link can support 40GB/s
while consuming high power, and in order to provide 320GB/s, 8 such links are
required. This bandwidth (320GB/s) is also available to the logic die sitting at
the bottom of the stacked DRAM dies through TSV buses. If we integrate PIM
cores into the logic layer they will be able to utilize the high bandwidth without
requiring Ser-Des links.

Power. The memory subsystem (memory chip, I/O interface and link) is power
hungry, and in modern Petascale systems, it consumes approximately 35% of
the total system power budget and is anticipated to consume more than 60% in
future Exascale systems [6]. 3D-DRAM will be able to provide 72% less energy
per bit as compared to current DDR4 DRAM systems [18]. Nonetheless accessing
off-chip memory has high overhead in terms of energy. Studies have shown that
around 50%-70% of the DRAM access energy is consumed by the interfaces [6, 7].
Other studies show that approximately 20-30 pJ/b are spent when transferring
data over DRAM buses [7], 5-10 pJ/b for Ser-Des links, and it is expected to
be only 30-110 £J/b when traversed along 3D TSV [19]. Thus, PIM integrated
systems would be more energy efficient when running data-intensive workloads.

Challenges. There exist a number of issues which need to be solved for PIMs to
be effective. The crucial challenge is designing an appropriate system architec-
ture. This involves many design parameters, such as, the host processor, PIM
processors, the memory hierarchy, communication channels, interfaces, etc. Also

Exploring Processing-in-Memory Design Space 5

a number of changes must be made to the operating system (e.g. memory man-
agement), programming framework (e.g. libraries), and programming models
(e.g. synchronization, coherence, data layout).

4 PIM Design Space Exploration

A general model of a PIM augmented architecture using 3D-DRAM has been
proposed by Zhang et al. [16] and a similar model has been used in recent studies
[14, 8] as well. We use the same model for our studies. The model consists of a host
processor connected to one or many 3D-DRAM modules where each 3D-DRAM
module has several PIM cores residing in the logic layer. The host processor
views all the 3D-DRAM modules as one physical address space shared between
the host processor and the PIM cores.

Previous studies have shown high performance gains and energy reductions
for PIM-augmented architectures running MapReduce workloads [14, 8]. How-
ever, the power analyses performed in these studies, for ARM-like PIM cores, are
not accurate. The overall power consumption of the PIM core is underestimated,
and not all power components are considered, e.g. cache power. Furthermore, the
studies are limited for a fixed cache size and core frequency.

In this paper, our goal is to explore the design space of the PIM cores in terms
of cache sizes, operating frequency, the number of cores for a specific micro-
architecture, and perform more realistic power estimations. We take an in-order,
single issue, ARM-like core and perform simulations for different MapReduce
workloads. Our focus is on the map() phase of MapReduce workloads because
they are data intensive and highly parallelizable. We have used gem5 [20] to
capture the performance statistics of the core and McPAT [26] and CACTI-3DD
[27] for the power analyses.

| Host
processor |

-
3
S mnns |
) |
Logic
Layer + 3D 3D
PIM cores DRAM DRAM

Fig.1: A PIM augmented system comprising of 4 3D-DRAM cubes with several
PIM cores embedded in the logic layer.

The architectural choices for cache size and frequency for the PIM cores
will depend on two metrics, i.e. power consumption and energy efficiency. To-
tal power consumption of a PIM core is an important factor because it limits
the number of cores we can place in the logic layer within a power budget of
10W. We define the energy efficiency as useful work done per unit of energy
[work/Joule]. We do not focus solely on total execution time, because it would

6 Processing-in-Memory: Exploring the Design Space

imply the largest cache size and highest frequency as optimal choices. This is
not a good approach because we want to minimize the power consumption while
maximizing the performance. We performed experiments with varying L1 cache
sizes with and without enabled prefetching. We have observed a moderate cache
size with prefetch offers the best energy efficiency. The reason behind this is the
low temporal locality and streaming-like behavior of map() phases in MapReduce
workloads. Note that including another level of cache would consume a signifi-
cant amount of power without providing a significant performance improvement.
We also vary the PIM core frequency and adjust the supply voltage accordingly
[28] to ensure a minimal supply voltage. There will be an optimal frequency for
which we get the best energy efficiency. Because the power increases exponen-
tially and execution time reduces linearly, higher frequencies than optimal will
result in low energy efficiency due to high power. Lower frequencies will result
in lower energy efficiency due to high execution times.

We also calculate the maximum number of cores we can place in the logic
layer within the power budget of 10W. Note that the maximum number of cores
may not be the optimal choice since the utilization of the cores will depend on
the application which will run on the PIM cores. We therefore evaluate the opti-
mal number of cores we want to place in the logic layer with respect to minimal
execution time and minimal energy spent. We calculate the execution times us-
ing Amdahl’s law for different possibilities of serial fractions. We reason that,
although the computation done on PIM cores is typically going to be parallel,
there may be some overhead due to communication, synchronization, or load
imbalance. We observe that the more overhead we have, the fewer cores we want
in the logic layer. We do not get significant performance gains with increasing
the number of cores but add unnecessary power consumption. If we do not place
the maximum number of cores, we hardly utilize the available bandwidth within
a 3D stack. This leads to a conclusion that a SIMD/VLIW /vector processor ar-
chitecture, which can consume much more bandwidth, should be considered as
a PIM core. We plan to investigate such designs in the future.

5 Methodology

We used the gemb simulator [20] to capture the performance statistics needed
for our power and energy efficiency evaluation. We used the “minor” CPU, an
in-order, single-issue CPU model with support for ARM ISA. We are aware that
this model is not as detailed, but it is the only available in-order model with
ARM ISA support. We used a simple DRAM model with a fixed latency of
40ns [14] to match the latency of the 3D-DRAM. We ran four different micro-
benchmarks, written in the C programming language, which capture the map()
function behavior of common MapReduce applications. After input reading, we
take a snapshot of the execution and simulate the run only for the map() func-
tion. We perform the simulations for four micro-benchmarks, wordcount, his-
togram, linear regression, and string match. We vary the L1 cache sizes and core
frequencies. L1 cache means split instruction and data caches of the same size,

Exploring Processing-in-Memory Design Space 7

e.g. 16KB L1 cache means a 16KB L1 instruction and 16KB L1 data cache. We
use a 64B block size for cache.

For the power consumption modeling we used McPAT [26], a power modeling
tool with support for power, area and timing optimization. The tool uses a CPU
model description and the corresponding performance statistics for an applica-
tion run. We take the needed input parameters from gemb statistics outputs
and feed them into McPAT. We do so for each benchmark we run with different
cache sizes and frequencies. We adjust the supply voltage for each frequency
accordingly. This also allows us to capture the correct increase in power while
varying the frequency. The chosen voltage-frequency pairs mimic those in [28].
To keep the static power consumption low, we allow power-gating. All the power
estimations were conducted with respect to the 40nm process, and technology
parameters follow the ITRS roadmap. We have modeled a 3D-DRAM with re-
spect to JEDEC-HBM [12] standard using CACTI-3DD [27]. We obtained the
3D-DRAM access energy of 3.98pJ/bit which is close to 3.7pJ/bit as presented
in [14]. The next section describes the experiments and results in more detail
followed by a discussion.

4 100
90
) 35 2 80
3 3 3 1
3 25 z 60
9 2 s 50
2 S 40
15 30
1 20
1600 1400 1200 1000 800 600 400 200 1600 1400 1200 1000 800 600 400 200
Frequency [MHz] Frequency [MHz]
[Cache Size in KBytes | [Cache Size in KBytes |
(128 mm 64 mm 32mm 16 8 4 mm | (128 mm 64 mm 32 mm 16 8 4 mm |
(a) wordcount, work=2MB. (b) histogram, work=lena.bmp.

Fig. 2: Energy efficiency for two MapReduce workloads. (a) A configuration with
16KB L1 cache and a frequency of 800MHz results in the best energy efficiency.
A frequency of 1GHz provides almost the same energy efficiency and represents
a better alternative in terms of performance at the cost of higher power con-
sumption. (b) A configuration with 4KB cache and 1GHz frequency results in
the best energy efficiency.

6 Results and Discussion

6.1 PIM Core Frequency and Cache Size

We use the collected statistics from gemb to evaluate what would be good archi-
tectural choices for cache sizes and core frequencies. In order to do that, we look
at the overall energy efficiency for different cache size-frequency pairs. The goal
is to find an optimal point where we get the most out of the PIM core for the

8 Processing-in-Memory: Exploring the Design Space

lowest possible power consumption. For that, we take the total execution time
obtained from gemb and the power consumption of the core obtained from Mc-
PAT [26]. We include both static and dynamic power consumption, for the core
and caches, as well as the dynamic 3D-DRAM power obtained from CACTI-
3DD [27]. It is important to include the dynamic DRAM power consumption
because smaller cache sizes can create more accesses to the DRAM and result
in increased overall power consumption. We calculate the energy efficiency, E.g
as Eegr = 1/Energy where,

Energy = (CPU_Power x Total_Execution_Time)
+(Number_of _Memory_Access x DRAM_Access_Energy) . (1)

Figure 2 shows the overall PIM core energy efficiency in Work/Joule for two
distinct workloads: wordcount and histogram. We do not present the data for the
other two workloads since they exhibited similar behavior as that of histogram.
The data shows that, for applications like wordcount, a PIM core with 16KB
L1 cache running at 800MHz frequency is the most energy efficient choice. For
applications similar to histogram a 4KB L1 cache and a frequency of 800MHz
results in the most energy efficient setup. We acknowledge that the actual values
for cache sizes and operating frequencies may be benchmark dependent, and we
plan to conduct further experiments with several other benchmarks. Our goal
here is to present an approach for exploring these design choices. We do, however,
believe that, if we are using ARM like cores, for most MapReduce applications,
where map functions will be executed by PIM cores, the best operating frequen-
cies will range between 600MHz-1000MHz and the optimal cache sizes range
between 8KB-32KB. From our results, we observe that the applications don’t
benefit from larger caches and therefore a second level of cache would just intro-
duce more power overhead and not provide performance gains. Thus, we do not
evaluate the use of L2 caches.

6.2 Power Consumption

We obtain the total PIM core power consumption from McPAT [26]. We scale
the supply voltage to support various frequencies by using the voltage-frequency
pairs as in [28]. We separate the power consumption into four different compo-
nents: static core power, dynamic core power, static cache power, and dynamic
cache power. The power consumption will depend on both frequency and supply
voltage and, therefore, will scale exponentially. Figure 3 shows the breakdown of
different power components within a PIM core. For a cache size of 32KB and core
frequency of 1GHz, the total PIM power consumption (including cache power) is
around 500mW. The core dynamic power is roughly 50mW which supports the
published data for an energy-efficient in-order ARM core [17]. Previous studies
[14, 8] used the power specifications for the same ARM core and took into con-
sideration only the core dynamic power consumption. However, we notice that
the core static power and the cache power are the most significant components
and should be taken into account. Even after allowing for power-gating, static

Exploring Processing-in-Memory Design Space 9

power consumption is high. This implies that the PIM cores should be turned off
whenever they are not performing computation. We include the dynamic power
of the DRAM to capture the effects of cache sizes.

0.7 1.2

0.6 1

s °° s o8
= 04 =3

g 03 g 0.6
o " o

o 0.2 o 0.4

0.1 0.2

0 0

128 64 32 16 8 4 1600140012001000 800 600 400 200
Cache Size [KB] Frequency [MHz]

CORE-S Bl CACHE-s B DRAM = CORE-S BB CACHE-S = DRAM B
CORE-D BN CACHE-D CORE-D BN CACHE-D E

(a) The effect of cache size on the power (b) The effect of frequency on total
consumption for a fixed frequency of power consumption for a fixed L1 cache
1GHz. size of 32KB.

Fig. 3: Power decomposition for PIM core components. A significant portion of
the power comes from the static power for core and cache. A configuration with a
cache size of 32KB, and core frequency of 1GHz, consumes 153mW of static and
50mW of dynamic core power, and 173mW of static and 131mW of dynamic
cache power. The DRAM dynamic power consumption is 51mW. The power
consumption was modeled using McPAT with enabled power-gating.

6.3 Number of PIM Cores

The maximum number of PIM cores that can be placed in the logic layer of a
3D-DRAM will depend on the individual PIM core power consumption as well
as the power limit of the logic layer. Researchers have proposed a conservative
power budget of 10W for the logic layer [19].

Figure 4 shows the maximum number of cores, within that power budget,
for different setups. For 800MHz and 16KB L1 cache, we can maximally put
26 cores in the logic layer. Due to various parallel overheads, the parallel code
which will run on the PIM cores may result in lower utilization of the PIM
cores. Therefore, we reason about a good number of PIM cores with respect to
Amdahl’s law; so, we maintain good performance while minimizing the energy.
The rate at which the power increases with the number of cores will be higher
than the obtained speedup. We are trying to find the trade-off between energy
consumption and execution time. We do that by calculating the execution times
for different numbers of cores using Amdahl’s law for different parallel overheads
(serial fractions). For specific core parameters (cache, frequency), we vary the
number of cores and obtain different execution times by using Amdahl’s law.
The obtained execution time for n cores, Total_Execution_Time(n), is then used
to calculate the energy consumed by n cores, E(n).

E(n) = n x CPU_Power x Total_Execution_Time(n) . (2)

10 Processing-in-Memory: Exploring the Design Space

Num. Cores
w
o

1600 1400 1200 1000 800 600 400 200
Frequency [MHz]

[Cache Size in KBytes |

128 m 64 m 32 m 16 8 4 m

Fig. 4: Maximum number of PIM cores we can place in the logic layer within a
power budget of 10W. We can place as many as 26 ARM-like PIM cores, with a
16KB L1 cache running on 800MHz, and not exceed the 10W power budget.

1 2
0.8
1.5
— 4 . = a °
= 0.6 ° =2
= = JV N @
2 ry 2 1
2 = 2 e
i 04AA,-“u . .. i} 7. =
o Pt o e Tmx ok P 05 a0 3
e, VL L .
o o
(o] 0.1 0.2 0.3 0.4 0.5 o 0.2 0.4 0.6 0.8 1
Execution Time [s] Execution Time [s]
[Number of PIM cores] [Number of PIM cores]
‘1’ 2 % 4= 6 8 12015.24A32“ ‘1‘ 2 x 4 = 6 8 12015'24A32“
(a) Parallel overhead = 1% (b) Parallel overhead = 10%
2
R .
15 . .
.
s oo
= 1 °°
g
2
w "
H .
0.5 o w - «
3
o
o] 0.2 0.4 0.6 0.8 1
Execution Time [s]
[Number of PIM cores]
‘1‘ 2x 4w 6 8 12016.24A32“

(c) Parallel overhead = 30%

Fig. 5: Time-Energy pairs for 3 different parallel overheads. The desirable number
of PIM cores are those closer to the (0,0) coordinate. As the parallel overhead
increases, the configurations with more cores “drift away” because more cores do
not provide additional performance and increase the power consumption. The
black line represents the 10W power budget. All the configurations which are
on the left-hand side of the slope are not possible, since they exceed the power
limit. For a parallel overhead of 1% we want as many as 16-24 cores, for 10%
overhead 8-12 and for 30% 4-6 cores. For each number of cores, we plot the
points for different frequencies starting with the largest frequency (1600MHz)
on the left most side and ending with the lowest frequency (200MHz) on the
right most side. Note that the 800MHz frequency still gives the best results in
terms of energy and time.

Exploring Processing-in-Memory Design Space 11

We compute E(n) for different frequencies so we can observe different design
alternatives. We plot the time-energy pairs in a 2D plane. The points closest
to the optimum point (0,0) will be the configurations which are optimized for
both performance and energy. Figure 5 shows how the desired number of cores
changes because of Amdahl’s law. The general observation is the more overhead
we have, the fewer cores we want in the logic layer. For a parallel overhead of 1%
we want as many as 16-24 cores, for 10% overhead 8-12 and for 30% 4-6 cores.

The desired number of cores depends on the parallel overhead and is subject
to Amdahl’s law. Therefore, it would be wise to choose highly parallelizable
applications with no parallel overhead to run on PIM. If we assume that more
general applications are going to run on PIM we might consider putting less
cores and not waste additional energy.

7 Conclusion and Future Work

In this paper, we presented our observations on a subset of architectural choices
for PIM cores. As a use case, we have used map() phases of several MapReduce
workloads. Our study shows that a PIM core running at 800MHz clock frequency,
with 16KB instruction cache and 16KB data cache, provides the best energy
efficiency. In addition, we have shown the power consumption components and
calculated the maximum number of cores we can place in the logic layer. Also,
we have shown how the parallel overhead of a program can limit the advantage
of having a larger number of cores in the logic layer.

In the future we want to explore other possible micro-architectures for PIM
cores such as simple RISC cores, VLIW processors, vector processors and Dataflow.
Also, we would like to characterize which applications benefit from a PIM archi-
tecture and how to exploit the possible benefits.

Acknowledgments. This work is conducted in part with support from the
NSF Net-centric [IUCRC and AMD. We acknowledge Jim Buchanan’s help in
making this paper more readable.

References

1. Kogge, P. M., Jay, B. B., Sterling, t., Guang, G.:Processing In Memory: Chips to
Petaflops. In: Workshop on Mixing Logic and DRAM: Chips that Compute and
Remember at ISCA, vol. 97. (1997)

2. Zhang, D. P., Jayasena, N., Lyashevsky, A., et al.: A new perspective on processing-
in-memory architecture design. In: Proceedings of the ACM SIGPLAN Workshop
on Memory Systems Performance and Correctness, p. 7. ACM, (2013)

3. Loh, G., Jayasena, N., Oskin, M., et al.: A Processing in Memory Taxonomy and a
Case for Studying Fixed-Function PIM. In: WoNDP: 1st Workshop on Near-Data
Processing. (2013)

4. Rezaei, M., Kavi, K. M.: Intelligent memory manager: Reducing cache pollution
due to memory management functions. In: Journal of Systems Architecture, 52(1),
41-55. (2006)

12 Processing-in-Memory: Exploring the Design Space

5. Chang, D. W., Byun, G., Kim, H., et al.: Reevaluating the latency claims of 3D
stacked memories.” In: Design Automation Conference (ASP-DAC), 2013 18th Asia
and South Pacific, pp. 657-662. IEEE, (2013)

6. Gara, A.: Energy efficiency challenges for exascale computing. In: ACM/IEEE Con-
ference on Supercomputing: Workshop on Power Efficiency and the Path to Exascale
Computing. (2008)

7. Keckler, S. W., Dally, W. J., Khailany, B.: GPUs and the future of parallel com-
puting. In: IEEE Micro 31, no. 5 (2011): 7-17. (2011)

8. Islam, M., Scrbak, M., Kavi, K. M., et al.: Improving Node-level MapReduce Per-
formance using Processing-in-Memory Technologies. In: to be appear in Workshop
on UnConventional High Performance Computing 2014.

9. Black, B., Annavaram, M., Brekelbaum, N., DeVale, et al.: Die stacking (3D) mi-
croarchitecture. In: Micro, pp. 469-479. IEEE, (2006)

10. Hybrid Memory Cube Consortium, http://hybridmemorycube.org/

11. Draper, J., Chame, J., Hall, M., et al.: The architecture of the DIVA processing-
in-memory chip. In: Proceedings of the Supercomputing, pp. 14-25. ACM, (2002)

12. JEDEC, http://wuw.jedec.org/category/technology-focus-area/3d-ics-0

13. Patterson, D., Anderson, T., Cardwell, N., et al.: A case for intelligent RAM. In:
Micro, 17(2), 34-44. IEEE, (1997)

14. Pugsley, S. H., Jestes, J., Zhang, H.: NDC: Analyzing the Impact of 3D-Stacked
Memory—+Logic Devices on MapReduce Workloads. In: International Symposium on
Performance Analysis of Systems and Software. (2014)

15. Torrellas, J.: FlexRAM: Toward an advanced Intelligent Memory system: A retro-
spective paper. In: Intl. Conference on Computer Design, pp. 3-4. IEEE, (2012)
16. Zhang, D. P., Jayasena, N., Lyashevsky, A., et al.: A new perspective on processing-
in-memory architecture design. In: Proceedings of the ACM SIGPLAN Workshop

on Memory Systems Performance and Correctness, p. 7. ACM, (2013)

17. ARM, http://www.arm.com/products/processors/cortex-a/cortex—ab.php

18. Graham, S.: HMC Overview. In: memcon Proceedings. (2012)

19. Zhang, D., Jayasena, N., Lyashevsky, A., et al.: TOP-PIM: throughput-oriented
programmable processing in memory. In: Proceedings of international symposium
on High-performance parallel and distributed computing, pp. 85-98. ACM, (2014)

20. gemb Simulator System, http://www.mbsim.org

21. Ferdman, M., Adileh, A., Kocberber, O., et al.: A Case for Specialized Processors
for Scale-Out Workloads. In: Micro, pp. 31-42. IEEE, (2014)

22. Hybrid Memory Cube, Micron, http://wuw.micron.com/products/
hybrid-memory-cube

23. Brockman, J. B., Kogge, P. M.: The Case for Processing-in-Memory. In: Reports
in University of Notre Dame. (1997)

24. Kogge, P. M.: EXECUBE-A new architecture for scaleable MPPs. In: International
Conference on Parallel Processing, vol. 1, pp. 77-84. IEEE, (1994)

25. Mai, K., Paaske, T., Jayasena, N., et al.: Smart memories: A modular reconfig-
urable architecture. In: Vol. 28, no. 2. ACM, (2000)

26. McPAT, HP Labs, http://www.hpl.hp.com/research/mcpat/

27. Chen, K., Li, S., Muralimanohar, N., et al.: CACTI-3DD: Architecture-level mod-
eling for 3D die-stacked DRAM main memory. In: Proceedings of the Conference
on Design, Automation and Test in Europe, pp. 33-38. EDA Consortium. (2012)

28. Spiliopoulos, V., Bagdia, A., Hansson, A., et al.: Introducing DVFS-management
in a full-system simulator. In: Modeling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS), pp. 535-545. IEEE, (2013)

